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ABSTRACT Several classes of advanced Internet of Things (IoT) applications, e.g., in the industrial
manufacturing domain, call for Quality of Service (QoS) management to guarantee/control performance
indicators, even in presence of many sources of ‘‘stochastic noise’’ in real deployment environments, from
scarcely available bandwidth in a time window to concurrent usage of virtualized processing resources. This
paper proposes a novel IoT-oriented middleware that i) considers and coordinates together different aspects
of QoS monitoring, control, and management for different kinds of virtualized resources (from networking
to processing) in a holistic way, and ii) specifically targets deployment environments where edge cloud
resources are employed to enable the Serverless paradigm in the cloud continuum. The reported experimental
results show how it is possible to achieve the desired QoS differentiation by coordinating heterogeneous
mechanisms and technologies already available in the market. This demonstrates the feasibility of effective
QoS-aware management of virtualized resources in the cloud-to-things continuum when considering a
Serverless provisioning scenario, which is completely original in the related literature to the best of our
knowledge.

INDEX TERMS Edge cloud computing, FaaS, Internet of Things, interoperability, middleware,
QoS management, serverless.

I. INTRODUCTION
The continuous advancement of network and computing
infrastructures is pushing the digital transformation and evo-
lution of many diverse industrial sectors, asked to become
‘‘smarter’’, including industrial manufacturing, healthcare,
and even tourism [1]. The types of applications that are
requested to run on these distributed infrastructures are very
differentiated and with very differentiated requirements, from
latency upper-bounds to maximum allowable downtime and
reliability; moreover, the ICT infrastructures hosting them
include very heterogeneous resources and tend to employ
more and more cloud continuum virtualized resources, which
are typically positioned close to IoT sensors and actuators for
greater efficiency [2].
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In addition, in these scenarios, depending on the indus-
trial sector and the specific kind of application, the sever-
ity of effects due to provisioning failures can range from
negligible to critical. Those elements push for considering
novel approaches based on new forms of cloud computing
belonging to the family of Serverless computing, such as
Function as a Service (FaaS), where the complexity of the
ICT infrastructure is demanded from the provider because
they can enable application-domain experts to concentrate
exclusively on the development of domain-specific solutions.

The need for control and compliance with QoS specifica-
tions in cloud-to-things environments for industrial manufac-
turing is widely recognized. But similar needs are present
more and more in other application domains, which are
increasingly benefiting from IoT-empowered technologies.
For example, in the Smart Hospitality domain, modern
accommodation facilities are integrating more and more
connected sensors and actuators to provide an increasingly
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digitized and personalized experience for their customers [3].
IoT devices, along with digital services, work alongside staff
promising to help manage and create a more engaging experi-
ence, while also achieving accessibility and reduced environ-
mental impact goals. Hence the need to provide differentiated
QoS levels in the delivery and processing of information
from different devices. For instance, IoT devices embedded
in smart doors or management systems (e.g., SPA tempera-
ture controllers) require low latency and small variation in
response time; at the same time, the growing number of AI
and Virtual/Augmented Reality technologies embedded in
both guest rooms and hotel gyms [4], while requiring high
bandwidth and benefiting from localization of computational
resources, can tolerate small performance degradation. Even
if it is widely recognized the need for more advanced QoS
management features in the cloud-to-things continuum [5],
to the best of our knowledge there is no state-of-the-art solu-
tion in the current literature that works to control/guarantee
differentiated QoS levels for FaaS-based IoT applications in
the cloud continuum, by exploiting coordinated mechanisms
and strategies spanning the whole set of employed and virtu-
alized networking/processing resources.

To fill this relevant gap, we propose TEMPOS: a
Time-Effective Middleware for Priority Oriented Serverless
for IoT applications in the cloud continuum. TEMPOS can
exploit and coordinate the different QoS mechanisms avail-
able over different technologies across the stack of virtual-
ized FaaS invocations in the cloud continuum to properly
manage end-to-end QoS in terms of jitter, latency, and en-
queuing time. While preserving the general aspect of our
study, and without loss of generality, the paper presents the
current status of the implementation of a TEMPOS proto-
type, which primarily exploits Linux real-time scheduling,
differentiated MOM priorities, and Time-Sensitive Network-
ing (TSN) as the underlying system-level mechanisms to
enforce the QoS-aware TEMPOS abstractions (TEMPOS
QoS-aware topics) for QoS management. Our prototype
has already been tested under different load conditions to
simulate the behaviours of different and realistic use case
scenarios, thus allowing us to collect a large set of exper-
imental measurements about TEMPOS performance indi-
cators, which are originally presented in the paper; those
experimental results quantitatively show both the feasibility
of the proposed approach and the efficiency of the achieved
implementation of TEMPOS.

In short, we believe that this paper significantly advances
the state-of-the-art literature in the field by proposing the fol-
lowing primary original contributions: i) introducing support
for an edge cloud FaaS offer for IoT applications guarantee-
ing differentiated quality of services ii) holistic QoS manage-
ment of different aspects of FaaS distributed invocation over
virtualized resources iii) original architecture based on layers
(Logical, QoS, and System) and slices (Bridging, Delivery,
and Processing), to abstract the aspects related to the tech-
nologies used and compartmentalize the different tasks
iv) an original implementation of the proposal based on

MOM prioritization, Linux real-time scheduling, and TSN
v) in-the-field experimental results over simple deployment
cases that quantitatively show the feasibility of the proposed
approach and the efficiency of the implemented middleware.

II. BACKGROUND
Edge cloud computing (or edge cloud) is a recent form of
distributed cloud computing in which virtualized processing,
networking, and storage resources are hosted at nodes at the
edge of the considered network [6], [7]. The introduction
of edge cloud technologies in this sense has opened to the
development ofmany new smarter andQoS-sensitive services
that can better meet latency, jitter, and scheduling-delay con-
straints thanks to the locality of data producers and process-
ing devices [8]. The adoption of edge cloud solutions can
offer multiple advantages but suffers from limited resource
availability at edge hosts if compared with the more tradi-
tional cloud. Thus, sharing resources amongmultiple services
and applications becomes essential in many scenarios of the
so-called cloud-to-things continuum [9].

In this context, the definition and efficient usage of pri-
oritization mechanisms become necessary to meet the dif-
ferent QoS demands of different types of IoT applications,
composed of multiple tasks competing for the same vir-
tualized resources. In addition, single mechanisms are not
sufficient: the coordination of different prioritization tech-
nologies, across the full invocation stack (possibly including
virtualized processing, invocation messaging, and communi-
cations) is needed to meet constraints of end-to-end jitter,
latency, and queuing delays [10]. However, such coordina-
tion and orchestration of distributed resource reservation and
invocation prioritization, while maximizing the efficiency of
resource utilization, is recognized as a challenging task. This
is further exacerbated by the huge heterogeneity of devices,
operating systems, communication mediums, and protocols
that are present in edge cloud-enabled IoT environments [11].

On the other side, Serverless computing is emerging as
a new and successful paradigm promoting total absence of
control, for the customer, over deploy and execution of ser-
vices. Belonging to this family, FaaS [12] is a model in which
customer-defined logic are put into execution dynamically,
triggered by events. FaaS platforms are characterized by fine-
grained per-request scaling of resources: at any time the
number of resources employed by the FaaS platform auto-
matically tends to be proportional to the number of requests
issued. This scaling mechanism also leads to zero-scaling
capability, which allows services and applications not in use
to consume almost no resources, with evident advantages
in practical deployment scenarios, in particular for environ-
ments with a high density of differentiated applications or
with relatively limited resources such as for edge cloud nodes.

A typical FaaS platform consists of three main architec-
tural components: Trigger, Controller, and Executor Nodes
depicted in Fig. 1. The Trigger is the logical entity responsible
for receiving or sensing external information. It converts them
into internal events, manageable by the FaaS platform and
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FIGURE 1. High level FaaS architectural approaches. (a) Architecture employing a direct invocation scheme enacted by the controller.
(b) Architecture introducing a MOM system to decouple the controller and the functions.

processable by functions. Triggers typically receive requests
from heterogeneous sources and the interactionwith them can
employ different protocols and formats.

Events generated by triggers are managed by a controller.
The controller is the logically centralized entity that manages
the configuration of other components in the FaaS platform,
including function life-cycle or trigger setup. In addition, the
controller takes care of the process of distribution of internal
events generated by triggers; events are distributed to com-
puting nodes where they are processed. For event distribution,
the controller can interact with other components either real-
izing synchronous service call invocation (Fig. 1a) or exploit-
ing asynchronous pub-sub-based communication (Fig. 1b).
The former requires that each received event is first passed
to the controller and processed there to decide the next hop
in the invocation chain. In the latter, the controller typically
exploits pub-sub Message-Oriented Middleware (MOM) to
deliver events to nodes.

Executor Nodes are agents installed on the different par-
ticipating physical nodes and are in charge of hosting and
putting into execution functions (typically the business logic),
for each incoming event. In particular, the process responsible
for waiting for events and for starting function invocation is
the so-called Invoker or Watchdog [13]. Functions are exe-
cutable codes expressed in one of the supported languages,
e.g, Java or Python, and uploaded by customers ahead of time
in conjunction with a configuration. The configuration is the
set of information exploited by the FaaS platform to know
to which external events the execution of a function is asso-
ciated and in which execution environment. The execution
environment does not only specify the language framework
but also the possible dependencies, the operating system, and
the architecture on which the uploaded function code has to
be put into execution. The combination of a function and its
configuration constitutes a specificworkflow deployed on the
FaaS platform and externally invocable through a trigger.

III. THE TEMPOS MIDDLEWARE FOR QOS-AWARE FAAS
INFRASTRUCTURES
In this paper, we originally propose TEMPOS, a novel mid-
dleware, specifically designed and optimized for advanced
QoS management in FaaS infrastructures, that hides the

possible heterogeneity and complexity of edge deploy-
ment environments while providing a strong QoS separation
among the workflows put into execution. For this purpose, the
TEMPOS orchestrator coordinates and composes different
technologies of prioritization and reservation available across
the full support stack associated with the different virtual-
ization layers involved in FaaS infrastructures deployed over
the edge cloud continuum. Thanks to its complexity hid-
ing, TEMPOS can be exploited in multiple diverse scenarios
such as Smart Tourism, Industry 5.0, or Smart Agriculture.
TEMPOS abstractions require only to define the business
logic in form of a workflow with an associated QoS level
(among the available ones). It is the TEMPOS middleware
that asynchronously checks the QoS support of the targeted
resources in the deployment environment components and
updates the configuration of the single FaaS components
accordingly. The current implementation of the TEMPOS
middleware assumes that essential middleware and FaaS
components are already installed and configured; the inte-
gration with existing orchestrator features for QoS-aware
dynamic deployment is currently under research, as better
detailed in Section VIII.

With easy extensibility and flexibility as guiding design
principles, in order to cope with different application sce-
narios, deployment sites, and installed technologies, the
TEMPOS architecture consists of three functional slices,
namely Bridging, Delivery, and Processing; in addition, one
TEMPOS component, called Controller, is used to orchestrate
them (Fig. 2). Slices realize a different functional aspect of
our solution and are designed to interact the onewith the other
only through a set of agreed interfaces (e.g., on predefined
UDP ports). This creates a contract among slices and enables
each one to be independent of the specific technologies or
protocols (e.g., network stacks or process scheduling imple-
mentations) employed by the other slices.

A. CONTROLLER
The TEMPOS Controller configures and orchestrates
both the TEMPOS slices and the activation/maintenance
of customer-defined workflows. In particular, the Con-
troller represents the endpoint, addressable by application
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FIGURE 2. Multilevel representation of TEMPOS architecture foreseeing the three slices, namely Bridging, Delivery and Processing, and the
three conceptual layers, i.e., Logical, QoS, and System.

developers, that exposes applicable configurations in a sim-
plified and facilitated way. For this purpose, the Controller
maps and matches the QoS requested by an application
developer/deployer to the quality levels supported by the
different slices and exposed through well-defined interfaces.
More specifically and practically, the Controller handles two
different configuration steps. On the one hand, it receives the
configuration for all components of the TEMPOS infrastruc-
ture from the developer/deployer, then remaps this configu-
ration to specific commands sent synchronously to each of
the different slices. The goal of this phase is to configure
Channels and Topics with the different QoS levels offered
by our middleware (see Section III-B). On the other hand,
the Controller receives the set of workflows initially defined
by the developer/deployer, along with the QoS expressed
with per-flow granularity (not for single invocation) and that
will have to be mapped to the underlying infrastructure.
The developer/deployer can also request the configuration
of workflows at runtime, as the Controller exposes APIs
for deploying new workflows or modifying existing ones.
As in the other cases, these reconfiguration events are handled
by the Controller, which interacts synchronously with the
TEMPOS slices to preserve the QoS required for the whole
application.

B. DELIVERY SLICE
The Delivery slice realizes QoS-aware event distribution
among TEMPOS components. TEMPOS event distribu-
tion process is achieved through the interworking of dif-
ferent communication technologies and protocols, along
with services in the duty of orchestrating and composing
them. A series of abstractions are then introduced to eas-
ily extend the set of supported technologies and to pro-
vide developers/deployers with a simplified view. The core
part of this slice is a novel MOM capable of dynamically
exploiting different mechanisms and technologies to achieve
QoS differentiation.

The introduction of our MOM decouples, in space and
time, the interactions among TEMPOS components and

enables advanced mechanisms such as load balancing and
automatic fault tolerance. Our MOM introduces a trans-
parency feature that allows adding and/or scaling dynami-
cally the deployment of TEMPOS middleware components.
The synergy between the TEMPOS MOM and Controller
completely hides the internal complexity of our middleware
from the application developers’ perspective, thus achieving
an essential feature of Serverless computational models.

Application/middleware components can connect to our
MOM either to send or receive a message, through the cre-
ation of a Channel. The TEMPOS Channel is the abstraction
that we offer to define a connection between any pair of
TEMPOS components. Since the Delivery slice potentially
covers several communication environments, a Channel is
characterized by a specific communication protocol and,
if supported, a prioritization or reservation technique. There-
fore, to employ our delivery notion in highly heterogeneous
contexts, theMOM adopts a mechanism based on the concept
of Adaptor. Adapters allow to support a considerable number
of Channels and interact with them seamlessly and simulta-
neously. Messages received by a specific Channel are pro-
cessed in priority order through the use of ‘‘priority queues’’.
Through these queues, the TEMPOS MOM processes events
in parallel, prioritizing those associated with higher QoS.

To provide our middleware with a consistent end-to-end
quality abstraction, we introduced the concept of QoS-aware
Topic defined as:

T =



Cin1
Cin2

...

CinN

 ,Q


Ceg1
Ceg2

...

CegN




where

T = Topic, Q = Priority Queue,

Cin = Channel Ingress, Ceg = Channel Egress

The topic is the reference construct in TEMPOS for coordi-
nating and abstracting the different QoS levels made available
by the channels and associated with the priority queues of
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the MOM. Each topic is then associated with a specific QoS,
which can be derived from the performance of the two chan-
nels with the worst input and output performance, respec-
tively, and the processing performance associated with the
processing slice. Thanks to the Topic and Channel constructs,
it is thus possible to provide application developers with a
single and transparent view, even if the platform is lever-
aging different QoS-sensitive technologies, such as TSN,
5G slicing, or Wi-Fi 6 prioritization, as detailed in the
following.

To allow for differentiated message distribution poli-
cies among the subscribers of a TEMPOS Topic, we also
inherited, from classical MOM solutions, the concept of
Subscription Groups. In the classical pub-sub model, each
subscriber of a topic receives all messages sent through it.
Through the mechanism of Subscription Groups, each mes-
sage is sent to only one of the subscribers in each group,
thus realizing a load balancing feature among the subscribers.
Indeed, load balancing is an essential capability of a MOM in
the context of FaaS platforms as it enables the distribution of
workflow requests across multiple executor nodes.

C. BRIDGING SLICE
The bridge slice is the abstraction responsible for unifying
requests sent by external entities that want to utilize services
distributed through the TEMPOS platform. The Bridge slice
employs components andmechanisms that transform external
events into an internal representation of the FaaS platform so
that they can be managed by other slices and transparently
processed by functions. In particular, users, devices, and
services interact with the workflows through the central
component of the Bridging slice, the Trigger. The main
responsibility of the Trigger is so to forward to MOM
every information sensed or received after having adapted
and encapsulated them under the form of events. Trig-
ger behaves as a bridge between the external world and
TEMPOS, by adapting external protocols, representations,
and QoS levels to internal ones. Moreover, Trigger is the first
TEMPOS component that can differentiate and characterize
event quality by exposing a different endpoint for each sup-
ported QoS level. Thanks to the location transparency intro-
duced by the MOM, the deployment of triggers can adapt to
different scenarios and needs: in particular, we designed and
implemented three deployment options for Trigger, depend-
ing on closeness to either the MOM or the external source.

In the first case (Fig. 3 case A), the trigger is co-located
with the event source. This case allows us to simplify the
support of delivery quality between the source and the trigger
as they are co-located on the same host. As a drawback,
this pattern prevents the simultaneous use of the trigger for
multiple sources and also requires that the source device has
enough resources to host the trigger execution.

In the second pattern, i.e., Fig. 3 case B, the trigger runs in
the middle between external sources and the MOM. In this
scenario, we have the certainty that the delivery of infor-
mation between the source and the trigger is feasible with

FIGURE 3. Different deployment options of Trigger: A) locally to source,
B) in the middle between multiple sources and the MOM C) locally to the
MOM as bridge to other event systems.

adequate quality. The trigger can be located in any node
reachable by both MOM and sources and can behave also as
a gateway between different networks. In this configuration
Trigger is addressable by multiple sources, thus maximiz-
ing resource usage but also potentially causing conflicts.
Of course, incoming events belonging to the same quality
class can incur conflicts in case of concurrent transmission;
a fine-grained distribution and allocation of Triggers are so
advisable to avoid situations of quality degradation.

In the last case, Fig. 3 case C, the external source already
provides QoS concepts and exchanges information in the
form of events. This scenario embraces use cases where
TEMPOS is deployed as part of an existing infrastructure
that already leverages some form of event exchange, such
as an Enterprise Service Bus infrastructure. In this context,
Trigger is placed within the TEMPOS MOM and acts as a
connector to external sources. Finally, Trigger is still tasked
with mapping arguments, queues, and qualities of an external
system onto internal ones.

D. PROCESSING SLICE
Processing is the last abstraction slice in our TEMPOS mid-
dleware and is responsible for processing events forwarded
by the Bridging slice and then handled by the Delivery slice.
Another task of the Processing slice is to take the burden
off the customer of knowing both the characteristics of the
processing environment and the computing resources used to
execute a specific workflow. This slice allows the customer to
define both the business logic and QoS requirements, without
knowing how the platform implements the support that can
satisfy them. Specifically, the processing is done through
user-defined business code that is loaded in advance.

The main component responsible for the Processing slice
behavior is the Invoker. The Invoker is the terminal part of
each output channel and waits for the arrival of events to be
processed by functions. At each event arrival, Invoker instan-
tiates the associated function, ahead of time through the user-
provided configuration, and then takes care of forwarding the
event to the function.

No TEMPOS components, except the controller, are aware
of how an event will be processed by a specific Invoker;
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Invoker is, therefore, the component in charge of managing
the life cycle, the execution environment, and the invocation
of the functions in such a way as to reach the target QoS
for that workflow. TEMPOS Invokers can be specialized
to exploit different function invocation methods and execu-
tion environments depending on deployment scenarios and
achieving better performance or resource-saving.

This specialization can take advantage of the opportunis-
tic composition of different technologies available either in
the environment of execution of the Invoker, e.g., Operating
System, Hypervisor, or realized by the Invoker itself.

So, for its execution, the same workflow can exploit dif-
ferent technologies and optimizations at the same time, e.g.
concurrent usage of an execution environment for 2 differ-
ent functions or re-usage of the same function instance for
subsequent requests. About QoS-aware processing, Invoker
can employ both its internal techniques and the ones possibly
present at the Executor Node, e.g, Operating System prioriti-
zation. Thanks to the Invoker abstraction, TEMPOS is capa-
ble of executing heterogeneous functions while employing
different QoS mechanisms and policies, without causing side
effects on other components or executor nodes.

IV. TEMPOS IMPLEMENTATION
This section presents the primary implementation insights
about how we realized the TEMPOS architecture described
in Section III, first focusing on theQoS Level and then on the
System Level (Fig. 2).

A. QOS LEVEL
The current implementation of the TEMPOS middleware
provides application developers with two distinct QoS levels.
On the one hand, we define a Best-effort Quality (BQ) and
assume its use in case of communication and function invo-
cation with no strong latency and jitter constraints. On the
other hand, we specify the Strict Quality (SQ) to support the
execution of functions that require more stringent and soft
real-time QoS.

B. CONTROLLER
The Controller is the module that manages all the other
TEMPOS entities. We chose to develop the Controller as
a Linux daemon process, which, once started, performs a
first configuration of the entire TEMPOS middleware. For
this initialization to be successful, the application devel-
oper/deployer must simply provide a specific configuration
file, currently based on the TOML configuration file format,
containing: i) all the information needed by the Controller
to interact with all other entities, i.e., MOM, Triggers, and
Invokers, and ii) the specification of the requested QoS
levels for the connection between components and func-
tion execution at each targeted node. Then, at the end of
the configuration phase, the Controller waits for reconfig-
uration/management requests from the developer/deployer,
thus making both the Controller and the entire middle-
ware reconfigurable and modifiable at run-time. The current

implementation exposes the Controller functionality through
REST APIs. In particular, every time the Controller receives
a request, it performs the possibly needed reconfiguration by
interacting synchronously with the entities involved in each
slice. The latter, in turn, exposes specific management inter-
faces and manages these configuration requests in an ad-hoc
process outside the interactions of the TEMPOS workflows
defined by the developer/deployer. As already planned future
work, we are starting to implement this configuration mech-
anism through a special configuration topic on the MOM
where the different TEMPOS components can subscribe to
receive updated configurations. Finally, the Controller main-
tains an internal representation of all TEMPOS components,
which is updated with each request, thus allowing a central-
ized and updated view of the entire middleware deployment
environment. Therefore, in the configuration phase, there is
no need of direct interaction between the different TEMPOS
components because the communication is mediated by the
MOM to guarantee a strong decoupling between our infras-
tructure entities.

C. MESSAGE-ORIENTED MIDDLEWARE
Following the architecture proposed in Section III, the second
TEMPOS macro-component is a Message-Oriented Middle-
ware with two different queues, for SQ and BQ, respectively.
We developed these two queues using two different network
sockets and two threads. The sockets separate messages into
two separate queues, while each thread acts as a priority
queue processor since both are scheduled according to the
real-time Linux scheduler [14]. The first thread handles all
messages labeled with strict quality and runs with a higher
priority than the best-effort thread. Since the priorities pro-
vided by the scheduler range from 0 to 99, as default, we use
the lowest priority (0) for BQ, while we associate the highest
priority (99) with SQ.Moreover, an application developer can
specify to use the Controller to choose the type of Linux real-
time scheduler, e.g., Round Robin or FIFO, and set different
values for the priorities of the threads associated with the
queues. That makes the MOM more flexible and, in the
future, opens up to the easy introduction of additional queues
with intermediate quality.

A significant aspect of our MOM is its transparency of the
protocols used by the underlying network; this property is
achieved thanks to the introduction of TEMPOS middleware
elements called Adapters (Section III) and realized via a
plugin-based mechanism within the MOM. A plugin repre-
sents a set of well-defined interfaces, which specify how to:
i) open a connection, i.e., create a Channel, ii) configure the
QoS level of a newly created connection, iii) send messages
through the Channel, and iv) safely close the connection.
In addition, the association between one or more channels
connected to the MOM and one of the queue processors
realizes the concept that we name TEMPOS Topic. Since
the TEMPOS components, including the MOM, are entirely
implemented by using a compiled language such as Rust,
we based the plugin system on the dynamic library loading
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mechanism [15]. The realized plugins must be compiled
and distributed as shared libraries, which are then loaded at
run-time by theMOMaccording to the configuration received
from the Controller.

At the time of writing, we completed the implementa-
tion of a TSN-based plug-in. Specifically, we based our
implementation on the IEEE 802.1Qbv standard, which
aims to support the combination of best-effort and real-
time traffic within TSN networks [16]. The standard presents
the notion of time-triggered communication windows, often
called time-aware traffic windows, thus defining a mecha-
nism to support different types of time-critical flows. In prac-
tice, a window is divided into multiple time slots associated
with selected classes of traffic and repeated cyclically. This
makes it possible to minimize the interference of best-effort
traffic with priority traffic (i.e., real-time traffic), which we
refer to as strict communication QoS level. This mecha-
nism is achieved by inserting a so-called guard band before
the scheduled traffic window, which forces the buffering of
packets belonging to traffic classes not to be transmitted.
From the developers and implementation-oriented perspec-
tives, windows and slots are expressed through aGate Control
List (GCL) that identifies the time instants when packets can
be transmitted on the medium [17].

D. TRIGGER
The Trigger is the TEMPOS component responsible for the
forwarding of events issued by one or more sources to the
MOM, thus defining the core part of the Bridging Slice.
To provide a unique implementation for the different deploy-
ment scenarios presented in Section III-C, we developed
the trigger as an always running Linux process listening
on a network socket. Thus, an event issued by a source
(e.g., a sensor) is received by the trigger via the network,
or if possible, taking advantage of an IPC mechanism. This
can be applied to optimize communication in the case of the
co-located deployment scenario. Once executed, the Trigger
first receives the configuration, containing the QoS level to be
used, from the Controller, and then opens a second connec-
tion, i.e., the Channel used to communicate with the MOM.
Different from the MOM, we consider the implementation
of each Trigger as limited to a single protocol, be it TSN,
Wi-Fi 6, or any other protocol providing a priority-based
communication mechanism. At the moment, we have com-
pleted the implementation of the co-located trigger model by
exploiting TSN-based communication.

E. INVOKER
Invoker is implemented as a multi-threaded TEMPOS com-
ponent, which spawns two main threads. The first one man-
ages configuration requests fromController, while the second
handles actual invocations. Once started, Invoker receives
its configuration from Controller and sets its QoS level
based on the application developer’s specification. Moreover,
we developed three distinct invocation mechanisms, and the
developer must express which one to use in the configuration

request. The three invocationmethods are designed to support
different use cases, and are defined as follows:

1) DLF (DYNAMICALLY LOADED FUNCTION)
We based our DLF mechanism on the dynamic library
loading technique. This is generally used to combine several
functions into a single unit shared by multiple processes at
run-time, thus saving disk space and RAM. Although the
library code can be used by multiple processes at the same
time, its variables remain isolated. Our DLF employs the
POSIX standard APIs to handle the dynamic library load-
ing [18]. When a function invocation occurs, Invoker opens
(dlopen) the requested shared object file and, subsequently,
loads the symbol (dlsym) related to the main library entry.
For this to happen, the application developer must expose
the function within the library with the name and arguments
we expect. Consequently, the loaded function is first exe-
cuted and finally unloaded (dlclose) after its termina-
tion. Due to the mechanism involved, this invocation method
is suitable for executing functions with high performance
and strict requirements, thus primarily aimed at our strict
QoS level [19].

2) WASMF (WASM FUNCTION)
The WASM invocation method is similar to DLF, as it adopts
the same underlying loading mechanism. The TEMPOS
invoker integrates a complete WASM engine, i.e., using the
Wasmer library [20], initialized in the startup phase. When
Invoker receives a request, the engine dynamically loads the
shared library containing the requested function. To ensure
a correct loading, the library must be compiled using a
WASM code generator that translates a target-independent
intermediate representation into executable machine code,
e.g., Cranelift [21]. Once the function is loaded and executed,
the engine removes the WASM code on its internal store.
An advantage of this invocation method is the possibility
of the application developers to implement functions in the
programming language of their choice, still providing good
results in terms of performance and levels of quality.

3) FSPAWN (FUNCTION SPAWN)
The last invocation mechanism, called Function Spawn (FS),
follows the classic Unix idiom of fork() followed by
exec() to execute a different program in a child pro-
cess. If the invoker is deployed on a node supporting
the posix_spawn API, the latter is used instead of the
fork() and exec() scheme to achieve better performance
in case the parent process has a larger size or memory lay-
out [22]. Due to the flexibility and standard nature of the
mechanism employed in this invocation method, it is possible
to execute the function in arbitrary environments. In par-
ticular, as a first implementation, we leveraged FSpawn to
execute function, deployed in the form of an executable pro-
gram, directly as a Linux user-space process. Alternatively,
a function can be spawned inside an already started Docker
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TABLE 1. Specifications of the nodes used for the evaluation testbed.

container providing all the dependencies needed to execute
the code.

V. EXPERIMENTAL TESTBED DESCRIPTION
To quantitatively evaluate and validate the effectiveness of
TEMPOS, we developed a series of testbeds to analyze the
behaviours of several of its primary components. The tests
described below aim at demonstrating that the TEMPOS
middleware can support differentiated end-to-end QoS levels
while offering to application developers a simplified inter-
action and instrumentation interface. Special attention was
given to demonstrating the ability of TEMPOS to orchestrate
and compose different mechanisms to achieve highly dif-
ferentiated QoS for different workflows. Nevertheless note-
worthy, these testbeds also show the validity and feasibility
of the achieved TEMPOS implementation stack under very
different load conditions.

Of course, the performance results achievable by TEMPOS
in absolute terms depend on the characteristics of resources in
the targeted deployment environment. Therefore, the follow-
ing series of testbeds can also constitute the first step to cal-
ibrate resources in target deployment scenarios with similar
technological stacks. Our testbeds are designed to simulate
a worst-case where the number of concurrent requests is
putting under stress the TEMPOS middleware. In particular,
we organized our testbeds in three cases, aiming each one
to stress alternatively the event-delivery process, the event
processing, or the overall middleware.

In the first case, we test the behaviour of TEMPOS
event-delivery under different load conditions, thus emulating
diverse resource competition scenarios of workflows. The
specific goal is to demonstrate the ability of our middle-
ware to chain different QoS mechanisms while maintaining
guarantees about latency and jitter. The second case aims at
demonstrating the TEMPOS ability of hiding heterogeneity
while still providing a strong differentiation of QoS. For this
reason, in this testbed case, we trigger the execution of a
complex and computational heavy function, representative of
many commonworkloads (Algorithm 1), while employing all
the different function invocation methods currently supported
in our TEMPOS prototype.

In the last testbed case, instead, we aim at verifying the
ability of TEMPOS of composingmechanisms for QoS at dif-
ferent TEMPOS slices, to achieve configurable and complete
end-to-end QoS over different workflows.

We have implemented and configured two workflows,
invoking the same function (Algorithm 1) and configured one

Algorithm 1 Pseudo Code Showing the Operations
Performed by the Function Used in the Tests: Deserialization,
Count of Occurrence in Text, and Repetitions of Operations
of Square Root and Power Based on the Index Value
1: function main(e : Event) F The function entry point
2: message, pattern← deserialize(e)
3: occur ← count_occurence(message, pattern)
4: res← 0
5: for i← 0, occur do
6: if i mod 2 = 0 then
7: res← res+ pow(i)
8: else
9: res← res+ sqrt(i)
10: end if
11: end for
12: output(res)
13: end function

with BQ level and the other with SQ. All tests foresee an
increasing number of requests for each workflow, to show the
TEMPOS behavior in presence of challenging dynamicity in
the supported service load. The reported results are discussed
and analyzed by presenting the overhead quotas introduced
by single TEMPOS components.

To assess and validate TEMPOS feasibility over edge cloud
deployment environments, we have decided to conduct our
test on nodes with limited computational resources (Table 1).
As the edge hosts, we have employed three TSN-enabled
nodes. In particular, Node A and Node B have been intro-
duced and exploited only during the second testbed case to
verify how invocation methods performance would variate in
correlation with node performance.

We opted to co-locate Triggers and data Producer on
Node E, thus emulating a practical case where two edge nodes
cannot communicate by employing differentiated QoS mech-
anisms. The choice of assigning one of the two resource-rich
nodes to these TEMPOS components is mainly due to the
need to generate high and precise loads to stress our mid-
dleware. The second most performant board, node D, hosts
an instance of the TEMPOS MOM. In addition, we decided
to deploy all the invokers on the node with fewer resources
to emphasize concurrent resource requests and potential QoS
conflicts in the processing slice, which is a practically recur-
rent situation.

The three nodes of our testbed are connected through a
Relyum RELY-TSN-BRIDGE Ethernet switch, configured
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FIGURE 4. First testbed section showing performance of Delivery slice. (a) Average end-to-end latency of best effort and Strict effort traffic when
executed in separated environment. (b) Average end-to-end latency of best effort and Strict effort traffic with 1 and 3 concurrent best effort producer
and 1 strict effort.

with a TSN setup realizing differentiated QoS channels for
the ingress/egress of topics. To set up the selected QoS
mechanism for TEMPOS best effort and strict effort levels,
we use two new qdiscs queuing disciplines built into the
Linux kernel: i) taprio (Time-Aware Priority Shaper) imple-
menting a simplified version of the scheduling defined by
IEEE 802.1Qbv and ii) etf (Earliest TxTime First) qdisc that
allows applications to set a transmission time for each packet
(this information is then used by the scheduler to de-queue the
packet and forward it over TSN). Note that applications based
on the IEEE 802.1Qbv standard must rely on a single time
reference: to this purpose, an autonomous standard called
IEEE 802.1AS is specified in the TSN context, which defines
a specific profile of the IEEE 1588 standard by extending
the Precision Time Protocol (PTP). This extension, called
generic Precision Time Protocol (gPTP), defines two main
entities, namely the Clock Master (CM) and the Clock Slave
(CS), associated with the devices in the network [16]. About
our testbed synchronization, each TEMPOS node participates
to elect a controlling entity, determined by the Best Master
Clock Algorithm (BMCA): this controlling node is called the
PTP grandmaster [17]; the grandmaster sends clock infor-
mation to each of the Clock Slaves connected to it; once
all TEMPOS devices are synchronized, we have what is
effectively a time-aware network of nodes, i.e., a ready-to-
use gPTP domain.

In our testbed, we created two time-aware TSN windows
of 1ms, i.e., between Trigger and the MOM, and between
the MOM and Invoker. Each window is divided into two time
slots, one for SQ and one for BQ, each of 500 µs; the first
SQ slot is scheduled in the first half of the first window,
where the second SQ slot is skewed of 300 µs concerning the
starting time of theMOM-invoker window; this configuration
enables strict TEMPOS traffic to find the gate open at each
step, with no additional delays. Finally, to gather monitoring
statistics and to evaluate TEMPOS performance, in each
TEMPOS component in the testbed we introduced the log-
ging of any received event id, associatedwith its synchronized

timestamp; those logs are collected and analyzed only offline
at the end of the tests, not to perturb the performance of
workflow execution.

VI. IN-THE-FIELD EXPERIMENTAL PERFORMANCE
RESULTS
A. EVENT DELIVERY
In the first testbed case, we aim at demonstrating the
TEMPOS ability to prioritize event delivery based on work-
flow QoS. In particular, in the first test, we submitted a con-
stant rate of 1000 events per second to Trigger for a time-lapse
of 5 minutes. Then, we measured the difference between the
timestamp corresponding to event creation at Trigger and the
one reported at its delivery. We alternate the activation of SQ
and BQ workflows to observe the behaviours of the two in a
scenario with no perturbation due to concurrency. The results
in Fig. 4a show that the events belonging to the SQ workflow
are characterized by a lower end-to-end latency and jitter
when compared with those of the BQ workflow. In particular,
end-to-end latency for SQ workflow events settles to 501 µs
on average, thus showing that TEMPOS is compatible with
very challenging contexts that call for less than 1 ms response
time, like soft real-time ones.

Note that a clear differentiation between TEMPOS QoS
levels is possible thanks to the combined exploitation of
prioritization mechanisms acting at the network layer and the
event processing layer. In particular, the lower jitter is mainly
due to the strict scheduling of events and the synchronization
of TSN windows in ingress and egress of the topic. In fact,
the maximum latency that we measured throughout all tests
for each hop is 223 µs for the delivery of one event to the
TEMPOS MOM, 57 µs for event processing, and 299 µs for
event delivery to Invoker. Overall, once transmitted by Trig-
ger, a packet reaches Invoker in no more than 700 µs, in full
compliance with what is configured as the QoS request in the
testbed setup.

Finally, let us observe that the high priority assigned to the
queue processor for SQ events prevents other applications
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in the user space running at the edge node (such as the
MOM control thread) to steal resources to event processing;
of course, this does not happen for BQ. Note also that these
measurements could be considered as the baselines for event
delivery by TEMPOS in the ideal case of absence of pertur-
bations.

In the second test of this testbed case, we investigate how
the TEMPOS event-delivery mechanisms behave when mul-
tiple workflows are active and in competition for resources.
This test consists of two rounds: i) 1 best QoS and 1 strict QoS
workflows are concurrently active and ii) the number of active
best QoS workflows is increased to 3. We decided to increase
only the number of best-QoS workflows in this test because
the configuration of the current testbed makes impossible the
simultaneous sending of more than 1000 strict messages per
second, moreover, in most practical scenarios, most events
tend to belong to the Best-quality type. We submitted for
5 minutes a constant rate of 1000 events per second per each
active flow and againwemeasured the time-lapse between the
creation of the event in Trigger and its delivery at Invoker. The
results in Fig. 4b demonstrate that the strict-quality latency
is not penalized by the concurrent execution of one or more
best-effort workflows evenwhen comparedwith the baselines
of Fig. 4a. In both rounds, the latency constantly remains
under the threshold of 600 µs. As a second-level observation,
note that in the first round, despite the concurrent presence
of two active flows of event delivery, the jitter is negligi-
ble but a noticeably increase is observable in the second
round: this is mainly due to our usage of new API (NAPI),
a device driver packet processing extension to improve the
networking performance; in particular, NAPI implements a
mechanism of interrupt mitigation for network devices. This
mechanism allows the network card driver to exploit two
different packet reception modes: i) interrupt request (IRQ)
issued for each incoming packet, and ii) a polling [23] based
mechanism. Since the IRQ-based implementation can be very
inefficient in high-speed networks as it constantly interrupts
the kernel, NAPI introduces the polling mechanism that
allows the kernel to periodically check incoming network
packets without being interrupted. When incoming packet
datarate is sufficiently high for NAPI, then it automatically
switches to polling-basedmode, thus motivating the observed
behavior [24].

The periodic activation of the NAPI polling mode allows
us to achieve a substantial acceleration in terms of latency,
at the expense of jitter and CPU utilization. In the case of
workloads more sensitive to jitter than latency, the disabling
of this feature is recommendable; TEMPOS can perform this
disabling transparently for application developers thanks to
its abstractions.

B. PROCESSING
After validating the QoS-constrained delivery features of
TEMPOS, here we present a series of tests to show the TEM-
POS performance in terms of event processing. The following

FIGURE 5. Mean execution times for the different invocation methods
gathered in a run of 5 min. Each run repeated on nodes A, B, and C.

TABLE 2. Number of invocations executed by the different invocation
methods during the processing test (5 min. run).

tests are therefore implemented by considering the Process-
ing Layer only, with local-to-nodes function triggering.

The first test is focused on how different methods of invo-
cation and execution environments perform when run over
heterogeneous hardware. To this purpose we consecutively
invoked the same function (Algorithm 1), programmed in
a compiled language, for 2 minutes when invoked with the
mechanism of i) DLF, ii) WASMF and iii) FSpawn. We next
repeated the test with the FSpawn mechanism but with two
different versions of the same function implemented in two
different interpreted languages, i.e., Python and JavaScript.
These tests are repeated on nodes A, B, and C (Table 2)
as representative of three very different cases of resource
availability on edge hosts. All the results show that i) startup
and execution times are sensibly influenced by the employed
hardware and ii) latency minor than 1ms is easily achiev-
able on medium-top class hardware. DLF with execution
duration near to 100 µs qualifies as the fastest mechanism to
invoke functions; this opens up to the application of TEMPOS
in many challenging and latency-sensitive use cases where
sub-millisecond end-to-end latency is needed; however, DLF
restricts the usable programming languages to the only ones
compatible with the generation of shared libraries.

The FSpawn execution, on the contrary, showed maxi-
mum flexibility, being able to run every language executable
in a Linux environment. However, it exhibited the worst
performance in terms of total execution time, with latency
up to hundreds of milliseconds, in particular when running
non-compiled languages (Fig. 5). This qualifies FSpawn as
a good mechanism to adopt in a FaaS platform given its
flexibility, but its measured performance makes it infeasible
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FIGURE 6. Testbed results of concurrent invocation of functions configured with different QoS. (a) Test results using the Dynamic Loaded Functions
invocation model. (b) Test results using Function Spawn invocation model. (c) Test results using WASM Function invocation model.

to use in deployment scenarios where end-to-end latency
needs to be below the 1ms threshold.

The execution through WASMF performed one order of
magnitude worst than DLF and only slightly better than
the execution of a compiled function with FSpawn, with an
execution time of the order of 1ms. However, this mechanism
showed the potentiality of sensibly reducing the execution
and startup time of many non-compiled languages.

Table 2 shows that the choice of the right invocation mech-
anisms also results from a trade-off between the freedom
in implementation language selection and the number of
executable functions on given hardware infrastructure. Also,
in this case, the results of this first test work also as a baseline
for the successive results because the first test was conducted
without concurrency among workflows.

In the second test, we separately experimented again
with the three invocation mechanisms (i.e., DLF, WASMF,
FSpawn), but this time with concurrent invocations of 6 func-
tions, 2 executed with SQ setup, and 4 with BQ. The level
of parallelism selected is motivated by the number of cores
available on the used nodes (Node C Table 1) and the need
of creating challenging resource conflicts among workloads
in our tests. As shown in Fig. 6 our queuing mechanism can
well prioritize strict-quality when resource conflicts occur:
the time of execution of SQ functions is almost half of the
BQ ones. In other words, Invoker demonstrates to be capa-
ble of correctly applying the requested prioritization even
with heterogeneous mechanisms and in different execution
environments.

In addition, the reported results highlight a negligible vari-
ability in execution time in the case of SQ functions, as oppo-
site to BQ. BQ functions showed a significant variation of
the execution time of the order of hundreds to thousands
of ms depending on the method used; therefore, the usage
of SQ functions enables, not only to achieve a more reduced
latency but also for stricter predictability of processing time.
Invoker showed to be capable of transparently executing het-
erogeneous workloads while exploiting diverse technologies
present in infrastructure nodes.

C. FULL STACK
This section report results about the TEMPOS ability to coor-
dinate and concatenate different QoS mechanisms available

in each slice to achieve the targeted end-to-end quality for
the workflows. We deployed on node E two data producers
and two triggers configured with the two BQ and SQ levels;
on node B, instead, we deployed 3 invokers with SQ config-
uration and 3 with BQ.

We then create and deployed two workflows executing the
same function and triggered by the same event, but configured
one with BQ and one with SQ. Next, we linearly increased
the number of events submitted to the triggers until reaching
1000 events per second for each workflow. The experiment
is repeated firstly with only one active workflow, then with
both workflows concurrently active.

As predictable from the results of the previous sub-section,
in an isolation case with only one workflow active per time,
the SQ end-to-end latency is considerably better, with an
average of 3.34ms than BQ, which settled to an average
of 3.96ms, as also shown in Fig. 7a. It is also noteworthy
that this behaviour is maintained for the entire duration of
the test, with different rates of requests, thus demonstrating
the elasticity of the TEMPOS middleware. In the concur-
rent scenario, with both workflows active and competing
for resources, the two workflows coexist and do not affect
each other’s performance until reaching the critical threshold
of 500 messages per second. Until this threshold, we can
also observe that both workflows behave similarly as in the
previous experiments where they were executed separately.
Over the critical threshold, we can observe that conflicts
amongworkflows become critical and the BQworkflows pro-
gressively degrade their performance. Note that the latency
performance of SQ workflows remains consistently approx-
imately of 3.1ms despite the constrained hardware adopted
and the concurrency with other workflows.

Zooming in on the performance behaviour of some single
TEMPOS components, we can observe (Fig. 7b) how QoS
mechanisms are correctly applied across all the hops of the
technological stack. In fact, we can observe how, in each
trait of the invocation stack, SQ performs almost identically
when executed in concurrency with other workflows, while
BQ workflows degrade their performance when competing
with other active workflows. Let us finally note that in
Fig. 7b the ‘‘Best Conc’’ MOM-Invk bar is almost the same
as the ‘‘Invok’’ bar because the time is taken as the dif-
ference between invoker function invocation instant and the
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FIGURE 7. End-to-end test performance of the TEMPOS platform operated in two different scenarios: isolated execution of workflows with
different QoS (1 BQ and 1 SQ), and concurrent execution of them. (a) Comparison of end-to-end latency averages for BQ and SQ traffic executed
both separately and simultaneously with increasing number of messages/seconds (from 10 to 1000). (b) Zoom-in on end-to-end latency results
showing single contributions of TEMPOS components (execution time) to the overall response times.

sending message instant from the MOM: given that the
invoker reception is sync-blocking, that message anyway
waits in the invoker socket until the previous invocation is
completed.

VII. RELATED WORK
To the best of our knowledge, the design and implementation
of a middleware able to exploit and coordinate different QoS
mechanisms across the stack of virtualized FaaS invocations
for the cloud continuum are completely novel in the existing
literature. However, several works have proposed solutions
to some of the challenges addressed by our proposal. Many
of them not only paved the way for the development of
TEMPOS but also have inspired some architectural and tech-
nological choices that we adopted. The following concise
section aims only to be a representative excerpt of the most
influential published research papers related to that.

The opportunistic usage of edge cloud resources to
improve latency and jitter has been extensively discussed
in [25], [26] and also represents one of the key factors pushing
for wide adoption of this computing model [27].

The coordination and coupling of different prioritization
mechanisms is not a recent issue but, with the recent advent
of next-generation networking, it has gained an increasing
research interest. The need for concatenation of mechanisms
present at different levels of the stack has been considered
a primary problem since the earliest distributed systems.
To tackle resource orchestration and partitioning while guar-
anteeing QoS levels at the edge, [28] proposes DRAGON:
that paper describes some implementation insights about
DRAGON and evaluates its performance benefits if com-
pared with traditional orchestration approaches.

The introduction of middleware for the concatenation of
QoS-aware composition mechanisms is a frequent design
pattern applied in the literature to reduce complexity. In [29]
the authors propose a technique to couple priority and
reservation-based OS and network QoS management mech-
anisms through Distributed Object Computing middleware,

with adequate performance results. In [30] the authors present
a middleware built on CORBA for providing distributed soft
real-time applications with a uniform API to reserve hetero-
geneous resources with real-time scheduling capabilities in
a distributed environment: that solution introduced uniform
interfaces to support the reservation of CPU, disk, and net-
work bandwidth on Linux systems.

Even if Serverless computing and in particular FaaS plat-
forms are relatively novel, some platform improvements have
already been proposed in the literature to achieve better FaaS
performance and in particular latency reduction. Some papers
have proposed the deployment of serverless platforms on
edge nodes to achieve better QoS [31], such as in TEMPOS.
The usage of different invocation methods to speed up
function startup has been proposed as the exploitation of
cross-compiling to achieve faster executable. For example,
in [32] the authors propose Faaslets, an isolation abstraction
that exploits WebAssembly to achieve good isolation and fast
function startup; they also propose an additional optimization
with a mechanism to restore from already initialized snap-
shots, thus improving platform throughput and tail latency.
In the proposed project Catalyzer [33] the authors propose
a serverless sandbox system to enhance function startup and
isolation. To provide fast startup, Catalyzer exploits a check-
point mechanism to skip initialization and a new OS primi-
tives to reuse the state of the running sandbox; this results in a
relevant reduction of the startup time of function invocations,
up to less to 1 millisecond in the best cases.

VIII. CONCLUSIVE REMARKS AND FUTURE WORK
In this work, we proposed TEMPOS a QoS-aware middle-
ware for serverless platforms which employs and coordi-
nates different QoS mechanisms provided by individual tech-
nologies. Leveraging on virtualized FaaS invocation stack
in the cloud continuum, TEMPOS is capable of properly
managing end-to-end QoS in terms of jitter, latency, and en-
queuing time. Therefore, to evaluate the validity of TEMPOS,
we presented a series of real testbeds to extensively assess
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the state-of-the-art implementation of a TEMPOS prototype.
The latter mainly exploit Linux real-time scheduling, a novel
MOM with differential priorities, and Time-Sensitive Net-
working (TSN) protocols as underlying system-level mecha-
nisms to apply TEMPOS QoS-aware abstractions (TEMPOS
QoS-aware topics) for QoS management.

The results show that TEMPOS strongly differentiates
workflows based on the assigned QoS level. Specifically,
TEMPOS allows the SQ workflow to maintain an end-to-
end latency that is 1 millisecond lower than the BQ work-
flow, throughout the isolated test. In addition, the SQ flow
maintains a stable latency of 3 ms even during concur-
rent testing, while the BQ averages 600ms under heavier
workloads.

QoS awareness is preserved across the entire invocation
stack with the delivery layer able to achieve nearly twice
the performance for event delivery leveraging SQ work-
flows compared to BQ workflows, even under concurrent
execution. Finally, the TEMPOS processing slice leverages
multiple invocation methods seamlessly, ensuring that higher
priority (SQ) workflows execute twice as fast as lower prior-
ity (BQ) workflows.

As future work, we are planning to integrate TEMPOS
with a novel resource orchestrator for the full cloud contin-
uum chain, e.g., up to 5G micro-datacenters and traditional
geographically distant cloud datacenters, able to fully handle
both network [34] and computing [35] resources. In addi-
tion, we aim to introduce new levels of QoS considering not
only latency and jitter differentiation but also semantic of
delivery and throughput while expanding support to resources
not considered in this work such as storage or hardware
accelerators.
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