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ABSTRACT Electrocardiography (ECG) is generally deemed the golden standard for diagnosing cardio-
vascular diseases and photoplethysmography (PPG) is unobtrusive, low-cost, and convenient for continuous
monitoring. However, PPG contains insufficient information to diagnose diseases. In this study, we propose a
novel method to accurately convert PPG to ECG. The banded kernel ensemble method converts a low-quality
source (PPG) to a high-quality destination (ECG). Unlike neural network solutions, our algorithm requires no
computation burden in the conversion task after a trained model is obtained. The proposed algorithm is then
tested on a publicly available MIMIC III database. Our prediction shows excellent accuracy in the validation
dataset. It offers the testing performance of under 0.314 and above 0.55 in rrmse (relative root mean squared
error) and KGE (Kling–Gupta efficiency), respectively, under the scenarios of three prevalent heart diseases.
The reconstructed ECG can be further used to perform heart disease detection and we obtained an average
correctness rate of 81%. Our method can help a large population of high-risk, believed-healthy persons to
walk into doctors’ offices before the situation becomes irreversible.

INDEX TERMS Photoplethysmography (PPG), electrocardiogram (ECG), complex wavelets, banded kernel
ensemble method, successive ridge domination (SRD), generative pulse locking (GPL).

I. INTRODUCTION
EElectrocardiography (ECG) is the top preferred option
for diagnosing cardiovascular diseases. This knowledge is
also an essential part of the training of every medical stu-
dent. However, detecting minute electrical currents on skin
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surfaces requires relatively expensive equipment operated by
a professional. Therefore, monitoring cardiac activities for a
healthy person by maintaining the wiring on for an extended
period in a daily living space is difficult. Alternatively, non-
contact photoplethysmography (PPG) is considered unobtru-
sive, low-cost, and convenient for continuous monitoring.
PPGs are usually deemed low quality with random drifts.
Consequently, the majority of PPG applications can only be
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applied to simple tasks, such as heart rate counting, thereby
producing low values in clinical applications.

In this study, pervasive PPG signals, such as the ones
from wristwatches or PPG imaging, are utilized to synthesize
corresponding ECG signals (Fig. 1). Differing from those
wiring devices, such as AppleWatch R© [1] or AliveCor R© [2],
our solution does not need to prepare a clean contact or using
both hands to acquire weak electric signals. Therefore, sus-
picious cardiology symptoms can be detected unobtrusively
and ubiquitous, and the consequent early hospitalization can
save many lives. The framework addresses the ill-posed
inverse problem by applying a hybrid learning technique
over a multi-band time-frequency domain with successive
ridge domination (SRD) and generative pulse locking (GPL)
algorithms.

We concentrate on PPGs because the device is low-cost
and ubiquitous. PPG has a wide range of applications, from
human physiology to psychology, because of its low-cost,
ubiquitous, and unobtrusive nature. For example, PPG has
been applied to vital sign monitoring [3], [4]. In professional
sports training, simple PPG devices are apt to record history
and optimize performance in the field [3]. In psychology,
PPG can help humans outside laboratories understand stress
responses and emotional communication [3], [5]. Despite
the quality of the devices, recent advancement demonstrates
a promising result in the accurate measurement of specific
physiological parameters, e.g., estimating blood pressure
from PPG based on specific haemodynamics [6].

Among PPG applications, medical diagnosis is scant,
whereas the commonly used device is ECG [7], [8]. However,
ECG devices require a good touch of electrodes on human
skin, causing skin irritation and discomfort during long-term
usage. As such, most consumer-grade products only perform
occasional measures instead of continuous monitoring. For
example, the wrist-wornAppleWatch can only collect signals
when fingers touch the wristwatch [1]. Another consumer
product, KardiaMobile, completely overlaps the market posi-
tioning with Apple Watch [2]. Other laboratory-grade prod-
ucts, such as a single-use patch with a 7-day lifespan [9] and a
textile-based printed circuit in cloth [10], probably still need
to overcome certain usability problems at the current stage.

This study offers a unique contribution that fills the current
research gaps described in the existing literature. First, our
hybrid band method can recover ECGs reliably at low bands
without requiring a high-quality PPG input. This feature is
essential because signals collected in a living space cannot
guarantee good acquisition quality. Additionally, ECG infor-
mation can be reserved at high-bands without affecting the
stability of the recovery. The learning ensemble can adapt
to different situations while maintaining the fundamental
characteristic of ECGs because various heart activities reflect
diversified PPG and ECG patterns. This feature fills a gap of
not being capable of diagnosing PPG inputs. Therefore, doc-
tors can automatically assess the heart condition of ordinary
people through long-term surveillance in daily life.

II. RELATED WORKS
Research gaps exist in the existing literature. Although ill-
posed problems have been studied for a long time, a large
amount of active research keeps shedding new light in
the field. Recently, approaches of optimization on l1 have
proven effective. Two strategies are usually applied to
the inverse mapping problem [15]. Certain implicit con-
straints, such as smoothness or sparseness, can be imposed.
Dimension reduction, such as the kernel-based method, can
be applied. If the back-projection problem satisfies spe-
cific sparsity properties, the optimization, therefore, receives
additional constraints [23]. Sparse domain techniques have
been widely used in heart rate activity monitoring [32].
The space that possesses good sparsity is the one with time-
frequency representation [33], [34]. Optimization performed
on such multi-resolution space is considered effective [16].

The conversion from PPGs to ECGs has a solid theoretic
ground in modern physiology. Studies have supported the
relationship between PPG and ECG in electro-mechanics
and blood fluid dynamics in heart activities. The transmem-
brane potential distribution can be constrained by a diffusion-
reaction model from cellular activation dynamics [11]. The
electric current constraints from the ionic behavior of the
individual cell, such as in [12], impose additional compu-
tational challenges due to millions of myocytes. Addition-
ally, additional constraints also introduce more unknown
parameters and the degree of freedom remains still high.
However, a numerical problem exists because ECG signals
contain more details than PPG signals do. To deal with the
problem that physiological models and patient-specific body
surface electrical data are always corrupted by noise and
organ geometries may be constructed incorrectly. The inverse
mapping problem reversely describes ECG, haemodynam-
ics, and electro-fluid-mechanics in differential equations
[11], [13], [14]. Therefore, reconstructing ECGs without
involving differential equations is challenging.

Solving the ill-posed inverse problem that maps the sur-
face ECG to the transmembrane potentials on the surface of
the heart, the key adequately constrains the solution space
to obtain a unique solution. Unfortunately, most regulation
methods in the ill-posed situation can only condition the
numerical difficulty from a mathematical point of view.
However, the problem of multiple solutions must be
addressed by restoring possible missing constraints. Con-
tinuous basis pursuit has been reported effective for sparse
spike reconstruction in the sense of super-resolution [24].
In addition to sparsity constraints, other constraints, such as
total variation with positivity constraint [25], smoothness on
low-dimensional manifolds [26], constraints on the union of
all subspaces [27], and block-sparsity constraints [28], have
also proven effective.

The first attempt at the PPG-related problems starts from
an easy one that reduces ECGs to PPGs, which only involves
mapping from high to low dimensions [35]. Recently, many
studies have reported success for the challenged ill-posed
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FIGURE 1. Usage scenario for PPG–ECG transformation in a wearable device providing medical assistance in daily life.

TABLE 1. A summary with previous studies and research gaps.

inverse problem. For the back projection from PPGs to ECGs,
an ordinary regulation on l2 can only solve a part of numerical
difficulty [17], [18]. Many studies resort to neural networks
to bypass mathematical details [19]–[22]. The neural network
approaches utilize a latent space in the auto-encoder or gen-
erative adversarial network framework, which is akin to the
concept of partial least square. The key to these approaches
is a proper design of the loss function, but they do not take
advantage of the sparsity of ECG signals in l1 space. Our
study further improves the numerical ill-posedness and the
wide tolerance of the quality of source PPGs.

A previous study takes a statistical approach but they need
to know the subject’s personal information in the regression
and the input and output should be properly aligned; therefore
pulse timing information is lost [17]. In another study, a com-
pressive sensing technique is employed to improve the signal
reconstruction [18]. However, the study has yet to clarify
how discrete cosine transform and dictionary decomposition-
based methods can resist the non-coherency distortion on
PPGs. The recent neural network studies have achieved
excellent progress, but they have yet to discover how the
black box algorithm can handle low-quality PPGs and signals
with disease patterns [19]–[22]. The massive computation of
deep computation is also difficult to implement on consumer
devices, such as smartphones [36].

Long-memory and fractal properties, such as coherency,
usually exist between two time-series, particularly in the
heart signals. That is, the coherency reflects the similar-
ity between the semi-periodic heart activities. However, the
coherency properties may change even within the proximal
scale. Therefore, we should develop an elaborate method

to estimate the model and ensure that the realizations of a
stochastic process can correctly express themodel. Therefore,
a functional time series is a mathematical structure where
the entire function becomes a value in Hilbert space [37].
We vectorize the signals into a functional time series such
that the reconstructed signals depend not only on the imme-
diate successors but also on the repetitive patterns of the
previously reconstructed heartbeats. A functional time series
possesses the advantage of modeling the long-range corre-
lation in a semi-periodic wave. Therefore, the evolution of
the continuous-time stochastic process of heart signals can
be easily parametrized in a representative model.

Functional time series have long been investigated for the
coherency property. A subgroup covariance structure can be
determined in functional auto-regression [29]. The coherency
structure is proven effective in improving the performance
of prediction [30]. The functional correspondence can also
be effectively obtained through a matrix completion [31].
Therefore, our method also takes advantage of the coherency
structure for the optimization of functional time series and
swiftly reconstructs a high fidelity ECG. By upgrading the
PPG to ECG, the automatic diagnosis of heart diseases can
be performed in the consequence.

III. BANDED KERNEL ENSEMBLE METHOD
PPG signal s(t) and ECG signal z(t) originate from the
same driving source but transmit through different media.
Therefore, they should be similar in certain subspaces but
dissimilar in other subspaces. The signal z(t) contains rich
information, including smooth and non-smooth components.
The versatile similarities and ill-posedness in each subspace
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FIGURE 2. An ensemble of methods in two-stage prediction.

should be treated differently. In certain smooth subspaces,
an ordinary pseudo-inverse in l2 is sufficient to reconstruct
the signal. However, some components in ECG signals are
difficult to handle and some extremely non-smooth ones must
take special treatment in the destination manifolds.

A typical technique to solve an ill-posed problem is adding
certain constraints with prior knowledge of the sparsity or
smoothness in the original signals. However, no single set of
constraints can perfectly solve the ill-posed problem at once.
Appropriate methods should be applied to each subspace to
pursue the most stable transformation results with different
constraint sets. We need to decompose the signals to indi-
vidual components in a particular subspace that inhere the
prior knowledge. Multiple methods in the ensemble method
are then applied to maximize and validate the accuracy of
prediction. We develop an ensemble of methods in a series of
operations (Fig. 2). Our algorithm will find the best learner
for each subspace in the inverse mapping.

In Fig. 2, with the original signal pair (z(t), s(t)) for ECG
and PPG, we first transform the waves to banded functional
pairs (Y ,X ) = (Yb,i(t),Xb,i,k (t)) = (zb(t + (i− 1)n), 〈sb(t +
(i − 1)n), 9k 〉), where b = 1, . . . ,B, i = 1, . . . ,M , k =
1, . . . ,K , and t ∈ [t, t̄] for B bands, K kernels,M functional
chunks with bandwidth n, respectively for using the kernel
function 9k . The subscription b in zb(t) represents that the
original signal z(t) has been separated into b = 1, . . . ,B
bands. The kernel operator for predictor functionals 〈·, ·〉 is
defined in the Hilbert space such that the informative pro-
jection is prominent. We choose the kernel function 9k =

9k (t, t ′) = k−1e−γ ||(t−t
′)/k||2 for t ′ ∈ [t, t̄] with a parameter

γ such that the operator is given as 〈sb(t + (i − 1)n), 9k 〉 =∫
sb(t ′ + (i− 1)n)k−1e−γ ||(t−t

′)/k||2dt ′.
We apply the functional kernel estimator (1) in accordance

with previously described method to determine the functional
bandwidth n [38].

FIGURE 3. The detailed stage-1 process that breaks down the functional
X to the basic process unit Xb,i,k for b = 1, . . . , B, i = 1, . . . , M,
k = 1, . . . , K , and t ∈ [t, t̄ ] for B bands, K kernels, M functional chunks
with bandwidth n. All the basic process unit Xb,i,k will send to each
learner in the ensemble and produce Y l

i for learner l = 1, . . . , L.

Let the process Xb,i,k (tj) satisfies a Hilbert-valued autore-
gressive process Xb,i+1,k (tj) = m(Xb,i,k (tj), tj) + εi, where εi
is a Gaussian noise and m(xd , tj) = E[Xb,i+1,k (tj)|Xb,i,k (tj) =
xd ], j = 1, . . . ,Nt with the expectation E.
The sampling (xd )d=1,...,Nd is the realization sequence of

a discrete-time stochastic process Xb,i,k (tj)j=1,...,Nt . The esti-
mation m̂n(xd , tj) in Eq. (1) can be deemed a functional gener-
alization of the Nadaraya-Watson regression estimator at any
point xd and time tj for d = 1, . . . ,Nd and j = 1, . . . ,Nt
with sampling sizes Nd and Nt , which gives the preceding
data points more weight.

m̂n(xd , tj) =

n−1∑
i=1
〈Xb,i,k (tj)− xd , 9k 〉Xb,i+1,k (tj)

1
n +

n−1∑
i=1
〈Xb,i,k (tj)− xd , 9k 〉

. (1)

To determine the bandwidth n, we perform a grid search
such that the square error

∑
∀d,j E[m(xd , tj)− m̂n(xd , tj)]

2 is
minimized.

At the first stage prediction, the back projection X 7→ Y
problem reduces to a standard form (2) that the parametric f (·)
and the covariance matrix ε are estimated simultaneously.

Y = f (X )+ ε, (2)
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FIGURE 4. Continuous wavelet transformations (CWT) of ECG (upper
panel) and PPG (lower panel) waves.

where the functional pair (Y ,X ) represent the collection of
Yb,i(t) and Xb,i,k (t) for the b-th band and k-th kernel within
the point i of frame t . The predicted functionals from each
band at the second stage will be aggregated together into a
single one through an adaptive band-boosting step.

A. DYNAMIC BAND SEPARATION AT THE FIRST
PREDICTION STAGE
In the detailed operation at the first stage, as shown in Fig. 3,
functionals have been separated into bands for a suitable
prediction algorithm. The basic process unit Xb,i,k has been
sent to the learners in the stage 1 prediction process. The
proposed successive ridge domination (SRD) splits signals
into multiple bands dynamically according to their dominated
wavelet ridges in the time-frequency domain.

In Fig. 4, taking a sample of PPG and ECG signals,
we depict their continuous wavelet for an any function w(τ )
such that the wavelet transform is defined as Ww(a, t) =∫ 1
√
aξ
(
τ−t
a

)
w(τ )dτ , with mother wavelet ξ performing dila-

tion in scale a and shift in scale t .
The time-frequency representation easily reflects the local

properties of the signal in the coefficients. For example,
the continuous wavelet transformations (CWT) of the ECG
in Fig. 4 indicated that the base frequency of heartbeats is
around the period of 1 second (or 60 beats per minute). The
vertical axis in the graph represents the frequency in a log
scale from the top 0.5 Hz to the bottom 30Hz.

FIGURE 5. The number of bands can be elected to adapt to real
applications. Successive ridge domination (SRD) dynamically decomposes
an ECG wave into three bands. The vertical axis represents the number of
seconds for a cycle; a period 0.25 corresponds to 4 Hz. The horizontal axis
denotes the sampling index; point 1200 corresponds to 9.6 seconds for
the 125Hz sampling rate.

To compute ridge points over the time-frequency repre-
sentation, we need to define ridge curves. An amplitude
ridge point and phase ridge point is the time/scale pair
(a, t) with the strictly local maximum of<{ln |Ww(a, t)|} and
∂
∂t= {ln |Ww(a, t)|} along the a and t axes, respectively, where
the operators < and = retrieve the real and image part of
a complex number, respectively, and Ww(a, t) is a wavelet
transform of an any function w(τ ). In other words, amplitude
ridge points are defined as argmax(a,t)<{ln |Ww(a, t)|}. The
sets of ridge points collectively become wavelet ridge curves.
As depicted in Fig. 5, we split the bands based on the ridge
curves. The ridge amplitudes are prominent in components
around the vicinity of heart rates because of the semi-periodic
nature of cardiac activities.

Therefore, we successively cut the components in the low
band and evaluate the next dominated ridge over the residual
coefficients.

The first subgraph in Fig. 5 is the band with the most domi-
nated ridges, and the second subgraph becomes the successive
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dominated ridges. The time-frequency representation (a, t)
forms some Riemannian submanifold M of Rm×n. A mani-
fold is a space having no global coordinate systems. However,
locally at a point X ∈M, the manifold is homeomorphic to a
Euclidean space.

Therefore, we utilize the manifold to extend the residual
subspace for accommodating possible hidden details. The
components in the final band belong to non-smooth mani-
folds Sx and Sy for PPG and ECG. For the simplicity and
consistency of notations, we still use the same X and Y to
denote the non-differentiable functional in the non-smooth
manifold.

The non-smooth manifolds Sx and Sy for signals X and
Y are defined on a lattice of Laplacian 1, representing an
n × n matrix. Let a functional correspondence T ∈ Rn×n

maps functions from Lebesgue space L2(Sx) to L2(Sy). The
functional correspondence T can be approximated by the first
k Laplacian eigenvectors as T ≈ 8xWw(a, t)8T

y in a sense
subgradient, where Ww(a, t) is a k × k matrix translating
Fourier coefficients from the basis 8x to the basis 8y.
To avoid ‘‘contaminating’’ the good properties of compo-

nents in the smooth manifolds, we keep extracting all low-
frequency smooth components according to the dominated
wavelet ridges until reaching the final components, which
are highly irregular and have sparse spikes. The final com-
ponents cannot be discarded as noises because the mapping
between the components determines the quality details of the
destination signals. The estimation of the mapping function
in the manifold is challenging because of the no-where dif-
ferentiable property. However, a good estimation in the non-
smooth manifold is key to the inverse project in our target
problem.

The filter bank obtained by our SRD algorithm guarantees
a well-separation of heart activities, and the reconstructed
waveform is loss-less (Fig. 6). We tried to demonstrate the
difference between 3-band and 4-band decomposition. Fig. 6
graph shows the result of 4-band, which has no signifi-
cant difference from the previous 3-band decomposition.
We, therefore, choose to use 3-band decomposition here-
inafter. The back-projection learning task in the first stage is
an optimization process that evaluated the solutions to the ill-
posed problem in each band b.

Considering that the application scenarios of wearable
devices need to be accommodated to ordinary people’s daily
activities, the processing algorithm should overcome signals
with a large portion of noise and artifacts. Wavelet methods
are well-known for their excellent capability in removing
non-coherent noises, artifacts, and drifting. Therefore, our
SRD band splitting algorithm can obtain separated manifolds
and rectify the input signals to an acceptable quality.

B. SPARSE KERNEL TRANSFORMATION FOR
THE SOURCE PPG SIGNALS
Individual learner l = 1, . . . ,L for the ensemble with L
learners should adapt to the characteristics of each band.
An effective way to highlight such characteristics is kernel

FIGURE 6. Decomposed bands of ECG and PPG signals. (a) and (b) show
the 4-band decomposition (1-4) of the original signal (orig). In choosing
3-band or 4-band decomposition, this graph shows that the result of
4-bands has no significant difference from the previous 3-band
decomposition. We, therefore, choose to use 3-band decomposition
hereinafter.

transformation, 9k [39]. The representer theorem in the
reproducing kernel Hilbert space (RKHS) guarantees that,
over the training set, the minimizer of the regularized min-
imization problem will find a functional g for a target func-
tional s such that ming ||s−g||2+µ||g||2H , µ ≥ 0, admits the
representation ĝ(X ) =

∑n
k=1 νkXb,i,k (t)) over a Hilbert space

H , where νk ∈ Rn denotes the unknown coefficients and µ is
the Lagrange multiplier of the constraint.

The challenge of individual learners encountered in the ill-
posed problem is to inverse a near-singular outer product, and
it is often resolved through regularizationmethods with a pos-
itive perturbation. Therefore, the solution to the multivariate
optimization problem becomes

max
µ

min
g
||s− g||2 + µ||g||2H . (3)
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To avoid over-fitting, we further generalize the problem (3)
as a generic elastic net (4) in the Least Absolute Shrinkage
and Selection Operator (Lasso) term [40] with Lasso penalty
α with l1 and l2 norms, || · ||1, || · ||2.

max
µ

min
g
||s− g||2 + µ

{
1−α
2 ||g||

2
2 + α||g||1

}
. (4)

Optimization (4) pushes the coefficients to zero if the covari-
ates are insignificant due to the l1 properties. The recon-
struction efficiency increases when transformation manifests
the sparsity properties [41]. The optimization (4) is regu-
lated by the Lasso penalty (α = 1) or the ridge penalty
(α = 0), and it takes advantage of the sparse l1 norm in
evaluating solutions for the ill-posed problem [42]. If α = 0,
the optimization in (4) reduces to an ordinary generalized
matrix inverse, which serves as a comparison basis. The least-
square estimation in the objective creates a large variance
when covariates exhibit multicollinearity. Ridge regression
performs optimization to compensate for the problem of
multicollinearity by finding a balance between variance and
bias [43]. The ridge penalty effectively reduces the variance
of the identified coefficients [44], [45].

C. GENERATIVE PULSE LOCKING FOR QRS COMPLEX
The mapping from PPG to ECG in high-frequency bands
can be nearly singular because the PPG signals have insuf-
ficient high-frequency information. Instead of performing
direct mapping, a generative method is exploited. Mirroring
the concept of the phase-locked loop in radio communication,
we estimate the transformation parameters based on a series
of actively synthesized pulses from the low-bands of source
PPGs (Fig. 7).

FIGURE 7. Generative pulse locking (upper panel) to simulate the QRS
complex from low-bands of a PPG signal (lower panel).

The GPL pulses denoted as XB+1,i, are synchronized with
the reference band in phases and amplitudes by maximiz-
ing cross-correlation and minimizing the covariance error.
The way we maximize and minimize the two objectives is
consistent with the principle of generative methods in the
recent renowned research [46]. The generative method can
effectively overcome the numerical difficulty in the ill-posed
inverse mapping.

FIGURE 8. The detailed stage-2 process that combine the functional Y l
i

to the final ECG functional Yi .

D. ADAPTIVE BAND BOOSTING AT THE SECOND
AGGREGATION STAGE
At the second stage, as shown in Fig. 8, the multivariate
regression (5) aggregate the predicted functionals Y li , for
which the superscript l of the Y (ECG) represents the output
of the l-th learners in terms of the vectorized βl , the combiner
function h(Y l), and the independent residue η. The combined
Y with combiner h(Y l) becomes

Yi =
∑

∀l ∈the ensemble
βlh(Y li )+ η. (5)

A numerical difficulty exists in (5) because multiple learners
in the first stage increase the number of variables in multiple
folds. While the un-trained records remain the same, the
number of predictors is more than the number of observations
in the regression. Therefore, ordinary regression fails in this
case.

Conventional solutions usually involve specific transfor-
mations to reduce the dimension of predictors. For example,
principal component analysis and partial least square (PLS)
regression extract components with a significant variation in
the covariance matrix of input and input|output, respectively.
We exploit the sparse partial least square (SPLS) regression
to further limit the number of predictors [47], [48]. In com-
parison with PLS, the SPLS effectively keeps response and
predictors uncorrelated in the regression with a large number
of predictors.

In a conventional PLS, Y and X are transformed by a
matrix V = XU ∈ Rn×L , where L is the reduction dimen-
sion and U is the coefficient matrix. Many algorithms apply
successive approach to solve V through finding each col-
umn vector in U . For example, simple partial least square
(SIMPLS) [49] and multi-response SIMPLS [50] evaluate
U = argmaxU {UT6XY6

T
XYU}, s.t. UTU = I and

uTj 6XXuj = 0 with covariances 6XX and 6XY for U =
[u1, . . . , uL], j = 1, . . . ,L − 1, and identity matrix I.
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Assuming the latent space is far smaller than one of the
predictors, we can then partition the space generated by X
into two disjoint subspaces such that X = (X1,X2) spanned
by relevant (X1) and irrelevant variables (X2). The component
w = [w1, . . . ,wL] can be obtained by adding an l1 constraint
in the optimization of SIMPLS such that

max
w

wTMw s.t. wTw = I, ‖w‖ ≤ λ, (6)

whereM = XTYY TX and λ is a parameter limiting the extent
of sparsity.

FIGURE 9. The pseudo-code representing the computation object
structure.

Similar to other sparsity algorithms, such as Lasso or e-net,
a multi-fold cross-validation step is needed in the computa-
tion. We also follow the standard procedure to find related
sparsity control parameters.

The two-stage computation steps and object construction
are finally summarized in Fig. 9. The implementation is
designed in a style of object-objected programming. Before
being sent to the learning ensemble, a dataStore object is
constructed to represent the data unit Xb,i,k in sparse kernel
transformation after extracting and matching records from
MIMIC III patient database. The object dataLearner and
dataCombiner are designed to accomplish stage-1 and -2
processes, respectively. The ensemble algorithm will choose
the best learner and a regression model among the bag of
candidates.

IV. SIGNAL RECONSTRUCTION AND ANALYSIS
The proposed algorithms have been tested on a publicly
available MIMIC III database [51] of PhysioNet.com [52].
This multi-parametric dataset contains 25,328 admissions to
intensive care units. A large number of testing waveforms
were used to validate the algorithm. A large quantity of
PPG/ECG waveform pairs was extracted for the experiment.
There is no limit on the number of records we could use,
but screening the waveforms with the selected diseases in

the complex hospital information system and ICD-9 (inter-
national disease classification) code system was not easy.
Of these pairs, 70% and 30% of data were used for training
and testing, respectively.

From the MIMIC III database, we extracted 287 records
without being diagnosed having heart disease. We also
matched 60 acute myocardial infarction (AMI), 30 atrial
fibrillation (AF), and 170 heart failure (HF) records in the
dataset. According to the convention of the hospital registra-
tion system, each record represented a particular recording
during the stay from one of the multiple admissions of a
patient. Therefore, we followed the same managerial logic
that ignored the patient number and concentrated only on
each admission because different admissions might receive
different ICD-9 codes. The recording lengths varied from a
few seconds to several hours. We will not overuse a single
patient and only kept a part of such a long record for keeping
balanced sampling. The data structure in the experiment was
divided into record, chunk, and segment. A segment is a
basic unit with the bandwidth of the functional time series.
A chunk contains 10∼50 segments, and a record consists of
5∼20 chunks. The part of recording outside the target range
of chunks was discarded.

A semi-automatic pre-processing step was performed
along with visual inspection to join multiple columns among
patient subjectID, ICD9 code ranges for a group of diseases,
admissionID, recordingID, and signal waveforms. Before the
waveformswere entered for training, the records with all-zero
elements or without complete ‘PLETH’/‘lead II’ pair were
excluded. Although our algorithm could accept a wide range
of acquisition quality, flat zero signals still are unacceptable
because they would mislead the algorithm. The high noise or
irregular wave signals were preserved for testing our algo-
rithm’s robustness.

A. PREDICTION RESULTS IN EACH SRD BANDS
We iteratively employed a combination of learners in the
first stage ensemble for each band in the experiments. The
learners in the ensemble for this experiment were defined
as [1, 2, 3, 4, 5, 6] = [t-l2, t-l1, w-l2, w-l1, dcnn, warp], for
which represent [an ordinary generalized matrix inverse in l2,
an ordinary generalizedmatrix inverse in l1, Lasso in l2, Lasso
in l1, a 40-layer VGG19model [53], and a waveformwarping
method], respectively. Many learners were excluded from the
experiments because they did not perform well, either in the
training or testing steps.

In Fig. 10 (a), the SRD filtered signals of low-band were
smooth and congruent to each other. Therefore, the mapping
in this band was easy and would guarantee the heart rate of
the final transformation will be accurate.

In Fig. 10 (b), the mid-band of the SRD carried prominent
signal information, and this band’s accuracy dictated the
quality of the final reconstructions. In Fig. 10 (c), in the high-
band of the SRD, most of the coefficients should be zero.
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FIGURE 10. (a) In the low-band, mapping is sufficiently stable when an
ordinary generalized matrix inverse is used in the learner, (b) In the
mid-band, different mapping methods in the learner yield various levels
of mapping performance. (c) In the high-band, the property of sparsity
dominates the mapping and therefore l1 learners have better
performance. (The learners are numbered as t-l2=1, t-l1=2, w-l2=3,
w-l1=4, dcnn=5, warp=6.)

The generative pulse locking for the QRS complex in this
band also helped stabilize the quality of the mapping.

B. PREDICTION ACCURACY
Several metrics were adopted for evaluating performance,
including standard ones, the relative root mean squared error
(rrmse), and Pearson correlation coefficient (ρ). We also
applied Kling–Gupta efficiency (KGE) values [54] to assess
the goodness of fit for the similarity between two functional
time series. Given the functionals of the simulated signal sim
and observed signal obs, the statistics of sim and obs are

FIGURE 11. The ECG signals were recovered from the source record set
4 and testing segment 17. The top two subgraphs showed the original
PPGs and ECGs, and the third and fourth subgraphs showed the best ECG
reconstruction using the appropriate learners (The learners are numbered
as t-l2=1, t-l1=2, w-l2=3, w-l1=4, dcnn=5, warp=6.)

prepared for the KGE measure. µsim and µobs are the means
of sim. σsim σobs are the variances of obs.

The KGE are defined in Eq. (7).

KGE = 1−
√
(r − 1)2 +

(
σsim
σobs
− 1

)2
+

(
µsim
µobs
− 1

)2
, (7)

where r is the Pearson correlation between the two function-
als sim and obs. The KGE value implies that the larger the
KGE is, the better the fit will be.

Besides similarity, the dissimilarity between the simulated
and all other non-target waveforms should be measured.
Even though the simulation may not perfectly match the
target, the simulation should not accidentally match any other
targets. Therefore, we define a Kling–Gupta efficiency dif-
ference (KGED) by taking a uniform expectation E overall
records in the dataset [30].

KGED = E∀i[KGEi −max{KGEj}∀j6=i]. (8)

Positive values of KGED imply high goodness of fit for the
specific targets.

The training result for the proposed ensemble approach
was illustrated in Fig. 11. Based on the goodness-of-fit artic-
ulated in Table 2, the results of the prediction were demon-
strated in the functional form. Even in the case of extremely
poor acquisition quality of PPG, the predicted reconstruction
still maintains robustness without losing statistical details.

The two best prediction results were shown in the third and
fourth subgraphs of Fig. 11 using learners (2,1,2) and (2,3,4).
The learners are numbered as t-l2=1, t-l1=2, w-l2=3,
w-l1=4, dcnn=5, warp=6. The low-band in both cases was
suitable for learner 2, which corresponds to t-l1 (the ordinary
pseudo-inverse in l1). For the mid-band, t1-l2 and w-l2 were
equally good. For the high-band, t-l1 and w-l1 can perfectly
preserve the sparsity property.

Stable results are obtained through our algorithm. Based
on the prediction accuracy in Table 2, we find that the
reconstructed ECG can perform disease diagnosis with
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FIGURE 12. A validated reconstruction of an AMI ECG. Given an unseen
PPG and ECG at the top 2 subgraphs of (a) (orig=original), we obtain the
predicted ECG (pred=predicted) at the bottom subgraph. The subgraph
(b) zoomed in on the details (2 sec.) of the predicted ECG (upper) and the
original ECG (lower).

great accuracy. For patients with ICD-9 codes relating to
AMI, AF, andHF,we obtained correctness rates of 85%, 80%,
and 78%, respectively.

For comparison, in the individual learner, we also deployed
a deep convolutional neural network (DCNN) in a well-
known 40 layers VGG19 model [53]. As shown in Fig. 13,
the results did not perform as well as our method, either in the
training or testing data. From the subgraph, we can observe
that the performance of VGG19 significantly deviated from
other methods. The original PPG and ECG are in the first two

FIGURE 13. Comparison to other methods. A popular DCNN was used in
the algorithm but the reconstructed signals did not perform as well as our
method, compared to the results in Fig. 11. The first and the second
subgraphs are the original PPG and ECG, respectively. The third
(mid-band=w-l1,high-band=dcnn) and the fourth
(mid-band=dcnn,high-band=dcnn) subgraphs are the DCNN prediction
outputs.

subgraphs and the next two subgraphs show two samples of
reconstructions by combinations of learners, which demon-
strate an average reconstruction result.

In the subgraphs of Fig. 13, the third (mid-band=w-l1,
high-band=dcnn) and the fourth (mid-band=dcnn,high-
band=dcnn) were the outputs with DCNN learner. The recon-
structions did not surpass the quality of other methods.
A DCNNmay not be a perfect choice in this application with
time series contents.

The maximal similarity between the reconstructed and
the original ECG occurred by using the methods SRD-GPL
in l2 and l1, whose performance is superior in both train-
ing and testing data, compared to other methods, such as
DCNN. The proposed learning model improves prediction
accuracy (KGE) and specificity (KGED).

Our algorithm shows excellent results in avoiding over-
fitting, and the prediction is made specifically for the target
ECG, according to the indication of KGED. Our goal of
prediction satisfies two criteria: statistical error should be
small for the unseen ECG, and should not be similar to any
other ECG (the error difference between target and non-target
waves should be significant).

C. DISCUSSIONS
Our results show the feasibility of mapping from PPG to
ECG signals based on the theoretical basis of electro-fluid-
mechanics and hemodynamics. The regularization in l1 is
rooted in the cellular activation dynamics.

The mapping results reveal that the low-band is relatively
stable, the mid-band is informative for the waveform details,
and the high-band is distinguishable for the similarity.We can
spend less computation time in the low-band and still obtain a
relatively stable prediction for the final mapping. We should
spend most computation resources in the mid-band because
the waveform details manifest in this band. Considering that
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TABLE 2. Average prediction accuracy under four disease categories.

FIGURE 14. From top to the bottom, the original AMI PPG in (first) has been decomposed to 3-band (second)-(fourth), and
the ECG in (fifth) has been decomposed to 3-band (sixth)-(eighth). Through the banded kernel ensemble, the final
prediction of the ECG was shown in (ninth).

the QRS complex is the most distinguishable part of ECG,
a conditioning step with generative pulses and a regularized
l1 penalization are effective in the computation of high-band.
Using the trained model, we can quickly generate a high-
fidelity ECG solely based on easy-to-measure PPGs.

We demonstrate our conversion result by acquiring the
PPG from an AMI patient. The reconstruction result from
our ensemble was shown in Fig. 14. Even taking from a low-
quality PPG signal, we still can synthesize an almost iden-
tical ECG signal based on such limited conditions. For the
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validation of our reconstruction of the AMI ECG, the orig-
inal ECG signals are similar to the predicted ECG signal
(Fig. 12 (a)). Given an unseen PPG and ECG at the top 2 sub-
graphs of (a) (orig PPG=original PPG, orig ECG=original
ECG), we obtain the predicted ECG (pred ECG=predicted
ECG) at the bottom subgraph. We zoom in on the details in
the subgraph (b) (from point 1 to point 250, corresponding
to 2 seconds in the sampling rate of 125 Hz) of the predicted
ECG (upper) and the original ECG (lower). The reconstructed
prediction preserves the features of the original ECG even in
the AMI case.

D. LIMITATIONS AND FUTURE WORKS
This study tried to extract matched records from the
MIMIC III database. Because the waveforms and disease
codes were stored in separated data sources, the matching
process was not easy. The record relations between two
parts of sources were so complex, and therefore writing an
automatic process is not reliable. Currently, the community
still relies on visual inspection in getting disease codes for a
waveform.

Future development can focus on improving prior distribu-
tion specifications and initial conditions.Wewill additionally
construct empirical distribution for all error terms to be a
basis of the prior distribution. The algorithm will be con-
tinuously improved and parallelized for better computational
efficiency.

V. CONCLUSION
Low-quality PPG signals were mainly used to count heart-
beats and measure SpO2 and were difficult to be convinced
for disease diagnoses. This study contributes to cardiology
applications by upgrading such low-cost, ubiquitous devices
to an operational level for regular medical practice. Based on
electro-fluid-mechanics and haemodynamics in cardiology,
our algorithm achieves a substantial accuracy in the recon-
struction performance, and the calculated ECGs sufficiently
replicate the waveform details of the original ECG signals.

We found that the inverse mappings are effective with the
time-frequency band decomposition in the kernel space with
l1 norm. To yield the maximal similarity between the recon-
structed and the original ECG, we apply the most suitable
mapping method for each band, which also adapts dynam-
ically to the cardiac activities. To address the challenge of
ill-posed inverse mapping, we accommodate a generative
pulse train synchronizing with the base frequency. The low-
band in the mapping results is always stable, the mid-band
is informative, and the high band is distinguishable. Here,
we should focus on the inverse mapping of the mid-bands for
superior waveform details.

Our method can alert suspicious cardiovascular symptoms
at home and help a large population of high-risk, believed-
healthy persons walks in doctors’ offices before their cardio-
vascular health becomes irreversible. Our study demonstrates
a stable and accurate mapping from PPG to ECG signals.
Once ECGwaveforms are derived fromPPGs,many diseases,

such as acute atrial infarction or arrhythmia, can be pre-
screened in an ordinary surveillance camera.

REFERENCES
[1] (2021). Apple. Apple Watch. [Online]. Available: https://www.a

pple.com/watch/
[2] (2021). AliveCor. AliveCor KardiaCare. [Online]. Available: https:

//www.kardia.com/
[3] M. Garbey, N. Sun, A. Merla, and I. Pavlidis, ‘‘Contact-free measurement

of cardiac pulse based on the analysis of thermal imagery,’’ IEEE Trans.
Biomed. Eng., vol. 54, no. 8, pp. 1418–1426, Aug. 2007.

[4] K. Watanabe, T. Watanabe, H. Watanabe, H. Ando, T. Ishikawa, and
K. Kobayashi, ‘‘Noninvasive measurement of heartbeat, respiration, snor-
ing and body movements of a subject in bed via a pneumatic method,’’
IEEE Trans. Biomed. Eng., vol. 52, no. 12, pp. 2100–2107, Dec. 2005.

[5] J. Ogorevc, A. Podlesek, G. Gersak, and J. Drnovsek, ‘‘The effect of mental
stress on psychophysiological parameters,’’ in Proc. IEEE Int. Symp. Med.
Meas. Appl., May 2011, pp. 294–299.

[6] X.-R. Ding, Y.-T. Zhang, J. Liu, W.-X. Dai, and H. K. Tsang, ‘‘Con-
tinuous cuffless blood pressure estimation using pulse transit time and
photoplethysmogram intensity ratio,’’ IEEE Trans. Biomed. Eng., vol. 63,
no. 5, pp. 964–972, May 2016.

[7] W.-H. Tang, Y.-J. Chang, Y. J. Chen, and W.-H. Ho, ‘‘Genetic algorithm
with Gaussian function for optimal P-wave morphology in electrocar-
diography for atrial fibrillation patients,’’ Comput. Electr. Eng., vol. 67,
pp. 52–57, Apr. 2018.

[8] Y. Tao, Y. J. Chen, X. Fu, B. Jiang, and Y. Zhang, ‘‘Evolutionary ensem-
ble learning algorithm to modeling of warfarin dose prediction for Chi-
nese,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 1, pp. 395–406,
Jan. 2019.

[9] Y. A. Bhagat, P. Vcrdon, S. Avuthu, D. Parsons,M. Sussman, G.Wable, and
R. Hugeneck, ‘‘Like kleenex for wearables: A soft, strong and disposable
ECG monitoring system,’’ in Proc. IEEE Biomed. Circuits Syst. Conf.
(BioCAS), Oct. 2018, p. 1.

[10] M. M. M. Nawawi, K. A. Sidek, A. K. Y. Dafhalla, and A. W. Azman,
‘‘Review on data acquisition of electrocardiogram biometric recognition in
wearable smart textile shirts,’’ J. Phys., Conf., vol. 1900, no. 1, May 2021,
Art. no. 012019.

[11] L. Wang, H. Zhang, K. C. Wong, H. Liu, and P. Shi, ‘‘Physiological-
model-constrained noninvasive reconstruction of volumetric myocardial
transmembrane potentials,’’ IEEE Trans. Biomed. Eng., vol. 57, no. 2,
pp. 296–315, Feb. 2010.

[12] M. Courtemanche, R. J. Ramirez, and S. Nattel, ‘‘Ionic mechanisms under-
lying human atrial action potential properties: Insights from a mathemati-
cal model,’’ Amer. J. Physiol.-Heart Circulatory Physiol., vol. 275, no. 1,
pp. H301–H321, Jul. 1998.

[13] M. P. Nash and A. V. Panfilov, ‘‘Electromechanical model of excitable
tissue to study reentrant cardiac arrhythmias,’’ Prog. Biophys. Mol. Biol.,
vol. 85, nos. 2–3, pp. 501–522, Jun. 2004.

[14] Y. Rudy, ‘‘Noninvasive electrocardiographic imaging of arrhythmogenic
substrates in humans,’’ Circulat. Res., vol. 112, no. 5, pp. 863–874,
Mar. 2013.

[15] W.-H. Tang, W.-H. Ho, and Y. J. Chen, ‘‘Data assimilation and multi-
source decision-making in systems biology based on unobtrusive Internet-
of-Things devices,’’ Biomed. Eng. OnLine, vol. 17, no. S2, pp. 35–47,
Nov. 2018.

[16] Y. Tsaig and D. L. Donoho, ‘‘Extensions of compressed sensing,’’ Signal
Process., vol. 86, no. 3, pp. 549–571, Mar. 2006.

[17] Q. Zhu, X. Tian, C.-W. Wong, and M. Wu, ‘‘ECG reconstruction via PPG:
A pilot study,’’ in Proc. IEEE EMBS Int. Conf. Biomed. Health Informat.
(BHI), May 2019, pp. 1–4.

[18] X. Tian, Q. Zhu, Y. Li, andM.Wu, ‘‘Cross-domain joint dictionary learning
for ECG reconstruction from PPG,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2020, pp. 936–940.

[19] H.-Y. Chiu, H.-H. Shuai, and P. C.-P. Chao, ‘‘Reconstructing QRS complex
from PPG by transformed attentional neural networks,’’ IEEE Sensors J.,
vol. 20, no. 20, pp. 12374–12383, Oct. 2020.

[20] K. Vo, E. K. Naeini, A. Naderi, D. Jilani, A. M. Rahmani, N. Dutt, and
H. Cao, ‘‘P2E-WGAN: ECG waveform synthesis from PPG with condi-
tional Wasserstein generative adversarial networks,’’ in Proc. 36th Annu.
ACM Symp. Appl. Comput., Mar. 2021, pp. 1030–1036.

51090 VOLUME 10, 2022



W.-H. Ho et al.: Quickly Convert Photoplethysmography to Electrocardiogram Signals

[21] K. Qin, W. Huang, and T. Zhang, ‘‘Deep generative model with domain
adversarial training for predicting arterial blood pressure waveform from
photoplethysmogram signal,’’ Biomed. Signal Process. Control, vol. 70,
Sep. 2021, Art. no. 102972.

[22] A. Akbari, J. Martinez, and R. Jafari, ‘‘A meta-learning approach for fast
personalization of modality translation models in wearable physiological
sensing,’’ IEEE J. Biomed. Health Informat., vol. 26, no. 4, pp. 1516–1527,
Apr. 2022.

[23] D.Martin-Martinez, P. Casaseca-de-la-Higuera,M.Martin-Fernandez, and
C. Alberola-Lopez, ‘‘Stochastic modeling of the PPG signal: A synthesis-
by-analysis approach with applications,’’ IEEE Trans. Biomed. Eng.,
vol. 60, no. 9, pp. 2432–2441, Sep. 2013.

[24] V. Duval and G. Peyré, ‘‘Sparse spikes super-resolution on thin grids II:
The continuous basis pursuit,’’ Inverse Problems, vol. 33, no. 9, Sep. 2017,
Art. no. 095008.

[25] E. J. Candes and J. K. Romberg, ‘‘Signal recovery from random projec-
tions,’’ Proc. SPIE, vol. 5674, pp. 76–87, Mar. 2005.

[26] R. G. Baraniuk and M. B. Wakin, ‘‘Random projections of smooth mani-
folds,’’ Found. Comput. Math., vol. 9, no. 1, pp. 51–77, 2009.

[27] Y. C. Eldar and M. Mishali, ‘‘Robust recovery of signals from a struc-
tured union of subspaces,’’ IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 5302–5316, Nov. 2009.

[28] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, ‘‘Model-
based compressive sensing,’’ IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[29] U. Beyaztas and Z. M. Yaseen, ‘‘Drought interval simulation using func-
tional data analysis,’’ J. Hydrol., vol. 579, Dec. 2019, Art. no. 124141.

[30] M.-H. Lee and J. Y. Chen, ‘‘Precipitation modeling for extreme weather
based on sparse hybrid machine learning and Markov chain random
field in a multi-scale subspace,’’ Water, vol. 13, no. 9, pp. 1241–1253,
May 2021.

[31] A. Kovnatsky, M. M. Bronstein, X. Bresson, and P. Vandergheynst, ‘‘Func-
tional correspondence by matrix completion,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 905–914.

[32] Z. Zhang, ‘‘Photoplethysmography-based heart rate monitoring in physical
activities via joint sparse spectrum reconstruction,’’ IEEE Trans. Biomed.
Eng., vol. 62, no. 8, pp. 1902–1910, Aug. 2015.

[33] P. Fryzlewicz, S. Van Bellegem, and R. von Sachs, ‘‘Forecasting non-
stationary time series by wavelet process modelling,’’ Ann. Inst. Stat.
Math., vol. 55, no. 4, pp. 737–764, Dec. 2003.

[34] N. M. Pindoriya, S. N. Singh, and S. K. Singh, ‘‘An adaptive
wavelet neural network-based energy price forecasting in electricity
markets,’’ IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1423–1432,
Aug. 2008.

[35] H. Kim, Y. Kim, J. Kim, and E. C. Lee, ‘‘Method for restoring PPG signals
using ECG correspondences and SVR,’’ Electron. Lett., vol. 49, no. 24,
pp. 1518–1520, Nov. 2013.

[36] W.-H. Ho, J. Y. Chen, Y. Zhang, Y. Tao, and H.-W. Kuo, ‘‘Heart diseases
detection from noisy recordings of smartphone devices,’’ J. Mech. Med.
Biol., vol. 18, no. 4, pp. 1–16, Jun. 2018.

[37] F. Yao, H.-G. Müller, and J.-L. Wang, ‘‘Functional data analysis for sparse
longitudinal data,’’ J. Amer. Stat. Assoc., vol. 100, no. 470, pp. 577–590,
2005.

[38] A. Antoniadis, E. Paparoditis, and T. Sapatinas, ‘‘Bandwidth selection for
functional time series prediction,’’ Statist. Probab. Lett., vol. 79, no. 6,
pp. 733–740, Mar. 2009.

[39] P. Vincent and Y. Bengio, ‘‘Kernel matching pursuit,’’ Mach. Learn.,
vol. 48, nos. 1–3, pp. 165–187, 2002.

[40] H. Zou and T. Hastie, ‘‘Regularization and variable selection via the elastic
net,’’ J. Roy. Statist. Soc., B, Stat. Methodol., vol. 67, no. 2, pp. 301–320,
2005.

[41] E. J. Candes and T. Tao, ‘‘Decoding by linear programming,’’ IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Nov. 2005.

[42] E. J. Candès, J. Romberg, and T. Tao, ‘‘Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,’’
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[43] D. W. Marquardt and R. D. Snee, ‘‘Ridge regression in practice,’’ Amer.
Statist., vol. 29, no. 1, pp. 3–20, 1975.

[44] C. B. García, J. García, M. M. L. Martín, and R. Salmerón, ‘‘Collinear-
ity: Revisiting the variance inflation factor in ridge regression,’’ J. Appl.
Statist., vol. 42, no. 3, pp. 648–661, Mar. 2015.

[45] P. Exterkate, P. J. F. Groenen, C. Heij, and D. V. Dijk, ‘‘Nonlinear forecast-
ing with many predictors using kernel ridge regression,’’ Int. J. Forecast.,
vol. 32, no. 3, pp. 736–753, Jul. 2016.

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[47] H. Chun and S. Keleş, ‘‘Sparse partial least squares regression for simulta-
neous dimension reduction and variable selection,’’ J. Roy. Stat. Soc. Stat.
Methodol. B, vol. 72, no. 1, pp. 3–25, 2010.

[48] G. Zhu and Z. Su, ‘‘Envelope-based sparse partial least squares,’’ Ann.
Statist., vol. 48, no. 1, pp. 161–182, Feb. 2020.

[49] S. de Jong, ‘‘SIMPLS: An alternative approach to partial least squares
regression,’’ Chemometrics Intell. Lab. Syst., vol. 18, no. 3, pp. 251–263,
Mar. 1993.

[50] I. S. Helland, ‘‘Model reduction for prediction in regression models,’’
Scandin. J. Statist., vol. 27, no. 1, pp. 1–20, Mar. 2000.

[51] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. A. Celi, and A. G. Mark, ‘‘MIMIC-III,
a freely accessible critical care database,’’ Sci. Data, vol. 3, May 2016,
Art. no. 160035.

[52] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley, ‘‘PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals,’’ Circulation,
vol. 101, no. 23, pp. e215–e220, Jun. 2000.

[53] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[54] S. Pool, M. Vis, and J. Seibert, ‘‘Evaluating model performance: Towards
a non-parametric variant of the Kling-Gupta efficiency,’’ Hydrol. Sci. J.,
vol. 63, nos. 13–14, pp. 1941–1953, Oct. 2018.

WEN-HSIEN HO received the B.S. degree in
marine engineering from the National Taiwan
Ocean University, in June 1991, the B.S. degree in
industrial and information management from the
National Cheng-Kung University, in June 1998,
and the M.S. degree in mechanical and automation
engineering and the Ph.D. degree in engineering
science and technology from the National Kaoh-
siung First University of Science and Technology,
Taiwan, in June 2002 and January 2006, respec-

tively. From September 1991 to July 2006, he was an Engineer of the
Design Department, CSBC Corporation, Taiwan. He is currently a Professor
with the Department of Healthcare Administration and Medical Informatics,
Kaohsiung Medical University, Taiwan. His research interests include intel-
ligent systems and control, computational intelligence and methods, robust
control, and quality engineering.

CHIA-TE LIAO received the M.Sc. degrees from
the London School of Hygiene and Tropical
Medicine and the London School of Economics
and Politics and theM.D. degree from Taipei Med-
ical University. He is currently pursuing the joint
Ph.D. degree with the National Cheng Kung Uni-
versity, Taiwan, and Leuven University, Belgium.
He is currently a Cardiologist and anAssistant Pro-
fessor with the Chi-Mei Medical Center. He has
several publications, including books and more

than 30 SCI papers. His research interests include clinical trial, cardi-
ological epidemiology, health economics, health technology assessment,
artificial intelligence in medicine, public health, health policy, and quality
improvement.

VOLUME 10, 2022 51091



W.-H. Ho et al.: Quickly Convert Photoplethysmography to Electrocardiogram Signals

YENMING J. CHEN received the Ph.D. degree
in systems science and mathematics from Wash-
ington University, St. Louis, USA, in 1998. He is
currently a Distinguished Professor with the Infor-
mation Management Department, National Kaoh-
siung University of Science and Technology,
Taiwan. He is the author of several books, patents,
and more than 75 SCI/SSCI articles. His research
interests include the IoT/AI, sound/spectrum tech-
nologies, fault detection, precision medicines, and
medical computations.

KAO-SHING HWANG received the M.M.E. and
Ph.D. degrees in electrical and computer engi-
neering from Northwestern University, Evanston,
IL, USA, in 1989 and 1993, respectively. He was
with the National Chung Cheng University,
Taiwan, from 1993 to 2011, where he was
the Deputy Director of the Computer Center,
from 1998 to 1999, the Chairman of the Electrical
Engineering Department, from 2003 to 2006, and
the Director of the Opti-Mechatronics Institute,

from 2010 to 2011. He is a Distinguished Professor/A.S.E. Group Chair
Professor of the Electrical Engineering Department, National Sun Yat-sen
University. He is also an Adjunct Chair Professor of KaohsiungMedical Uni-
versity, Taiwan; a Distinguished Chair Professor of the National Formosa
University, Taiwan; and a Visiting Chair Professor of the Department of
Computer Engineering, Northwestern Polytechnic University, Xi’an, China.
His research interests include methodologies and analysis for various intel-
ligent systems, visual servoing, and reinforcement learning for medical aid
systems and robotic applications. He is a fellow of the Institution of Engi-
neering and Technology (FIET). He received the MOST 2020 Outstanding
Research Award, Taiwan.

YANYUN TAO received the Ph.D. degree from
the East China University of Science and Tech-
nology. He was a Postdoctoral Researcher with
Shanghai Jiaotong University. He is an Associate
Professor with Soochow University. He has pub-
lished 17 SCIE articles in machine learning for
medical application. He was supported by the
‘‘Talent of Colleges and Universities in Suzhou.’’
Hewas also supported by the National Natural Sci-
ence Foundation of China; the China Postdoctoral

Science Foundation; and the State Key Laboratory of New Software Technol-
ogy, Nanjing University. His research interests include computational intel-
ligence, machine learning, and biomedical engineering. He is a member of
the Young Scientist Association of the China Artificial Intelligence Society.
He received the Second Prize of Scientific and Technological Progress from
the Suzhou Computer Society.

51092 VOLUME 10, 2022


