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ABSTRACT In this paper, a heuristic scheme based on the hybridization of Bernstein Polynomials (BPs) and
nature-inspired optimization techniques is presented to achieve the numerical solution of Nonlinear Optimal
Control Problems (NOCPs) efficiently. The solution of NOCP is approximated by the linear combination of
BPs with unknown coefficients. The unknown coefficients are estimated by transforming the NOCP into an
error minimization problem and formulating the objective function. The Genetic Algorithm (GA) and Fitness
Dependent Optimizer (FDO) are used for solving the objective function and obtaining the optimum values of
the unknown coefficients. The findings and statistical results indicate the represented hybrid scheme offers
encouraging results and outperforms the most recent and popular methods proposed in the literature, which
ultimately validates the efficacy and productivity of the recommended approach. Furthermore, statistical
analysis is incorporated to examine the reliability and stability of the suggested technique. Consequently, the
remarkable difference is evident in simplicity, flexibility, and effectiveness compared to the other methods
considered.

INDEX TERMS Optimal control problems, optimization problem, Bernstein polynomials, fitness dependent

optimizer, genetic algorithm.

I. INTRODUCTION

Optimal Control Problems (OCPs) contain complex
mathematical operations and have practical applications and
importance in almost every field of science; i.e., engineer-
ing, economics, biomedicine, aircraft systems, robotics, etc.
[1], [2]. Solving these OCPs numerically sometimes becomes
very sophisticated, and hence obtaining optimal solutions for
such problems could be quite tedious [3].

Due to the nonlinear and dynamical nature of OCPs,
researchers have presented several numerical methods
to determine the optimal solution for such problems
and further improve already proposed methods [4]-[6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Emre Koyuncu

To highlight a few of these available numerical techniques,
Stryk and Bulirsch [7] provided a list of normally uti-
lized direct and indirect techniques to find the numerical
solution for OCPs and transformed various OCPs to some
Nonlinear Programming (NLP) problems on successfully
employing the parametrization or discretization techniques.
Yildiz and Karasozen [8] applied various discretization meth-
ods on the distributed OCPs determined by the unsteady
diffusion-convection reaction equation having no control
constraints and supported their convergence rate noticed the-
oretically via the solution obtained. Liu et al. [9] inves-
tigated a class of OCPs by considering generally known
nonlinear time-delay systems containing free terminal time.
The authors applied the control parametrization scheme to
generate a gradient-based nonlinear optimization technique
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and yielded an approximated solution. Teo et al [10],
Lee et al. [11] introduced the Control Parametrization
Enhancing Technique (CPET) for constrained OCPs, and its
convergence properties were elaborated via some numeri-
cal problems generating a computationally convenient and
numerically accurate optimal solution. Vlassenbroeck [12],
Vlassenbroeck and Dooren [13] adopted the numerical
method governed by Chebyshev series expansion for solving
nonlinear constrained OCPs and clarified the applicability
of its theoretical and computational considerations by apply-
ing it to some approximation problems. Jaddu [14], [15]
encountered some numerical techniques, for instance, quasi-
linearization and state parameterization, solving constrained
and unconstrained OCPs, like container crane problems and
F8 fighter aircraft, via Chebyshev Polynomials and later
modified these techniques to include NOCPs which enhanced
the optimal solution quality and validated the analytical
approach. Elnagar et al. [16] implemented Legendre Poly-
nomials (LPs) for the discretization of various OCPs and
approximation of control and state variables, whereas Edrisi-
Tabri and Lakestani [17], Edrisi-Tabri et al. [18] obtained
the approximated solution by implementing some linear
B-spline functions on nonlinear constrained quadratic OCPs.
Shienyu [19] presented a numerical technique for approxima-
tion of NOCPs using Block Pulse Functions (BPFs), whereas
Mohan and Kar [20] executed BPFs and LPs, finding the
optimal solution for NOCPs. Besides, Mashayekhi et al. [21]
acquired the approximated solution of NOCPs by deploying
BPFs and Bernoulli Polynomials. Kafash et al. [22] employed
a numerical scheme for effectively solving the OCPs using
Boubaker Polynomials Expansion Scheme (BPES), whereas
Ouda er al. [23] proposed an indirect method for OCPs
using BPES with the findings that the BPES technique
is trustworthy. Dehghan [4] tailored an iterative numerical
method based on Cardan Polynomials (CP), providing an
approximated solution for OCPs with fast convergence rates.
Cichella et al. [3] exploited BPs to approximate nonlinear
constrained OCPs, and besides rigorous analysis, the authors
validated the theoretical findings by applying the method
to diverse optimization problems. Yousefi et al. [24] evalu-
ated the approximate solution of different fractional OCPs
using BPs.

Besides continuous improvements in the available numer-
ical methods for dealing with OCPs, researchers have
paved the way for nature-inspired optimization techniques
to demonstrate their importance and efficacy in operating
NOCPs in the engineering and applied sciences domain [25].
These nature-inspired optimization techniques are derivative-
free, conceptually simple, do not require complex math-
ematical calculations, and prove their effectiveness by
providing better solutions to complex real-world problems
on a continuous-time grid as compared to other numer-
ical techniques [26]. To name just a few nature-inspired
optimization techniques, GA handled competently the three
link hopping robot amid flight phase for optimally solv-
ing the posture control problem [26]—[28]. Particle Swarm
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Optimization (PSO) addressed subtly the bilocal OCP of
the dc motor for rendering the desired solution [29]-[31].
Differential Evolution (DE) proved its capability by pre-
senting the optimum solution for OCP concerned with the
power flow in Microgrids (MGs) connected in a network
[32], [33]. Ant Colony Optimization (ACO) dealt favorably
with the complexities of the Area Traffic Control (ATC)
problem and ultimately provided an optimal solution [34].
Artificial Bee Colony Optimization (ABCO) proved effi-
cient in demonstrating a linear quadratic optimal controller
design and achieving an optimum solution for a nonlinear
inverted pendulum [35]-[38]. FDO dealt successfully with
multi-source interconnected power system by implementing a
productive Automatic Generation Control (AGC) [39]-[41].
Such algorithms are enough to unveil the comparatively better
results and enhanced ability of nature-inspired optimization
techniques to provide the global solution with a rapid conver-
gence rate in comparison to the previously utilized techniques
applied to various complex optimization problems.
Although nature-inspired optimization techniques have
proved their efficiency at each level in reliably obtaining
the solution to nonlinear problems, sometimes finding the
optimum solution to a problem is not possible by using
such techniques alone. In this case, a new approach known
as the hybridization approach evolved for solving various
real-world problems. This approach occasionally utilizes
local search methods for the execution of some population-
based optimization algorithms to provide better results and
reduce processing time. These hybrid approaches further
proved quite impressive in refining the solution obtained by
nature-inspired optimization techniques solely. The excel-
lent real-world problem-solving capability of hybrid nature-
inspired optimization techniques can be analyzed through
consideration of the aforementioned references in which
SUN et al. [42] presented a Hybrid Improved GA (HIGA)
approach and implemented it for solving OCPs related
to chemical processes, e.g., Fed-Batch Bioreactor. Victoire
and Jeyakumar [43] suggested a hybridized technique, i.e.,
PSO with Successive Quadratic Programming (PSO-SQP),
to find the optimal solution for relevant problems, which
was later amended by Modares and Sistani [25] via a
new hybrid algorithm, i.e., Improved PSO combining SQP
(IPSO-SQP), for further reinforcing previously attained solu-
tion. Nezhadhosein er al. [26] dealt excellently with several
NOCPs, including the Chemical Reactor Problem (CRP),
with the help of Modified Hybrid GA (MHGA) that inte-
grates GA and SQP (GA-SQP), yielding the best solution.
Nezhadhosein et al. [44] integrated DE and MHGA solving
numerous NOCPs, including Temperature Control for Con-
secutive Reaction (TCCR) problem. Similarly, Xu et al. [45]
recommended a novel hybrid scheme for Bayesian Opti-
mization (BO) based on the hybridization of BO and PSO
(BO-PSO), solving some complex optimization problems
tremendously, for instance, Distributed Propulsion Configu-
ration (DPC) aircraft having integrated flight/propulsion opti-
mum control. Chiu et al. [46] proposed a hybrid approach of
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the Sine Cosine Algorithm (SCA) and FDO (SCA-FDO) and
proved its efficiency by applying it to several optimization
problems. Abbas et al. [47] suggested a hybrid technique
combining Multi-Layer Perceptron (MLP) and FDO (FDO-
MLP) to obtain the optimal values for the weights and biases
of the Neural Network (NN) and minimize the Mean Square
Error (MSE) of the optimization problem.

In this paper, a contemporary and promising nature-
inspired optimization algorithm, namely FDO, is hybridized
with BPs for numerically solving the NOCPs. In the proposed
method, the solution of NOCPs is approximated using the
linear combination of BPs with unknown coefficients. The
given original system is transformed into an equivalent opti-
mization problem by formulating the objective function. FDO
and GA are employed to solve the optimization problems
and yield the optimum values for the unknown coefficients,
consequently providing the numerical solution for NOCPs.
Moreover, to quantify the effectiveness of the suggested
hybrid technique, the Absolute Error (AE) is minimized to
a significant value by providing a better solution than pre-
viously developed approaches. Finally, to authenticate the
efficacy and capability of the suggested scheme, a statistical
analysis is conducted.

The content of this research work is divided into the
following sections: Section 2 defines the basic general-
ized mathematical form of the OCPs. Section 3 introduces
nature-inspired optimization techniques used in this work.
Section 4 elaborates on the proposed methodology adopted
and its hybridization scheme with BPs. Section 5 demon-
strates the implementation of the proposed hybrid-based
approach. In Section 6, statistical analysis for the proposed
technique is presented, followed by the conclusion of this
work in Section 7.

Il. OPTIMAL CONTROL PROBLEMS

Generally, the OCP could be represented mathematically as
the classical calculus of variation with the following crucial
components: (i) A mathematical system, which is required
to be controlled; (ii) A desired output for the relevant system;
(iii) A set containing permissible input(s); (iv) A performance
index/cost function, which assists in measuring the efficiency
of the control process under consideration.

Optimal control is concerned with the process which is
described by the problem of determining a control law, on the
fixed time interval [#;, t], for a given system of nonlinear
differential equations as follows:

u(t) =f(t,x (1), x(1)) ey

The initial/boundary conditions are represented by a set
that provides the value of the system state variable(s) x at the
initial time #; and final time #r as given below:

x (1) = xf ©)

where u(t) represents the mathematical model for a given
dynamic system that requires the control processes and is

x (&) = xo,
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generally demonstrated by a collection of first-order differen-
tial equations. Here x () : [#;, 7] — Rand u () : [t;, tr] —
R are the state variable and control variable, respectively,
whereas f represents the continuously differentiable real-
valued function. The assumption here is u is a piecewise
continuous function during the time interval ¢ € [t;, 7] — R.
Therefore, changes applied to u are directly proportional to
the solution of the relevant differential equation(s). In addi-
tion, xg denotes some known vector of initial condition(s).
The performance index J, either minimized or maximized,
is demonstrated mathematically in a scalar function and
describes the desired specifications. By minimizing J of the
OCP, the selection of the most feasible optimal solution is
made easy. The performance index can be formulated as:

t
J = /j L(t,x (t), u(t))dt 3)
1

where L is a scalar function, differentiable in all arguments,
and generally a non-negative function, i.e., L (¢,0,0) = 0.
Additionally, if J of any optimization problem is represented
mathematically, as demonstrated by (3), it could be referred
to as the Lagrange problem.

Hence, the main goal of OCP is finding such a control u
which transfers the system u(¢) from position x (#;) = xp to
x (tf) = xp within the time frame (7 — #;) and ultimately
generates the optimum value for J [1], [4], [5]. Furthermore,
interested readers may see [1]—-[6] and references therein for
a detailed description of the OCPs considered in this work,
as shown in (1)—(3).

IIl. NATURE-INSPIRED OPTIMIZATION TECHNIQUES

This section briefly describes GA, a well-known evolutionary
algorithm, and FDO, a recently introduced algorithm, used in
this work.

A. GENETIC ALGORITHM

GA represents the heuristic optimization method established
on concepts of natural selection, crossover, and mutation that
uses a global search approach. The central idea behind this
algorithm is the survival of the fittest theory, which permits
only fit and competitive chromosome(s) to generate the next
iteration. The working principle for GA comprises the popu-
lation of individuals called chromosomes, where every chro-
mosome contains a potential solution for a given problem.
A randomly generated fitness-based value is allotted to each
chromosome, representing the quality of the solution. The
next step involves the selection and recombination processes
(i.e., child chromosomes are produced by recombining the
parent chromosomes), yielding the next generation based
on the fittest individuals. This procedure is repeated over
successive generations, evaluating the best solution using the
genetic operator(s), namely selection, crossover, and muta-
tion where necessary, until the algorithm reaches the stopping
criteria. Further, the maximum number of generations accom-
plished, or the desired fitness level achieved, is considered the
stopping criteria for GA [25]-[28].
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The pseudocode for GA is presented in Algorithm 1 below:

Algorithm 1 Genetic Algorithm Pseudocode [27]

Startr — 0
Generate Initial Population Pi
Evaluate Population Pi
while (termination criteria not satisfied)

Repeat
for i = 1 to size (population) do
SELECT N chromosomes

Find chromosome with the lowest fitness
Remove chromosome with the lowest fitness
CROSSOVER create new chromosome
Evaluate new chromosome
MUTATION apply (optional)
Evaluate mutated chromosomes
end for
end while

B. FITNESS DEPENDENT OPTIMIZER

FDO is a recently introduced heuristic algorithm applied to
various real-world problems, e.g., aperiodic antenna array
designs and frequency-modulated sound waves, achieving the
optimal solution. FDO not only shares some features with
PSO but also contains significant variabilities. It imitates the
reproduction behavior of the bee swarms when they search for
suitable hives. Further, the main idea behind this algorithm
is derived from the method used by scout bees to select
an appropriate hive from several potential ones. Moreover,
in FDO, every scout bee looking for desired hives describes
a possible solution. Therefore, choosing the best hive from a
group of potential hives increases the likelihood of achieving
the optimum solution [48].

FDO initiates the population of scout bees generated ran-
domly within the search domain. The position and objective
function of every scout bee are crucial for locating the hive.
Eventually, the main goal of the scout bee is finding a better
hive, i.e., a new solution, and if this purpose is served, the
previously searched solution could be avoided. On the other
hand, if the scout bee is unsuccessful in achieving a better
solution, the prior solution could be adopted to modify its
position [48], [49].

Scout bee is represented as follows:

Spb=1,2,....,n) )

The random search-based procedures of scout bees that
initiate within the search domain depend on fitness weight
fw and random walk methods. As evident from (5) below,
the pace p with which the current scout changes position
is imperative because the scout bee movement relies on
it. The scout determines a new and improved solution by
adding p [48], [49]:

Spr+1 =Spr +D 5

where b describes the current scout bee, i.e., search agent,
S denotes the artificial scout bee, and ¢ refers to the current
iteration. Here p represents the movement rate and direction
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of the artificial scout bee and counts on fw. Though, the direc-
tion of p entirely relies on some random operation. Hence,

Jfw, which lies within the range of [0, 1], can be evaluated for

minimization problems by (6) as follows [49]:

%
Sb, tfitness

—wf (6)

Sb, tfitness

where sp, sfimess T€presents the optimum solution for the cur-
rent scout bee, s; fimess exhibits the best solution determined
by the scout bee thus far, and wf denotes the weight factor
which has a value of 1 or 0.

FDO contains a random number R that lies within the scope
of [—1, 1]. Although there are various ways to execute the
random walk method, the Levy flight mechanism is employed
since it possesses a favorable distribution curve and helps
yield more stable movements. Henceforth, it is evident that
FDO demands simple calculations for determining the objec-
tive function as it only requires R and fiv [49].

The lower and upper bounds are used to find a global
solution after a random initiation of the scout bee within the
search domain. Now, fw is evaluated based on the following
considerations [49].

If fw = 1 or fw = 0 or Spfimess = O then p can be
calculated as follows [49]:

p = spr*R (N

Likewise, for fw > 0 and fw < 1, R can be executed based on
the following conditions:

If R < 0 using (8) can help find p else if R > 0 then (9)
could be used as mentioned below [48]-[51]:

p = distancepeg,,,” fw * (—1) ®)
p = distancepeg,,,” fw (€

where distancep,s,,, is measured as:
. %
distancepegt,,, =Sp,t —Spt (10)

The pseudocode for FDO is demonstrated in Algorithm 2
below:

IV. PROPOSED METHODOLOGY

This section presents the research methodology for the
hybridization of Nature-Inspired Computing (NIC) tech-
niques with BPs as follows:

To obtain the approximate numerical solution for OCPs
considered in this work, e.g., (1)—(3), the approximate
numeric solution of a given NOCP is assumed to be a linear
combination of BPs with unknown parameters, as demon-
strated in (11)—(13) below:

The following is an approximation of the state variable:

k
x(t) =Y iBi(t) (1)

i=0
The control variable is calculated as a function of the
unknown parameters of the state variable(s) by using (1),
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Algorithm 2 Fitness Dependent Optimizer Pseudocode [48]

scout bee population initialization Sp ;; (b = 1, 2, 3,.., n)
while iteration () limit not achieved do
for all scout bees Sp
search best scout bee sZ’ ;
execute random walk Re[—1, 1]
% random number R
if Sb,tfitness ==0

Sfw=0 %fitness weight fiw
else i
use fw = % —wf % weight factor wf
end if
if fiw==00R fw == 1
p = (sp; *R) %pace p
else
ifR>0
pP= (sb,t - Sz,t) *fW
else
p=(sp, —sE) % fwx(=1)
end if
end if

determine Sp ;+1 = Spr +p
if Sb,t+lﬁtness < Sb,[ﬂtness
accept Sb,t+1ﬁlness
save p
else
compute Sp ;4+1 = Sp,; +p % p with previous value
if Sb,t+lﬁmess < Sb,[ﬂmess
accept Sp, 1+ fimess
save p
else
keep current position
end if
end if

end for
end while

as formulated below:

k k
W) =ft, Yy «iBix (1), Y  aiBix (1))

i=0 i=0

(12)

The approximate values of x(¢) and u(¢) from (11) and
(12), respectively, are substituted into (3), determining J as
follows:

k
i Lt ) aiBik (1),

J=/ i=0
1,

: C 1)
Pof@, Y aiBik (1), Y aiBik (1))dt
i=0 i=0

ak) refers to the unknown coefficients/
be determined, and k denotes the

where (oo, o,
parameters to
degree of BPs.
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TABLE 1. Unknown parameters obtained by GA-BP and FDO-BP for

Problem 01.

Parameters GA-BP FDO-BP
o 0.000000000 0.000000000
a; 0.053182659 0.053182382
a, 0.106360373 0.106364771
a3 0.160826556 0.160813382
ay 0.217777653 0.217794545
as 0.278649217 0.278637669
g 0.344795858 0.344799164
ay 0.417935396 0.417935294
ag 0.500000001 0.500000000

TABLE 2. Exact solution and approximate numerical values for state
variable of Problem 01.

t

x(t) Exact

x(t) GA-BP

x(t) FDO-BP

x(t) CP [4]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.000000000
0.042616852
0.085660227
0.129560919
0.174758300
0.221704721
0.270870037
0.322746312
0.377852740
0.436740845
0.500000000

0.000000000
0.042616666
0.085660290
0.129561224
0.174758449
0.221704679
0.270870103
0.322746558
0.377852840
0.436740703
0.500000001

0.000000000
0.042616852
0.085660227
0.129560919
0.174758300
0.221704721
0.270870037
0.322746312
0.377852740
0.436740845
0.500000000

0.000000000
0.042702960
0.085725159
0.129554968
0.174680761
0.221590909
0.270773784
0.322717759
0.377911205
0.436842495
0.500000000

TABLE 3. Exact solution and approximate numerical values for control
variable of Problem 01.

t

u(t) Exact

u(t) GA-BP

u(t) FDO-BP

u(t) CP [4]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.425459064
0.427588133
0.433996647
0.444748746
0.459952040
0.479758688
0.504366922
0.534023030
0.569023821
0.609719592
0.656517643

0.425461272
0.427587749
0.434000515
0.444749019
0.459949422
0.479758154
0.504369153
0.534023569
0.569020739
0.609719247
0.656516840

0.425459056
0.427588134
0.433996646
0.444748747
0.459952041
0.479758687
0.504366920
0.534023030
0.569023823
0.609719592
0.656517648

0.427061311
0.427811839
0.433446089
0.443964059
0.459365751
0.479651163
0.504820296
0.534873150
0.569809725
0.609630021
0.654334038

A. PROPOSED METHODOLOGY FOR HYBRIDIZATION OF
NATURE-INSPIRED COMPUTATIONAL TECHNIQUE WITH
BERNSTEIN POLYNOMIAL BASIS FUNCTION

This subsection specifically demonstrates the research
methodology adopted in this work for the hybrid scheme of
NIC techniques and BPs solving NOCPs as follows:

To deal with the OCPs considered in this paper, we assume
that the approximate numerical solution for u(z), as repre-
sented in (1), consists of a linear combination of BPs with
k = 8 as mentioned below:

8
x(t) =) iBig(t) (14)

i=0

8 8
wt) =ft. Yy Big(t), Y aiBig(®) (15

i=0 i=0

VOLUME 10, 2022
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TABLE 4. Absolute Error values for state variable of Problem 01.

0f————
t AE GA-BP ___ AE FDO-BP __ AE CP [4] mExact Solution
0.0 0.00E+00 0.00E+00 0.00E+00
0.1 | 1.86E-07 2.12B-11 8.61E-05 05" () GABP /
02 6.28E-08 1.06E-10 6.49E-05 x(t) FDO-BP
03 3.05E-07 1.56E-10 5.95E-06 04- / ]
0.4 1.49E-07 1.61E-11 7.75E-05 /
0.5 4.17E-08 7.78E-11 1.14E-04 o
0.6 6.57E-08 1.11E-10 9.63E-05 x03° /
0.7 2.46E-07 2.53E-10 2.86E-05 /
08 9.98E-08 1.08E-10 5.85E-05 02 /
0.9 1.43E-07 5.55E-12 1.02E-04 /
1.0 1.00E-09 0.00E-+00 0.00E-+00
0- //
TABLE 5. Absolute Error values for control variable of Problem 01.

t | AEGA-BP AE FDO-BP  AE CP [4] t
g(l) gé;g:gg g;?g:?g ;ggg:gi :I:,:E:nlb:_‘(t) approximation in comparison to the exact solution for
02 | 3.87E-06 1.61E-09 5.51E-04
03 | 2.73E-07 9.38E-10 7.85E-04
04 | 2.62E-06 1.79E-09 5.86E-04
05 | 534E-07 8. 34E-10 1.08E-04 0=
06 | 223E-06 2.35E-09 4.53E-04 mExact Solution
0.7 5.38E-07 2.73E-11 8.50E-04 0,65 11u(t) GA-BP
0.8 | 3.08E-06 2.24E-09 7.86E-04 u(t) FDO-BP
0.9 | 3.46E-07 6.50E-10 8.96E-05 ) |
1.0 | 8.03E-07 5.25E-09 2.18E-03 ' /

TABLE 6. Exact and approximate numeric values for performance index
of Problem 01.

€055/ /
0.5) /

performance index | Solution
Exact 0.328258821 045 ,./ '
GA-BP 0.328258823 LS
FDO-BP 0328258821 04\ o o
CP[4] , 0.328258837 004 02 03 04 05 06 07 08 09
Chebyshev Polynomials [1] 0.328258837 t
Mehne Method [52] 0.328476957

TABLE 7. Absolute Error values for performance index of Problem 01.

performance index | Absolute Error
GA-BP 1.32E-09
FDO-BP 5.50E-11
CP [4] 1.54E-08
Chebyshev Polynomials [1] 1.56E-08
Mehne Method [52] 2.18E-04

An error minimization problem is evaluated by the
transformation of NOCP, achieving the optimal values for
unknown coefficients by utilizing such equations, like for
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FIGURE 2. u(t) approximation in comparison to the exact solution for
Problem o01.

Problem 01, mentioned as follows:

1 &
o =N ;0 Gi(t) — u(0)? (16)
1 ) 12
2= (O =07+ @M =7)) (17)
g =¢€1+é& (18)

where N denotes the number of steps employed in the domain
of [0, 1], & is the mean of the sum of square error, & is the
mean of the sum of square error for given initial condition(s),
and j represents the total number of iterations accomplished.
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TABLE 8. Unknown parameters obtained by GA-BP and FDO-BP for

Problem 02.
Parameters GA-BP FDO-BP
ay 1.000000000 1.000000000
a, 0.904800477 0.904800731
a, 0.827458938 0.827458512
Qs 0.765705397 0.765707246
ay 0.717876161 0.717874012
Qs 0.682769957 0.682771783
Qg 0.659627226 0.659626558
a; 0.648054222 0.648054290
ag 0.648051690 0.648054289

TABLE 9. Exact solution and approximate numerical values for state
variable of Problem 02.

TABLE 11. Absolute Error values for state variable of Problem 02.

t AE GA-BP AE FDO-BP  AE CP [4]
0.0 0.00E+00 547E-12 0.00E+00
0.1 9.23E-08 6.41E-09 3.15E-04
0.2 1.52E-07 2.48E-09 2.01E-04
0.3 1.78E-07 1.78E-09 6.48E-05
0.4 1.52E-07 1.25E-09 2.93E-04
0.5 1.19E-07 2.20E-09 3.75E-04
0.6 1.30E-07 3.43E-09 2.80E-04
0.7 2.11E-07 8.12E-09 4.89E-05
0.8 4.43E-07 5.82E-09 2.06E-04
0.9 1.09E-06 4.90E-09 3.04E-04
1.0 2.58E-06 1.50E-08 0.00E+00

TABLE 12. Absolute Error values for control variable of Problem 02.

t | x(t) Exact _ x(t) GA-BP __ x(t) FDO-BP _ x(t) CP [4]
0.0 | 1.000000000 1.000000000 1.000000000  1.000000000 t AE GA-BP AE FDO-BP  AE CP [4]

0.1 | 0.928717757 0.928717665 0.928717751  0.929032661
0.2 | 0.866730433 0.866730281 0.866730431  0.866931521 0.0 2.03E-06 7.06E-09 6.44E-03
0.3 | 0.813417638 0.813417460 0.813417640 0.813352820 0.1 5.23E-07 1.75E-08 3.12E-04
0.4 | 0.768245801 0.768245649 0.768245800 0.767952796 0.2 4.58E-07 6.66E-08 2.39E-03
0.5 | 0.730762826 0.730762707 0.730762824  0.730387689 0.3 1.21E-07 2.68E-09 2.68E-03
0.6 | 0.700593571 0.700593441  0.700593574  0.700313738 0.4 4.80E-07 3 45E-08 1.52E-03
0.7 |1 0.677436092 0.677435881 0.677436100 0.677387182 0.5 2.27E-07 2.92E-08 2.63E-04
o8 oo oy b pOIEGgg| i ToEes 190603
1.0 | 0.648054274 0.648051690 0.648054289  0.648054274 0.7 1.21E-06 4.65E-09 2.70E-03
0.8 3.55E-06 5.67E-08 2.02E-03
TABLE 10. Exact solution and approximate numerical values for control 0.9 9-43E-06 7.18E-08 7-15E-04

. EX Xi|

variable of Broblem 62, PP 1.0 1.90E-05 1.57E-08 6.03E-03

TABLE 13. Exact and approximate numeric values for performance index

of Problem 02.

t | u(t) Exact u(t) GA-BP u(t) FDO-BP u(t) CP [4]
0.0 | -126159415 -126159618  -1.26159414  -1.25515026
0.1 | -1.12959742 -1.12959795  -1.12959744  -1.12928579
0.2 | -1.00890609 -1.00890655  -1.00890602  -1.01129203
0.3 | -0.89831222 -0.89831210  -0.89831223  -0.90099709
04 | -0.79670897 -0.79670849  -0.79670900  -0.79822911
0.5 | -0.70307945 -0.70307922  -0.70307942  -0.70281619
0.6 | -0.61648658 -0.61648693  -0.61648651  -0.61458647
0.7 | -0.53606372  -0.53606493  -0.53606371  -0.53336804
0.8 | -0.46100596 -0.46100952  -0.46100602  -0.45898905
0.9 | -0.39056211 -0.39057154  -0.39056204  -0.39127760
1.0 | -0.32402713 -0.32404610  -0.32402715  -0.33006181

Further, using the heuristic computational algorithms, such
as GA and FDO, the objective function ¢; is minimized to
an optimum level. The optimal values for («p, o1, ..., ag),
which provide minimal error, are utilized, and ultimately the
approximate solution is achieved. A similar methodology is
applied to different OCPs considered in this research work to
attain the desired approximate numerical solution.

V. SIMULATION AND RESULTS

The proposed technique of Section 4 is applied to vari-
ous NOCPs, using the hybrid scheme of nature-inspired
optimization algorithms and BPs, to ensure that the sug-
gested approach is valid and surpasses other existing meth-
ods. The simulations are computed using the MATLAB tool
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performance index | Solution
Exact 0.380797077978
GA-BP 0.380797077992
FDO-BP 0.380797077978
CP [4] 0.380797113192
Basis Polynomials [5] 0.380797078000
Polynomials Bases [53] 0.380813756200

TABLE 14. Absolute Error values for performance index of Problem 02.

performance index | Absolute Error
GA-BP 1.45E-11
FDO-BP 2.00E-15
CP [4] 3.52E-08
Basis Polynomials [5] 1.00E-10
Polynomials Bases [53] 1.67E-05

accurately. In addition, a comparative analysis between the
proposed method and previously presented techniques is
provided, certifying the effectiveness of the recommended
approach.
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0.77 \

mExact Solution
uix(t) GA-BP
x(t) FDO-BP

TABLE 15. Unknown parameters obtained by GA-BP and FDO-BP for

Problem 03.
Parameters GA-BP FDO-BP
ap 0.000000000 0.000000000
aq 0.079015138 0.079015066
ay 0.140172915 0.140173433
as 0.185355441 0.185353893
ay 0.215845798 0.215849371
as 0.232436629 0.232433436
g 0.235444730 0.235446369
ay 0.224761680 0.224761753
ag 0.199780879 0.199788229

0.6 L L L L L
0 01 02 03 04 05 06 07 08 09 1

FIGURE 3. x(t) approximation in comparison to the exact solution for
Problem 02.

O S S

mExact Solution ‘

04-1u(t) GABP //
u(t) FDO-BP ~

0.6- /

FIGURE 4. u(t) approximation in comparison to the exact solution for
Problem 02.

For the execution of GA, the parameter settings include
population size as 1000 and generations as 900, along with
the other ones. However, for FDO, the scout bee number
is 20, and the maximum iterations are 1500. Further, k =
8 is chosen for BPs achieving the best values for unknown
coefficients. Additionally, the parameter settings are the same
for all the NOCPs considered in this paper.

A. PROBLEM o1
Consider the approximation of OCP as demonstrated

below [4]:

1
sz x% (1) + u? (1) dt (19)
0
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TABLE 16. Exact solution and approximate numerical values for state
variable of Problem 03.

t x(t) Exact  x(t) GA-BP  x(t) FDO-BP
0.0 | 0.000000000 0.000000000  0.000000000
0.1 | 0.058313294 0.058313313  0.058313326
0.2 | 0.107201871 0.107201861 0.107201898
0.3 | 0.147155024 0.147154950  0.147155050
0.4 ] 0.178572618 0.178572492  0.178572669
0.5 0.201769091 0.201768950  0.201769155
0.6 | 0.216976600 0.216976403  0.216976644
0.7 | 0.224347348 0.224346847  0.224347379
0.8 [ 0.223955103 0.223953742  0.223955162
0.9 [ 0.215795941 0.215792669  0.215796016
1.0 | 0.199788200 0.199780879  0.199788229

TABLE 17. Exact solution and approximate numerical values for control

variable of Problem 03.

(20)

t u(t) Exact u(t) GA-BP  u(t) FDO-BP
0.0 | 0.632120559 0.632121104  0.632120527
0.1 | 0.593430340 0.593430302  0.593430554
0.2 | 0.550671036  0.550670509  0.550670917
0.3 ] 0.503414696 0.503413949  0.503414884
0.4 ] 0451188364 0.451187936  0.451188686
0.5 ] 0.393469340  0.393469086  0.393469347
0.6 | 0.329679954  0.329678384  0.329679736
0.7 | 0.259181779 0.259176064  0.259181881
0.8 | 0.181269247 0.181255129  0.181269699
0.9 | 0.095162582  0.095132225  0.095162409
1.0 | 0.000000000 -6.55E-05 3.78983E-08
subject to:
u(r) = x()
with respect to boundary conditions:
0)=0 ey :
x0)=0, x(1)==
2

2n

50305



IEEE Access

G. F. Laghari et al.: Numerical Approach for Solving NOCPs Using Hybrid Scheme of FDO and BPs

TABLE 18. Absolute Error values for state variable of Problem 03.

t AE GA-BP AE FDO-BP
0.0 0.00E+00 0.00E+00
0.1 1.86E-08 3.20E-08
0.2 1.01E-08 2.68E-08
0.3 7.44E-08 2.57E-08
0.4 1.26E-07 5.16E-08
0.5 1.40E-07 6.42E-08
0.6 1.97E-07 4.43E-08
0.7 5.01E-07 3.09E-08
0.8 1.36E-06 5.89E-08
0.9 3.27E-06 7.48E-08
1.0 7.32E-06 2.90E-08

TABLE 19. Absolute Error values for control variable of Problem 03.

t AE GA-BP AE FDO-BP
0.0 5.45E-07 3.19E-08
0.1 3.87E-08 2.13E-07
0.2 5.27E-07 1.19E-07
0.3 7.48E-07 1.88E-07
0.4 4.28E-07 3.22E-07
0.5 2.54E-07 6.43E-09
0.6 1.57E-06 2.18E-07
0.7 5.72E-06 1.02E-07
0.8 1.41E-05 4.52E-07
0.9 3.04E-05 1.73E-07
1.0 6.55E-05 3.79E-08

TABLE 20. Exact and approximate numeric values for performance index
of Problem 03.

performance index | Solution
Exact 0.084045620362
GA-BP 0.084045620224
FDO-BP 0.084045620362
Chebyshev Polynomials [1] 0.084045580400
Mehne Method [52] 0.084024961800

TABLE 21. Absolute Error values for performance index of Problem 03.

performance index | Absolute Error
GA-BP 1.38E-10
FDO-BP 3.61E-14
Chebyshev Polynomials [1] 4.00E-08
Mehne Method [52] 2.07E-05

having the exact solution mentioned as follows:

e e

x(t) = sinh (¢), wu(t) = 71 cosh (r) (22)

ez —1

Table 1 provides the optimum values of the unknown
parameters obtained by applying the proposed hybrid tech-
nique, i.e., GA-BP and FDO-BP. The approximate numerical
values for x(¢) and u(¢) are mentioned in Tables 2 and 3,
respectively. Similarly, Tables 4 and 5 show the AE values
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FIGURE 5. x(t) approximation in comparison to the exact solution for
Problem 03.

08 T 1T
mExact Solution
. ") GABP |
b 1 u(t) FDO-BP
04
g
02
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'0.2 | | | | | | |

FIGURE 6. u(t) approximation in comparison to the exact solution for
Problem 03.

for x(¢) and u(t), respectively, at various points in . Moreover,
J obtained by the suggested scheme and previously developed
approaches is shown in Table 6, and their AEs are provided in
Table 7 for a comprehensive comparison. In addition, a com-
parison between the exact solution and approximate numeri-
cal values for x(¢) and u(¢) is demonstrated in Figures 1 and 2,
respectively.

It is readily apparent from Tables 6 and 7 that the outcome
of the proposed method for J is much closer to the actual
analytical solution, i.e., AE for J is minimized sufficiently
to an optimal value.Also, it is evident from Figures 1 and 2
that the exact and approximate solutions for x(z) and u(¢),
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TABLE 22. Unknown parameters obtained by GA-BP and FDO-BP for

TABLE 25. Absolute Error values for state variable of Problem 04.

Problem 04.
Parameters GA-BP FDO-BP
g 1.000000000 1.000000000
a, 0.826772739 0.826772570
ay 0.689257213 0.689260513
as 0.579219193 0.579209544
ay 0.490751852 0.490764366
as 0.419603599 0.419595320
g 0.362530177 0.362532941
ay 0.317215725 0.317215719
ag 0.281965976 0.281969535

t AE GA-BP AE FDO-BP
0.0 0.00E+00 0.00E+00
0.1 1.40E-07 2.17E-08
0.2 2.24E-08 2.54E-08
0.3 7.41E-08 8.79E-08
0.4 6.26E-08 7.99E-08
0.5 2.21E-07 4.89E-08
0.6 2.27E-07 5.10E-08
0.7 2.62E-07 5.60E-08
0.8 6.88E-07 7.61E-09
0.9 1.68E-06 3.91E-08
1.0 3.56E-06 3.62E-10

TABLE 23. Exact solution and approximate numerical values for state
variable of Problem 04.

t | x(t) Exact x(t) GA-BP  x(t) FDO-BP
0.0 | 1.000000000  1.000000000  1.000000000
0.1 | 0870972416  0.870972277  0.870972438
02| 0.759393333  0.759393311  0.759393308
03| 0.663027446  0.663027520  0.663027358
04| 0579944224  0.579944161  0.579944144
0.5 | 0508479231  0.508479010  0.508479182
0.6 | 0447200783  0.447200556  0.447200732
0.7 | 0394881267  0.394881005  0.394881211
0.8 | 0350472548  0.350471860  0.350472540
09| 0313084970  0.313083288  0.313085009
1.0 | 0281969535  0.281965976  0.281969535

TABLE 24. Exact solution and approximate numerical values for control

variable of Problem 04.

TABLE 26. Absolute Error values for control variable of Problem 04.

t AE GA-BP AE FDO-BP
0.0 5.08E-07 8.44E-07
0.1 5.34E-07 1.22E-07
0.2 1.84E-06 8.34E-07
0.3 2.36E-07 3.69E-07
0.4 2.03E-06 2.54E-07
0.5 1.06E-06 1.24E-07
0.6 1.54E-07 2.05E-07
0.7 2.03E-06 1.22E-07
0.8 7.73E-06 6.89E-07
0.9 1.47E-05 1.89E-08
1.0 3.20E-05 6.30E-08

TABLE 27. Exact and approximate numeric values for performance index

of Problem 04.

performance index |

Solution

t u(t) Exact  u(t) GA-BP  u(t) FDO-BP
0.0 | -0.385818596  -0.385818088  -0.385819440
0.1 | -0.328060144  -0.328060678  -0.328060023
02 | -0.276873838  -0.276871995  -0.276874673
0.3 | -0.231234244  -0.231234480  -0.231234613
04 | -0.190227048  -0.190229081  -0.190226793
0.5 | -0.153030737  -0.153031798  -0.153030613
0.6 | -0.118900146  -0.118899992  -0.118900351
0.7 | -0.087151524  -0.087153551  -0.087151402
0.8 | -0.057148839  -0.057156567  -0.057148150
0.9 | -0.028291037  -0.028305707  -0.028291018
1.0 | 0.000000000 -3.20E-05 6.30E-08

respectively, are in close proximity to each other, which

signifies optimal approximation.

B. PROBLEM 02

Find the optimal control for minimization of the OCP stated

as follows [4]:

(gx (1) + 0.5x (1) u(t) + 0.5u% (1))dr  (23)
0

/152
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Exact

GA-BP

FDO-BP

Basis Polynomials [5]
Chebyshev Polynomials [1]
Mehne Method [52]

0.192909298093
0.192909298126
0.192909298093
0.192909299000
0.192909776000
0.193828723000

TABLE 28. Absolute Error values for performance index of Problem 04.

performance index | Absolute Error
GA-BP 3.24E-11
FDO-BP 9.00E-14
Basis Polynomials [5] 9.07E-10
Chebyshev Polynomials [1] 4.78E-07
Mehne Method [52] 9.19E-04
subject to:
u(t) =x(t) —0.5x(r) 24)

with boundary conditions:

x(0) =1,

x (1) = 0.64805 (25)
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FIGURE 7. x(t) approximation in comparison to the exact solution for
Problem 04.
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FIGURE 8. u(t) approximation in comparison to the exact solution for
Problem 04.

containing analytical solution expressed as follows:

f = cosh(l —t) 0
x() = cosh(1) e
_ ((tanh (1 — ) 4+ 0.5)cosh(1 — ¢))

- cosh(1) (26)

The optimal values of unknown coefficients attained by
executing the proposed hybrid scheme are exhibited in
Table 8. Besides, Tables 9 and 11 represent the approxi-
mate numeric values and AE for x(¢), respectively. Likewise,
Tables 10 and 12 demonstrate the approximate solution
and AE values for u(t), respectively. Correspondingly, the
numerical solution for J obtained by the recommended
approach and some formerly developed methods is provided
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in Table 13, whereas their AE is presented in Table 14.
Additionally, Figure 3 depicts the exact values and approx-
imate results for x(¢), whereas Figure 4 compares the actual
analytical values with the approximate solution for u(z).

It is apparent from Tables 13 and 14 that the solution pre-
sented by the suggested technique is better than the previous
methods, as the AE between the exact and approximate solu-
tions is reduced to a considerable value.In addition, the results
depicted in Figures 3 and 4 for x(¢) and u(t), respectively,
disclose that the presented hybrid-based approaches, i.e.,
FDO-BP and GA-BP, provide a better approximate solution.

C. PROBLEM 03
Consider the minimization of OCP expressed below [1]:

1
J = / (x (t) — 1p (1))dt (27)
0 2
subject to:
u(t) =% () +x @) (28)

with respect to the boundary conditions:

1 12
x(0)=0, x()= 5(1 - Z) (29)

the analytical results are achieved by using:

1 1
— 1 _ t—1 _ 1 —t
x (1) 26‘ + (Ze )e ,
u@)y=1—¢"" (30)

Table 15 represents the optimum values for unknown
parameters acquired by adopting the suggested hybrid
approach. In the same way, Tables 16, 17, and 20 express a
comparison between the analytical results and approximate
numerical solutions for x(¢), u(t), and J, respectively. Corre-
spondingly, Tables 18, 19, and 21 exhibit the measure of AE
for x(t), u(t), and J, respectively. Furthermore, Figures 5 and
6 compare the actual analytical values with the approximate
numeric values for x(¢) and u(?), accordingly.

The AE generated by the proposed hybrid approach is com-
paratively lower than the AE obtained from the formerly sug-
gested techniques, as demonstrated in Tables 18, 19, and 21,
indicating the effectiveness of the recommended hybrid
scheme. Moreover, it is readily apparent from Figure 5 that
the exact solution and the approximate result for x(z),
achieved by utilizing the proposed technique, are in good
alignment with each other, showing optimal approximation.
Likewise, Figure 6 reveals that the analytical and approxi-
mate results for u(t) are in close proximity to each other,
eventually testifying to the importance of FDO-BP and GA-
BP.

D. PROBLEM 04
The following OCP is concerned with [5]:

1 1
J=-/ x% (1) + u? (1) dt (31)
2 Jo
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FIGURE 9. Average absolute error represented graphically for x(t) and
u(t) of Problem 01.
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FIGURE 10. Average absolute error represented graphically for x(t) and
u(t) of Problem 02.

subject to:
u(t) =x@)+x@) (32)
with boundary condition:
x(0)=1 (33)
The analytical solution is:
x () = cosh (ﬁ t) + & sinh <\/§ t) , u(t)

(1 + ~/§5) cosh (ﬁ t) + (V2 + 8)sinh(v/2 1)
(34)
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FIGURE 11. Average absolute error represented graphically for x(t) and
u(t) of Problem 03.
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FIGURE 12. Average absolute error represented graphically for x(t) and
u(t) of Problem 04.

where

B cosh (ﬁ) + +/2sinh (ﬁ) 35
o V2 cosh (ﬁ) + sinh (ﬁ) G

Table 22 shows the unknown coefficients generated by suc-
cessfully operating the proposed hybrid technique. Besides,
Tables 23, 24, and 27 compare the exact and approxi-
mate solutions for x(#), u(t), and J, respectively, highlight-
ing the excellence of FDO-BP and GA-BP. Furthermore,
Tables 25, 26, and 28 make evident the evaluated AE values
for x(t), u(t), and J, respectively. In addition, Figures 7 and 8
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FIGURE 13. Graphical representation of Absolute Error for performance
index of Problem 01.
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FIGURE 14. Graphical representation of Absolute Error for performance
index of Problem 02.

depict the analytical and approximate values for x(¢) and u(¢),
accordingly.

As mentioned in Tables 25, 26, and 28, the AE is reduced
sufficiently, which discloses the significance of the proposed
technique. Additionally, the attained approximate results and
the actual analytical solution, plotted in Figures 7 and 8 for
x(t) and u(t), respectively, reveal that the FDO-BP and
GA-BP hybrid techniques render an optimum outcome.

VI. STATISTICAL ANALYSIS FOR PROPOSED TECHNIQUE
This section describes the statistical analysis implemented
on all the OCPs mentioned above, i.e., Problems 01-04,
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to ascertain that the proposed technique is reliable, stable,
and efficient. For this purpose, at least 12 independent runs
are executed for the presented hybrid scheme, i.e., GA-BP
and FDO-BP, keeping all the parameter settings unchanged,
as defined earlier. The graphical representation of the average
absolute error for x(¢) and u(t) of all the concerned OCPs is
provided in Figures 9-12.

It could be observed from Figures 9-12 that the average
absolute error values for x(¢) and u(t) are minimized ade-
quately by FDO-BP and GA-BP for 12 independent runs,
which verifies the stability, reliability, and efficiency of the
presented hybrid-based approach.
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TABLE 29. Statistical analysis for Optimal Control Problems.

N state variable x(t) control variable u(t) performance index |
'§ _;) MIN MAX MEAN SD MIN MAX MEAN SD MIN MAX MEAN SD
S8

GA-BP  O.13E-08  474E-07 2.09E-07 129E-07  128E-07 550E-07 2.54E-07  1.52E-07  132E-09 3.76E-07  1.I8E-07  L.I2E-07
Es
'EE FDO-BP  7.77E-11  339E-08  6.71E-09 9.76E-09  1.51E-09  6.75E-08 ~ 252E-08 2.78E-08  5.50E-11  3.15B-08  6.88E-09  8.92E-09
=¥

GA-BP  122E-07 8I17E-06 2.14E-06 2.67E-06 2.96E-07 658E-06 243E-06 2.00E-06  145E-11  248E-07  7.15E-08  9.81E-08
Es
gg FDO-BP  467E-09  538E-07  9.60E-08  154E-07  231E-08  3.97E-07 136E-07 125E-07  2.00E-15  423E-07 G680E-08  1.22E-07
=]

GA-BP  B852E-08 6.13E-06 9.51E-07 169E-06 4.06E-07 6.73E-06 1.81E-06 1.62E-06 138E-10  446E-07 9.69E-08  1.33E-07
e
'§§ FDO-BP  3.47E-08  4.86E-07 200E-07 1.62E-07  1.69E-07 5.24E-06 1.69E-06  1.86E-06  3.61E-14  7.23E-07 1.77E-07  2.35E-07
=¥

GA-BP  909E-08 7.68E-07 3.67E-07 247E-07 3.71E-07 7.00E-06 228E-06 246E-06  324E-11  388E-07  1.07E-07  1.19E-07
Sz
gg FDO-BP  380E-08 285E-07 9.56E-08 9.01E-08  275E-07 167E-06 6.37E-07  520E-07  9.00E-14  1.19E-07 3.61E-08  452E-08
-9

The graphical representation of the AEs for J of all the
concerned OCPs is provided in Figures 13-16 for at least
12 independent runs of FDO-BP and GA-BP.

The numerical results illustrated in Figures 13-16 for
Problems 01-04 suggest that FDO-BP and GA-BP provide
optimum values of AE for J, which ultimately authenticates
the stability and efficacy of the presented scheme.

The parameters investigated for the sake of statistical anal-
ysis of all the concerned NOCPs are as follows: the minimum
(MIN), the maximum (MAX), the MEAN, and the Standard
Deviation (SD). Further, the MIN and MAX parameters help
detect the best and worst values, respectively. Similarly, the
MEAN and SD values assist in determining the central ten-
dency and measuring the degree of variation in the solution
obtained by the proposed hybrid technique, verifying its reli-
ability and robustness. The results of the statistical analysis
are demonstrated in Table 29.

It could be observed from Table 29, for Problems 01-04,
the MEAN value of x(), u(t), and J are approximately 10796
to 1079, 1079 to 107, and 1077 to 1079, respectively.
Likewise, for Problems 01-04, the SD value of x(¢), u(t), and
J ranges from 107% to 10_09, 107% to 10_08, and 10797
to 1079, respectively. Consequently, it could be perceived
from Table 29 that the MEAN and SD values are close to each
other, which indicates a low deviation from the solution and
ultimately proves the supremacy of the presented technique
in terms of stability and efficiency [54]-[56].

VIl. CONCLUSION

This research work presents the variant of the nature-
inspired optimization technique that utilizes the strengths
of GA-BP and FDO-BP as an alternative to deal with the
NOCPs optimally. The suggested approach determines the
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quality of the solutions by considering various NOCPs.
Experimental solutions achieved led to determining that the
proposed hybrid scheme is more trustworthy in figuring out
superior quality solutions with rational computational itera-
tion than the other numerical techniques reported in the litera-
ture. The recommended technique tends to optimize the OCP
systems by minimizing the AEs generated by x(¢), u(¢), and J
to a competitive level than the other numerical methods, e.g.,
AE for J of Problems 01-04 is 5.50E-11, 2.00E-15, 3.61E-14,
and 9.00E-14, respectively. The statistical analysis supported
our findings that the suggested scheme is appropriate in
optimizing nonlinear systems by improving the convergence
rates and the number of objective function evaluations being
key parameters in systems optimization.

In the future, we intend to employ the proposed method for
solving other such OCPs, including Continuous Stirred Tank
Chemical Reactor (CSTCR), Free Floating Robot (FFR),
and Van Der Pol (VDP) oscillator. A hybrid scheme of
FDO and GA with local techniques, such as Interior Point
Algorithm (IPA) and Active Set Algorithm (ASA), shall
be attempted. Additionally, different basis functions, e.g.,
Boubaker Polynomials, could be used with FDO and other
optimization algorithms for solving real-world OCPs.
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