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ABSTRACT In this paper, a novel multi-module neural network (MMNN) is proposed to remove ocular
artifacts (OAs) and myogenic artifacts (MAs) from noisy single-channel electroencephalogram (EEG)
signals. This network is a based on deep learning (DL) architecture consisting of multiple denoising modules
connected in parallel. Each denoising module is built using one-dimensional convolutions (Conv1Ds) and
fully connected (FC) layers, and it estimates not only clean EEG signals but also artifacts. The proposed
MMNN has two main advantages. Frist, the multiple denoising modules can purify noisy input EEG
signals by continuously removing artifacts in the forward propagation. Second, the parallel architecture
allows the parameters of each denoising module to be updated concurrently in the backpropagation, thereby
improving the learning capacity of neural networks. We tested the network denoising performance using a
recent public database, namely, EEGdenoiseNet. The results revealed that the proposed network reduced
the temporal relative root mean square error (T-RRMSE) and spectral relative root mean square error
(S-RRMSE) by at least 6% and enhanced the correlation coefficient (CC) by at least 3% over the state-of-
the-art approaches. These significant performance improvements were confirmed by observing the deviation
distribution between the denoised and clean signals. Furthermore, the proposed network achieved a similar
performance efficiency with only 60% of the training data compared to the existing DL models. Our model
can be found at: https://github.com/Zhangzhenkut/Multi-Module-Neural-Network-for-EEG-Denoising

INDEX TERMS EEG denoising, multi-module neural network (MMNN), deep learning (DL).

I. INTRODUCTION
Electroencephalography (EEG) is a safe, reliable, and rela-
tively non-invasive measurement tool to study human brain
activity. EEG signals are used in various fields, such as the
diagnosis and treatment of diseases [1]–[3], investigations
of brain’s neurobiological mechanisms [4]–[6], and brain-
computer interface (BCI) systems [7], [8]. Related studies
strongly rely on whether EEG data accurately represent brain
activity. However, noise and artifacts are always contained in
EEG signals, and they are entangled with brain activity.

Eye movements [9] and facial muscle activity [10] are
two common causes of noise and artifacts in EEG epochs.
Eye movements distort the electric field around the eyes
and over the scalp, thus causing ocular artifacts (OAs) [11].
Facial muscle activity responds to pressure changes in the
upper airway, generating electrical amplitude signals, called
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myogenic artifacts (MAs) [12]. Recently, many approaches,
such as regression [13]–[15], adaptive filtering [16], [17],
blind source separation (BSS) [18]–[21], and empirical mode
decomposition (EMD) [22] have been proposed to remove
OAs and MAs from EEG epochs. A high-performance
denoising approach should be able to accurately remove
artifacts in real-time without distorting the signal of inter-
est and be sufficiently robust to reconstruct EEG data in
various formats, especially the signals recorded using only
a few electrodes. However, these methods have not fully
competent in fulfilling these criteria. The regression and
adaptive filtering techniques are not efficient for real-time
applications, because they need to estimate the transfer and
filtering coefficients before removing the artifacts. BSS and
EMD are not functional for single-channel signals, because
they remove artifacts by decomposing and reconstructing the
EEG signals in the time and frequency domains. However,
the signal decomposition relies on the independence between
channels that the single-channel signals do not have.
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Researchers have applied deep learning (DL) technologies
to address these issues after witnessing their breakthroughs in
the fields of computer vision [23]–[29] and natural language
processing [30]–[32]. Recently proposed DL-based EEG
denoising approaches [33]–[37] use fully connected (FC)
layers, one-dimensional convolutions (Conv1Ds), and long
short-term memory (LSTM) to build end-to-end learning
models. Such models can automatically output real-time
results and perform well even when both the multi-channel
EEG information and reference signals are unavailable.

One of the key aspects of the DL models is that artifact
removal strategies are not designed by human engineers but
are learned from data, so the model performance is greatly
influenced by training data [38]. However, inmany cases, par-
ticularly in real applications, it is highly expensive to collect
high-quality training data [39]. Therefore, there is value in
studying the DL model performance on limited data. On the
other aspect, DL models usually run as black boxes [40]. The
lack of transparency may hinder DL applications in the med-
ical field because it is difficult for humans to verify whether
a complex DL model has expert medical or signal-processing
knowledge. Thus, DL models that provide the explanations
for their mechanism deserve to be further explored.

In this study, we propose a novel multi-module neural
network (MMNN) for EEG denoising. This network can be
implemented in real-time and applied to single-channel EEG
data. Our contributions are as follows: 1) Artifact removal is
defined as the detachment of pure EEG signals from signals
containing additive noise, therefore we create a network flow
that can constantly decompose and assemble EEG informa-
tion using the proposed denoising modules. 2) We designed
the denoising modules using Conv1Ds and FC layers, aiming
to customize a solution specialized at separating OAs or
MAs from noisy EEG signals by network learning. Conv1Ds
were used to extract and generalize the informative features
of brain activity, and FC layers were used to reconstruct
the clean signals and artifacts. Their combination acted as
an end-to-end trainable filter. 3) Referring to the work of
EEGdenoiseNet [37] that provided a publicly available struc-
tured database for EEG denoising studies, we compared the
proposed network with the existing DL and conventional
techniques under the same condition. 4) The model denoising
performance when different amounts of learning data are
available were explored, and the visualization of its compo-
nent was discussed.

The remainder of this paper is structured as follows.
The description of the experimental materials is given in
Section II; Section III presents the proposed MMNN; the
experiments and results are given in Section IV; and the
discussion and conclusion are presented in Section V and
Section VI.

II. MATERIALS
The database used in this study is summarized in Table 1. This
database provides large-scale clean EEG and artifact epochs,

TABLE 1. The benchmark data used in our EEG denoising study.

involving 4514 clean EEG epochs, 3400 EOG epochs, and
5598 EMG epochs. In the previous DL denoising studies
[36], [37], these epochs were used to synthesize the training
and testing data. Their extraction process is briefly described
as follows:

A. CLEAN EEG DATA
The EEG data are composed of 4514 clean EEG epochs,
and each epoch is a single-channel EEG segment of 2s.
As described in [36], 64-channel EEG epochs were collected
from a public database of motor-imagery BCI [41]. These
epochs were then band-pass filtered between 1 and 80 Hz,
notch-filtered (50 Hz), detrended, and processed using inde-
pendent component analysis on ICLabel [42]. Finally, the
processed epochs were sampled at 256 and 512 Hz, respec-
tively, cut into single-channel epochs, and manually checked
to ensure that each one was clean.

B. ELECTROOCULOGRAM (EOG) DATA
The EOG data contain 3400 single-channel OA epochs with
a sample rate of 256 Hz. These epochs were extracted from
previous studies [43]–[47]. As described in [36], the data
were bandpass filtered between 0.3 and 10 Hz, notch-filtered
(50 Hz), and detrended. The extracted OAs were subse-
quently segmented into 2s per epoch and visually checked
by experts.

C. ELECTROMYOGRAPHY (EMG) DATA
The EMG data consist of 5598 MA epochs, and each
epoch is a single-channel EEG epoch with a duration of
2s and a sampling rate of 512 Hz. These MA epochs
were collected from [48] and band-pass filtered between
1 and 120 Hz. Afterwards, these epochs were notch-filtered
(50 Hz), detrended, and visually checked by experts.

III. METHODS
This section describes the proposedMMNN in detail.We first
define the EEG denoising problem and then describe the
denoising module, which serves as the basic component in
our model, followed by the model structure. Finally, we intro-
duce the synthesis process of noisy EEG signals, as well as
training and testing data for OA and MA removals.
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FIGURE 1. The internal structure of the denoising module.

TABLE 2. Hyperparameters of the denoising module.

A. PROBLEM DEFINITION
OAs and MAs belong to ambient noises, also called back-
ground noises [49], [50]. They are generated independent
of the clean signals, therefore the relationship among clean
signals, OAs or MAs, and noisy signals in EEG recordings
can be expressed as [51], [52]:

Y = X + Z (1)

where X , Z and Y denote clean signals, ocular or myogenic
artifacts, and noisy signals, respectively.

The essence of EEG denoising is to estimate the clean
signals using the noisy signals Y . For DL denoising models,
it is challenging to use the prior knowledge learned from Z
distribution to filter Y [53].

B. DENOISING MODULE
In our design, the denoising module is constructed by four
Conv1Ds with rectified linear units (ReLUs), a residual con-
nection, and two FC layers, as shown in Figure 1. Table 2 pro-
vides the details of the hyperparameters, and the parameter
tuning process of c and k is given in Section III. Notably, the
proposed denoising module outputs both clean signals and
artifacts.

1) Conv1Ds WITH ReLUs
The objective of Conv1Ds is to decompose noisy EEG
signals, and their parameters need to be learned from

training data. Within each Conv1D, the output channel and
kernel size determine the computational complexity and filter
length of feature extraction, respectively. The zero-padding
operation can maintain the structural consistency between the
inputs and outputs. ReLUs can improve the model’s nonlin-
earity and avoid the vanishing gradient problem in the learn-
ing stage. Conv1D-A first dismantles noisy single-channel
EEG signals into features inmultiple dimensions. Conv1D-B,
C, and D are subsequently used to continuously generalize
the extracted features. The combination of multiple Conv1Ds
with ReLUs can build complex mappings, thus dismantling
EEG signals more finely. (The discussion regarding the num-
ber of Conv1Ds is provided in Appendix. A)

2) RESIDUAL CONNECTIONS
Residual connections can accelerate network convergence
and improve the model’s learning ability.

3) FC LAYERS
The function of the FC layers is to reconstruct clean signals
and artifacts by connecting the generalized features. The
output clean signals and artifacts have the same data size as
the input (data size: 1 × T).

C. NETWORK STRUCTURE
The proposed MMNN is built using multiple denoising mod-
ules, their number is flexible and can be adjusted according
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FIGURE 2. The structure of MMNN-n (Multi-Module Neural Network-n).

to different denoising tasks. An MMNN assembled using n
denoising modules (MMNN-n) is shown in Figure 2, where
the inputs and outputs of n denoising modules are Y , Y − Ẑ1
to Y − Ẑn−1 and X̂1, X̂2 to X̂n. The final estimation of clean
signals is the sum of X̂1, X̂2 to X̂n. In our designed struc-
ture, the proposed MMNN constantly purifies the inputs for
each denoising module by removing the artifact estimation.
Specifically, Y − Ẑi−1 replaces Y itself as the input for
the ith denoising module. According to (1), the former is a
purer EEG signal than the latter. Therefore, there is a high
probability that the outputs of the ith denoisingmodule, X̂i and
Ẑi, are closer to the ground truth of EEG signals and artifacts
in theory. The related discussion is presented in Section V.

Based on the above, a workflow of multiple denoising
modules can constantly improve the network performance
in theory. However, multi-stacking structures may lead to
vanishing gradient problem during backpropagation [54].
To hedge this risk, the proposed model is designed as a
parallel architecture, thus allowing the parameters from each
denoising module to be updated synchronously. The network
architecture is expressed as:

X̂i, Ẑi = Fi

(
Y − Ẑi−1

)
(2)

X̂ = G (Y ) =
n∑
i=1

X̂i (3)

where X̂ is the final estimation of the clean signal; G is
the proposed MMNN, Y is the input noisy signal, and n
is the number of the denoising modules; Fi indicates the
ith denoising module, X̂i and Ẑi are the reconstructed clean
signals and artifacts, respectively, and Ẑ0 = 0.

D. NOISY SIGNAL SYNTHESIS
Using the clean EEG, EOG, and EMG epochs from the men-
tioned database, we synthesized noisy EEG epochs for model
training and testing. The synthesized noisy EEG epochs and
clean EEG epochs were the data and labels, respectively.
In the training stage, the Adam optimizer [55] was adopted
to minimize the mean squared error (MSE) [56] between

the model outputs and labels. The details of the noisy signal
synthesis are as follows.

To synthesize noisy signals with different noise levels,
the signal-to-noise ratio (SNR) as a reference is first given,
as shown in (4). It describes the ratio of the true signal to
the background noise and is widely used to evaluate noise
levels.

SNR = 10 log
RMS (X)
RMS (Z )

(4)

where X and Z are the discrete-time clean EEG signal and
artifact, respectively; and RMS is the root mean squared
value, as defined:

RMS (P) =

√√√√1
n

n∑
i=1

p2i (5)

where pi indicates the ith discrete time point in an epoch of P,
and n is the number of time points in the epoch.

For signal synthesis with the given database, X denotes any
clean single-channel EEG epoch, and Z is expressed as λ×N ,
where N is any single-channel EOG or EMG epoch and λ is
the parameter used to control the SNR of the noisy signal.
By (4), λ can be derived as:

λ =
RMS (X)

100.1×SNR × RMS (N )
(6)

According to (1), a clean EEG epoch X and an EOG or
EMG epoch N can be simulated into a noisy EEG epoch Y
with any SNR level, as shown in (7):

Y = X + λ× N (7)

E. TRAINING DATA AND TESTING DATA
Previous studies [57]–[59] have demonstrated that the SNR
values of OAs and MAs are commonly between −7 and
2dB, thus the noisy signals were synthesized within this SNR
range.

The OA removal task was implemented using 30000 pairs
and 4000 pairs of training and testing samples, respectively.
The OA removal task was implemented using 30000 pairs
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FIGURE 3. Noisy signal synthesis for model training and testing.

FIGURE 4. The CC results of 10-fold cross-validation in the OA removal task.

and 4000 pairs of training and testing samples, respectively.
They were synthesized using 3400 clean EEG epochs
(randomly selected from 4514 clean EEG epochs) and
all 3400 EOG epochs, according to (6) and (7). For the noisy
EEG synthesis of training set, the SNR values were followed
a uniform distribution from−7 to 2dB, X andN were 3000 of
3400 clean epochs and EOG epochs, respectively. The testing
set were synthesized using the remaining 400 pairs of EEG
epochs and EOG epochs, and the SNR values ranged from
−7dB to 2dB at an interval of one. (−7dB, −6dB, −5dB,
−4dB, −3dB, −2dB, −1dB, 0dB, 1dB, 2dB).

In the MA removal task, all 4514 clean EEG epochs
and 5598 EMG epochs were utilized, where we randomly
copied 1084 clean EEG epochs into original EEG epochs,
thus producing 5598 clean EEG epochs. Finally, we used
5000 of 5598 EEG epochs and EMG epochs to construct
50000 pairs of training samples, and the remaining 598 pairs
were used to construct 5980 pairs of testing samples. The
synthesis process was followed the OA removal task.

Figure 3 briefly summarizes the above process.

IV. EXPERIMENTS AND RESULTS
In this section, we first present the experimental hardware and
evaluation metrics. Then, the hyperparameter tuning process
of the denoisingmodule is described. Finally, we compare the
proposed model with other DL and conventional approaches
through scoring and visualization.

A. HARDWARE AND EVALUATION METRICS
All the experiments were implemented using Pytorch [60]
and two GeForce GTX 1080 GPUs in a Linux system. The
evaluation metrics included the temporal relative root mean
square error (T-RRMSE), spectral relative root mean square
error (S-RRMSE), and correlation coefficient (CC), as shown
in (8)(9) and (10).

T − RRMSE =
RMS (G (y)− x)

RMS (x)
(8)

S − RRMSE =
RMS (PSD (G (y))− PSD (x))

RMS (PSD (x))
(9)

CC =
Cov (f (y) , x)

√
Var (f (y))× Var (x)

(10)
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FIGURE 5. The CC results of 10-fold cross-validation in the MA removal task.

TABLE 3. Average denoising performance in the OA removal task.

TABLE 4. Average denoising performance in the MA removal task.

where x and y are the clean EEG epoch and input noisy EEG
epoch, respectively; G indicates the proposed model; PSD is
the power spectral density function;Cov and Var are short for

the covariance function and variance function. In general, the
smaller the T-RRMSE and S-RRMSE values are, the closer
to 1 the CC value is, the better the performance is.
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FIGURE 6. Distribution of signal deviation in the time and frequency domains for MA removal (Confidence interval = 0.95).

FIGURE 7. Distribution of signal deviation in the time and frequency domains for OA removal (Confidence interval = 0.95).

B. HYPERPARAMETER TUNING
To select the hyperparameters (c, k) of the denoising mod-
ule, we performed a 10-fold cross-validation on the given
30000 and 50000 pairs of training samples in the OA and
MA removals, respectively. In comparison with the speci-
fied validation dataset, a cross-validation strategy can avoid
the problems caused by the unreasonable division of the
dataset.

In the hyperparameter tuning process, the number of output
channels was set as 8, 16, 32, and 64. The filter length for
feature extraction was set as 0.05s, 0.1s, 0.2s, 0.3s, 0.4s, and
0.5s, which corresponds to the kernel size of 13, 25, 51, 77,
103, and 127 in the OA (256Hz) task and the kernel size
of 25, 51, 103, 155, 207, and 255 in the MA (512Hz) task,
respectively.

The CC results of the 10-fold cross-validation from
MMNN-1 to MMNN-6 are shown in Figures 4 and 5. We can
see that the model performance did not significantly improve,
but the computational complexity increased when the number
of output channels exceeded 32 in both the OA and MA
removal tasks. Moreover, the filter lengths of 0.1s (kernel
size= 25) and 0.2s (kernel size= 103) were capable of obvi-
ously improving the model performance with fewer train-
ing parameters in the OA and MA removals. Therefore, we

separately chose (32, 25) and (32, 103) as the module’s
hyperparameters for removing OAs and MAs.

C. RESULTS OF OA AND MA REMOVALS
We performed EEG denoising using MMNN-1 to MMNN-
6. The reference DL models (Appendix. B) included fully
connected neural network (FCNN), simple convolution neu-
ral network (Simple CNN), complex convolution neural net-
work (Complex CNN), and recurrent neural network (RNN)
from [36], and novel Convolutional Neural Network (Novel
CNN) [37]. To fairly compare the model performance under
the same condition, we trained and tested themodels using the
same amount of dataset as the references [36], [37], as shown
in Figure 3. The learning rate and batch size were 0.0001 and
128, respectively. The trained parameters of our models at the
10th iteration, were used to test the denoising performance.

Tables 3 and 4 show the denoising performance on the
4000 pairs of testing samples in the OA removal and
5980 pairs of testing samples in the MA removal. The results
show that the scores of the proposed model can be con-
stantly improved when using one to four denoising modules,
whereas more than four denoising modules cannot signifi-
cantly enhance its performance. Moreover, compared to the
best results of the reference models, the proposed model
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FIGURE 8. Performance comparison between the proposed model and traditional models in the OA removal.

FIGURE 9. Performance comparison between the proposed model and traditional models in the MA removal.

(MMNN-4) reduced the T-RRMSE and S-RRMSE by at least
6.3% and 6.4%, respectively, and improved the CC by at least
3.5% when removing OAs. In the MA removal, it reduced
the T-RRMSE and S-RRMSE by at least 6.2% and 6.4%%,
respectively, and improved the CC by at least 3.3%. These
results illustrate that the proposed model performs well on
the given database.

Subsequently, through the visualization of the denoised
results, we compared the robustness between the proposed
model and the top-scoring reference models for OA and MA
removals (Complex CNN and Novel CNN). As shown in
Figure 6 and Figure 7, we presented the signal deviation in
the time and frequency domains between the denoised results
and the sample labels by calculating the absolute values of
the noise-free epoch minus the denoised epoch. From the
deviation results of the OA and MA removals within the 95%
confidence interval, we can observe that the signal deviation
of the proposed model (MMNN-4) is closer to the horizontal
axis (noise-free situation) and exhibits a smaller range of
deviation than the other competitors in both the time and
frequency domains, which confirms the relative robustness
of the proposed model.

D. PROPOSED MODELS VS CONVENTIONAL MODELS
We further compared the proposed model with three con-
ventional models: Regression [14], ICA [61], and SSP [62].

These models are classic EEG denoising approaches applied
to MNE toolbox [63]. Figure 8 and Figure 9 show the score
distributions of the OA removal (4000 testing epochs) and
MA removal (5980 testing epochs), respectively, where the
proposed model achieves higher CC and smaller T-RRMSE
and S-RRMSE scores than the conventional ones. According
to the ANOVA results with Holm-Bonferroni correction, the
performance differences between the proposed model and the
classical approaches are significant (all p-values < 0.001) in
both the OA and MA removals.

E. OA AND MA REMOVALS ON LIMITED TRAINING DATA
In the applications of DL-based EEG denoising, sufficient
high-quality training data are usually unavailable. Therefore,
we investigated the robustness of DL models when using
limited training data, as shown in Table 5 and Table 6. The
proposed MMNN-4 was compared with the top-scoring ref-
erence models for the OA and MA removals, Complex CNN,
and Novel CNN, respectively, where 10 to 100% of the train-
ing data were separately selected from the given database for
network learning, and the training iterations and parameters
were consistent with the former settings. The results show
that the proposed model always has a superior performance
over its competitors when using the same amount of training
data both for the OA and MA removals. Notably, our model
can reach scores similar to the reference ones using only 60%
of the training data when removing OAs and MAs.
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TABLE 5. Denoising performance with limited training data in the OA removal.

TABLE 6. Denoising performance with limited training data in the MA removal.

FIGURE 10. Deviation distribution between the input signals of denoising modules and clean signals for OA removal (Confidence interval = 0.95).

FIGURE 11. Deviation distribution between the input signals of denoising modules and clean signals for MA removal (Confidence
interval = 0.95).

V. DISCUSSION
In this paper, we proposed a novel DL-based EEG denois-
ing model called MMNN. This model achieved smaller

T-RRMSE and S-RRMSE scores and higher CC scores than
the other models when removing OAs and MAs. It can
reach a performance similar to that of the reference DL
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FIGURE 12. Parallel and series mechanisms.

FIGURE 13. Training and testing losses using the given database in the OA removal.

models with only 60% of the training data. Through the
visualization of signal deviation distribution, the perfor-
mance differences between the reference and the proposed
models are clearly observed in the time and frequency
domains.

Overall, the proposed model has a superior performance
compared to the reference DL models. There are two rea-
sons for this. First, the proposed model enables constantly
providing more purified input signals for denoising modules.
As shown in Figure 10 and Figure 11, we present the signal
deviation distribution between the inputs of four denoising
modules and clean signals. In Figure 10, the OAs in the range
of 0-80 Hz were rapidly suppressed using two denoising
modules, and the OAs above 80 Hz were gradually reduced
when more modules were used. In Figure 11, the MAs of
the input signals were suppressed by degrees from the first

to the fourth module. Second, the parallel architecture of the
proposed model allows the gradients to flow through each
denoising module directly in the backpropagation, thereby
avoiding the vanishing gradient problem and enhancing the
network learning ability. For further clarification, the par-
allel and series mechanisms of the denoising modules are
presented in Figure 12. The training and testing losses of
the two mechanisms (batch size = 128 and learning rate =
0.0001) using the given database are shown in Figure 13 and
Figure 14. The followings were observed, respectively:
1) both the two models converge in 10 iterations; 2) the
training and testing losses of the parallel mechanism are
smaller than those of the series mechanism when more than
two denoising modules are assembled within our model,
which illustrates that the parallel mechanism of the proposed
model possesses a stronger learning capacity; 3) for the series
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FIGURE 14. Training and testing losses using the given database in the OA removal.

FIGURE 15. Loss comparison between the proposed model and the other DL models.

mechanism, the network learning capacity is weakened when
more denoising modules were stacked in the model, which
is possibly caused by the vanishing gradient problem in the
learning process; 4) in contrast with the series mechanism,
the parallel mechanism can improve the learning capacity
when more denoising modules were used. However, there
was a limitation to the improvement of network learning.
We can see that the training and testing losses of MMNN-4,
MMNN-5, and MMNN-6 are almost the same for the parallel
model, which explains their similar scores in the experiment.
Furthermore, the loss comparison between the proposed
MMNN-4 and the other DL models is given in Figure 15,
where our model has smaller training and testing losses and
can converge faster than the others, which is possibly the

reason why it performs well with fewer training data in both
the OA and MA removals.

In the future, there are some challenges worth exploring
using the proposed model. Specifically, we used the denois-
ing modules of the different filter sizes in the OA and MA
removals. Whether the filter size of feature extraction is
caused by noise feature differences should be further studied.
Moreover, OAs and MAs are entangled with motion artifacts
in a real EEG epoch, however, for the mixed signals, there
is no available public database to evaluate the model perfor-
mance [64]. Given that the proposed model offers significant
advantages over the conventional and DL models in this
study, the related research is within the scope of the further
work.
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FIGURE 16. Configuration of the denoising modules.

FIGURE 17. Architecture of the reference models. Hyperparameter formats of ‘Conv1D’’, ‘‘FC’’, and ‘‘LSTM’’ are (Input_channel,
Output_channel, Kernel_size), (Input_feature, Output_feature), (Input_channel, Output_channel), respectively. ‘‘T’’ the number of discrete
time points of the input EEG epoch.

VI. CONCLUSION
A novel MMNN (multi-module neural network) is proposed
in this study, which is a parallel architecture assembled with
multiple denoisingmodules. The results revealed that the pro-
posed model can automatically remove OAs and MAs from
single-channel noisy EEG signals. Compared to the existing
models, it achieved higher signal reconstruction accuracy
and reached this goal with less training data. In the future,
we expect that our model will play a critical role in EEG
denoising applications.

APPENDIX A
CONFIGURATION OF DENOISING MODULES
Figure 16 shows the different configurations of the denois-
ing modules, in which the number of parameters, and

running time increased with the number of Conv1Ds. How-
ever, the module performance reaches its limit when using
four Conv1Ds. Therefore, we configured four Conv1Ds for
the denoising module in our model.

APPENDIX B
ARCHITECTURE OF THE REFERENCE MODELS
Figure 17 presents the architecture of the reference models,
including FCNN, Simple CNN, Complex CNN, and RNN
from [36], and Novel CNN from [37]. These models decom-
posed noisy EEG signals using the different combinations of
Conv1D, FC, and LSTM blocks, and then reconstructed clean
signals using an FC block.
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