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ABSTRACT Recently, vision transformers have been applied in many computer vision problems due to its
long-range learning ability. However, it has not been throughly explored in image compression. We propose
a patch-based learned image compression network by incorporating vision transformers. The input image
is divided into patches before feeding to the encoder and the patches are reconstructed from the decoder to
form a complete image. Different kinds of transformer blocks (TransBlocks) are applied to meet the various
requirements in the subnetworks. We also propose a transformer-based context model (TransContext) to
facilitate the coding based on previously decoded symbols. Since the computational complexity of the atten-
tion mechanism in transformers is a quadratic function of the sequence length, we partition the feature tensor
into different segments and conduct the transformer in each segment to save computational cost. To alleviate
the compression artifacts, we use overlapping patches and apply an existing deblocking network to further
remove the artifacts. At last, the residual coding scheme is adopted to get the compression performance for
variable bit rates. We show that our patch-based learned image compression with transformers obtain 0.75dB
improvement in PSNR at 0.15bpp than the prior variable-rate compression work on the Kodak dataset. When
using the residual coding strategy, our framework keeps good performance in PSNR and is comparable to
BPG420. For MS-SSIM, we get higher results than BPG444 across a range of bit rates (0.021 at 0.21bpp)
and other variable-rate learned image compression models at low bit rates.

INDEX TERMS Learned image compression, transformer, variable-rate.

I. INTRODUCTION
Recently, there has been a line of researches [1]–[8]
on deep image compression. The autoencoder approaches
[6]–[8] with the joint autoregressive and hierarchical hyper-
prior models have been the mainstream practice for
learning-based image compression. Although the above
methods show promising compression performance com-
pared with conventional image codecs, there are two main
drawbacks in real applications.

Firstly, a separatemodel needs to be trained for each bit rate
which increases the coding complexity. To this end, variable
bitrate image compression models [9]–[11] are developed to
cover various bit rates with one training model. In particular,
in [11], a layered coding scheme is developed, where the
base layer feature map is obtained by a deep learning (DL)
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network, and the residual between the input and the base
layer reconstruction is coded by a traditional method to cover
more bit rates. Motivated by [11], in this paper, we propose
a more effective learned image framework by incorporating
transformers in the base layer and apply the residual coding
to achieve compression across a range of bit rates with one
single model. In [11], only eight feature maps are used for the
compact representation which limits the learning capability
of the base layer. In our framework, a hyperprior network [12]
is adopted to estimate the distribution parameters of the quan-
tized feature representation so that the channel dimension
of the representation can be set larger in the base layer.
Experimental results show 0.75dB improvement in PSNR at
0.15bpp than [11]. When using the residual coding strategy,
our framework keeps good performance in PSNR and is
comparable to BPG420, whereas the performance in [11] is
lower than BPG420.
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Secondly, although the masked convolutional context
model in [6]–[8] enables to achieve better compres-
sion performance compared with the scale-only hyperprior
model [12], it brings in extra computational overhead because
of the sequential decoding process. Besides, the context infor-
mation is constrained into 5 × 5 windows. In this paper,
we leverage transformers to capture the long-range depen-
dency and use the masked multi-head attention module in
transformers in training to guarantee the causal relationship,
which is called TransContext model. Equipped with local
transformers, we divide the latent representation into seg-
ments. In each segment we conduct the transformer. Each
segment can thus be processed parallelly to reduce the total
decoding time.

In our framework, only local transformer blocks (Trans-
Blocks) are adopted since the computational complexity of
attention mechanism in transformers is a quadratic function
to the sequence length. Similar to [13], we divide the input
image into image patches. By this way the spatial size of
the input can be reduced and we can feed the patch features
to transformer blocks in the encoder. At the output of the
decoder, an image patch is reconstructed based on the infor-
mation from the local patch. All the patches are merged into a
complete image. This could produce the blocking artifacts at
the patch boundaries [14]. To alleviate these artifacts, we use
image patches with a small portion of overlaps as the input
to the network and average the values of positions where two
outputs are predicted. We find this strategy can improve the
compression performance to some extent. To further remove
the artifacts, a post-processing network [15] is applied.

When the network is designed with fully convolution
layers, the size of input image can be arbitrary. Previous
works use the entire image as input to the compression net-
work. Patch-based learned image compression has not been
explored. Although patch-based image compression methods
may result in blocking artifacts as in JPEG [14], it has its
advantages. In [16], the inpainting techniques are embed-
ded into the patch-based image compression framework to
improve the compression performance. In our work, image
patches are used as input to cope with the demanding compu-
tation resource for a high-resolution input to transformers.

Our contributions include: 1) We build an effective
patch-based learned image compression network with vision
transformers in the base layer based on [11] for the
variable-rate deep image compression. To alleviate the com-
pression artifacts resulted from patch reconstructions, we par-
tition the image patches with overlaps and utilize an existing
deblocking network to further remove the blocking artifacts.
2) Different kinds of transformer blocks are applied to meet
the various requirements in the subnetworks. 3) We propose
a transformer-based context model to facilitate the Gaussian
parameter predictions based on the previously decoded
symbols. It is performed on segments of the quantized
latent representation and thus can reduce the total decod-
ing time compared with the masked convolution context
model in [6].

The rest of the paper is organized as follows. In Section II,
we discuss some related work on learned image compression
and transformers in vision applications. Then we introduce
our framework and explain the building blocks. Experimental
results on the Kodak dataset and discussions are presented in
Section IV. Section V concludes the paper.

II. RELATED WORKS
A. LEARNED IMAGE COMPRESSION
Many learned image compression models are proposed with
the prevalence of DL techniques applied in various research
fields. Some researches study learning-based image com-
pression in specific scenarios. In [17], a discrete wavelet
transform based DL model is proposed for internet of under-
water things. [18] presents a compression model using the
convolutional neural network for remote sensing images.

In this paper, we focus on deep image compression for nat-
ural RGB images. In [12], a hyperprior network is proposed
to learn the scale parameters of the Gaussian scale mixture
model for the entropy model. The hyper latent is transmitted
as side information to help decode the main latent. However,
the estimation is not image-dependent and spatially adaptive
after trained. In [6]–[8], themain latent representation ismod-
eled by Gaussian distribution with parameters learned from
the context and prior information. The context model allows
to combine the information from the neighboring decoded
symbols and thus giving a more accurate prediction. It has
been the classic learned image compression method due to its
superior PSNR and MS-SSIM performance compared with
previous works.

In [8], non-local blocks are embedded in the encoder and
decoder networks to learn the long-range dependency. How-
ever, the self-attention mechanism results in non-negligible
computational cost which imposes restrictions to the com-
pression framework design. Based on this joint architecture,
recently a new framework that combines the octave convo-
lutions is applied in [19] and achieves higher results than
VVC (4:2:0) and other DL-based image compressionmodels.
Later works extend the single Gaussian probability model
in [6] to Gaussian mixture model (GMM) [20], [21] and show
better compression efficiency. In [21], a joint optimization
of the image compression and quality enhancement model
is applied. The loss at the output of compression network
acts as an intermediate supervision and the output of the
quality enhancement model is the final reconstruction. The
post-processing technique is commonly employed in previ-
ous codec JPEG [22] to remove the compression artifacts.

1) VARIABLE-RATE LEARNED IMAGE COMPRESSION
In [23], [24], variable-rate image compression models are
proposed based on convolutional and deconvolutional LSTM
recurrent networks. In [25], four code layers including a base
layer and three enhancement layers are adopted to construct
the scalable image compression framework. A decorrelation
unit is utilized to obliterate redundancy between the base
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FIGURE 1. Our proposed deep image compression model in the base layer. The input image x is divided into patches with a size of
3 × n × n. Patches are flattened to vectors to formalize a 3D tensor as input to the main encoder. The main decoder outputs a 3D
tensor and the vector at each spatial position is reshaped to a 3 × n × n patch. The patches are merged to the reconstructed image.

layer and the current enhancement layer. During inference,
the output of each layer corresponds to the reconstruction at
certain bitrate. These methods rely on the layered architec-
tures to adjust for the variable bitrate and are not flexible to
obtain a specific rate target. In [9], a multi-scale decompo-
sition transform is learned and a rate allocation algorithm is
used to determine the optimal scale of each image block based
on content complexity given a target rate. In [10], the authors
apply bit-plane decomposition before the transform and intro-
duce a bidirectional network to disentangle the information of
different bit-planes. However, the performance of [9] and [10]
still has a large gap from the state-of-the-art. In [26], a set
of scaling factors is embedded on the quantized feature map
from a high bit-rate pre-trained model to fine-tune for the low
bit-rate one while keeping main parameters fixed. For low
bit rates far from the bit rate of the pre-trained model, the
performance is not satisfactory. In [27] a conditional autoen-
coder is proposed with a coarse rate control by the Lagrange
multiplier and a fine-tuning parameter by the quantization
bin size. The fine-tuning process is conducted on intervals
between individually trained models. Therefore, to get the
compression results for a wide range of bitrates, it is still
required to train discrete multiple models.

In [11], [28], [29], a hybrid architecture that combines a
learning based model and conventional codec is proposed.
The BPG-based residual coding is applied as the enhance-
ment layer to obtain compression results for the subsequent
bit rates. However, only eight feature maps are used for
the compact representation in [11] which limits the learning
capability of the base layer. Based on this, we build a more
effective model for the base layer.

B. TRANSFORMERS IN VISIONS
Attention mechanisms are widely applied in DL mod-
els for speech processing and computer vision

problems [20], [30]–[32]. Transformers [33] with multi-head
attentions have become predominant DL models for natu-
ral language processing (NLP). Due to the ability to learn
long-range interactions on sequential data, recently trans-
formers are migrated to many computer vision tasks such
as image classification [13], object detection [34], seg-
mentation [35] as well as the low-level computer vision
task [36]. However, purely using transformers instead of
convolution layers requires to pre-train on a very large-scale
dataset and it consumes a vast of time to train [13] to get
comparable or even better performance than convolutional
networks. Other works integrate convolution layers and trans-
formers to improve results based on similar computation
complexity [34], [35], [37].

In [38], transformers are applied on the convolutional
feature maps and followed by convolutional decoder to syn-
thesize high-resolution scene images. It leverages the autore-
gressive structure of transformers to predict current index
based on previous indices. This property also suits for the
context model in entropy coding module in image compres-
sion. In [38], the standard transformer layers are applied.
In our work, different transformer modules are developed.
In addition, we apply transformers in local windows and
symbols in each window can be decoded parallelly, which
compensates the expensive time cost from the context model
in [6]–[8].

III. OUR APPROACH
We propose an effective learned image framework by incor-
porating transformers in the base layer and apply the residual
coding [11] to achieve compression across a range of bit
rates. No previous work on vision transformers is proposed
for variable-rate image compressionmodels. Our patch-based
framework along with the post-processing step performs bet-
ter in the base layer than other baselines with residual coding

VOLUME 10, 2022 50325



B. Li et al.: Variable-Rate Deep Image Compression With Vision Transformers

FIGURE 2. The encoding and decoding process of the overall framework.
‘‘Base layer’’ is the proposed deep image compression model in Fig. 1.
‘‘· · · ’’ represents the decoder part in the base layer.

scheme [11], [28]. The encoding and decoding process of the
overall framework is given in Fig. 2. Next wewill elaborate on
the autoencoder image compression model in the base layer,
deblocking network and residual coding in the enhancement
layer separately.

A. AUTOENCODER NETWORK
The architecture of our proposed deep image compression
model in the base layer is given in Fig. 1. During training,
the input image is randomly cropped with the resolution of
256×256 . Given a 2D image x ∈ RH×W , the sequence length
is H × W , where H and W are the height and width of the
image. As the computational complexity of transformers is a
quadratic function of the sequence length, it is infeasible to
apply transformers on the entire image directly. We partition
the input image x into patches with a size of n×n. Each patch
can be flattened to a vector with the length of 3 n2. We have
H
n ×

W
n patches. Then each vector is projected to d dimension

where d is the channel size through the autoencoder network.
At this point, we obtain a tensor with X ∈ Rh×w×d , where
h = H

n and w = W
n . We reshape the tensor as X ∈ Rhw×d as

input of the main encoder network. At the output of the main
decoder, the vector at each spatial position is first mapped to
3 n2 dimension from d and then reshaped back to a 3× n× n
patch. All the patches are merged to a complete image.

Themain encoder and decoder consist of GeneralizedDivi-
sive Normalization (GDN) [39] layers, residual blocks (Res-
Blocks) [40] and transformer blocks (TransBlocks). GDN
layers are suited for Gaussianizing data from natural images.
ResBlocks are added to extract local information to compen-
sate the transformer blocks that focus more on long-range
dependency. We will introduce the TransBlocks in detail in
Sec. III-A1 below.

In Fig.1, we denote the output of the main encoder as y and
it is followed by a quantizerQ to obtain the quantized latent ŷ.
Note that ŷ has the same spatial size as X with h × w since
no downsampling is needed for the main encoder network.
Similar to [12], the latent ŷ is modeled with the Gaussian
distribution and a hyperprior network is applied to predict
the Gaussian parameters µ and σ 2. The hyper-encoder and
decoder contain three types of TransBlocks. The output of
the hyper-encoder is denoted as z and ẑ after quantization.
The context model is called TransContext which will be
detailed in Sec. III-A2. The output of context model E ′ is then

FIGURE 3. The original transformer block in [33].

concatenated with the output from the hyper-decoder E ′′ to
predict the parameters µ and σ 2 for ŷ. We use the arithmetic
encoding AE and arithmetic decoding AD to encode and
decode the latent ŷ and hyper-latent ẑwith predicted Gaussian
distribution.

The loss function of the compression model is:

Lcomp = R+ λD

= (Ex∼px [−log2pŷ|ẑ(ŷ|ẑ)]
+ Ex∼px [−log2pẑ(ẑ)])+ λD (1)

where the first two items are the bitrate loss for the latent ŷ and
hyper-latent ẑ, and the last item D is the distortion function
between the original image x and reconstructed image x̃. λ is
the tradeoff between the distortion and bitrate. The distor-
tion D can be the mean square error (MSE) loss optimized
for peak signal-to-noise ratio (PSNR) or multi-scale struc-
tural similarity index measure (MS-SSIM) loss optimized for
MS-SSIM [41].

The MSE loss is given below.

DMSE =
1
N

∑ ∑
‖x − x̃‖2 (2)

where N is the number of elements. The PSNR is calculated
by 20log10

255
√
DMSE

. The final compression loss optimized

withMSE in our experiment is L = R+0.003×2552×DMSE
for the base layer.

The PSNR metric is commonly used as the quality assess-
ment for image reconstruction. However, it does not aim for
perceived quality. MS-SSIM is a complementary metric to
evaluate the structural similarity between two images [41].

The MSS-SSIM is calculated as

MS-SSIM(x, x̃) = blM (x, x̃)cαM
M∏
j=1

bcj(x, x̃)cβjbsj(x, x̃)cγj

(3)

M is the number of scales. lM (x, x̃), cj(x, x̃) and sj(x, x̃)
are luminance, contrast and structure comparison measures
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FIGURE 4. DownTransBlock and UpTransBlock illustration.

respectively [41]. αM , βj and γj are the relative importance
of the terms. The final compression loss optimized with
MS-SSIM in our experiment is L = R+ 8× (1−DMS-SSIM)
for the base layer.

1) TransBlocks
We explore to use transformer blocks to extract the
long-range information in the learned image compression
network. The original transformer block in [33] is given in
Fig. 3. One transformer block contains a multi-head attention
network and a point-wise feed-forward network.

We denote the number of heads as m. The input tensor X
is divided into m heads with di = d

m dimension for each head
(i = 1, 2, · · ·m). For a tensor Xi ∈ Rhw×di , the multi-head
attention process can be represented by a set of equations
below. hw is the sequence length and di is the vector dimen-
sion in ith head.WhenX is reshaped to a sequencewith length
of hw, the position information is lost. A positional encoding
module is added to provide spatial information at the input.

Qi = XiW T
Qi , Ki = XiW T

Ki , Vi = XiW T
Vi

Zi = Softmax(
QiKT

i
√
dk

)Vi

O(Q,K ,V ) = Concat(Z1,Z2, · · · ,Zm)W T
O (4)

where WQi , WKi , WVi and WO are weights for the linear
layers and

√
dk is a scaling factor. In the second equation,

Softmax is the softmax operation to get the attention scores.
In the third equation, the weighted vectors from each head are
concatenated as the final output. The attention here is referred
as multi-head self-attention (MHSA) mechanism as the three
items Q, K and V are obtained from the same input X .
The output of MHSA is then fed into the feed-forward

network (FFN) as

f (O(Q,K ,V ))=ReLU (O(Q,K ,V )W T
1 +b1)W

T
2 +b2 (5)

whereW1,W2 are the weights and b1, b2 are the bias of linear
layers. RELU is a ReLU activation layer.

Differing from [33] for machine translation tasks, the posi-
tional encoding module is based on 2D fixed sine function
for images. The periodic property of the sine function allows
to extend for longer sequence length. In addition, in order
to get a compact feature representation for an image and
reconstruct it after the decoder, the transformer blocks need
to be scalable for spatial size which is not required in [33]
for language modeling. We propose the DownTransBlock

FIGURE 5. Masked attention module in TransContext Model.

and UpTransBlock as depicted in Fig. 4 to meet the various
requirements in the architecture.

The regular TransBlock has the input and output with the
same spatial size similar to [13]. The DownTransBlock is
modified to get the output size reduced by a factor of 2 as
shown at first row in Fig. 4. The input tensor is divided into
4×4 blocks. Then we flatten each block to a vector and use a
convolution layer with 1×1 kernel size to reduce the channel
size to the same as the input tensor. Then the output tensor
is followed with the regular TransBlock. The UpTransBlock
is the inverse operation of DownTransBlock as shown at the
second row in Fig. 4. The DownTransBlock is applied in the
hyper-encoder network to obtain the compressed hyper-latent
ẑ and the UpTransBlock is used to transform back in order to
predict the Gaussian parameters for ŷ.
All the TransBlocks are conducted in local windows. Based

on the spatial size of the tensors, we use 8 × 8 window
size for the main encoder and decoder network. Each Trans-
Block contains N = 4 layers of MHSA and FFN. For the
hyper-encoder and decoder network, 4 × 4 window size is
applied. Each TransBlock contains N = 2 layers of MHSA
and FFN.

2) TransContext MODEL
In [6], the context model is a simple masked convolution
layer with 5 × 5 kernels. A symbol is decoded based on
previous decoded symbols above and to the left of the current
symbol in the window. However, the context information
is constrained to local windows. We propose to apply a
transformer-based context model which is called TransCon-
text to allow more context to be used for prediction.

During training, we use masked multi-head attention mod-
ules [33] in the TransContext model to allow the network
to back-propagate for gradient calculation. Fig. 5 gives an
illustration of the masked attention module for a tensor with
the input size of 2× 2× d . The mask shown in the figure has
0s at and below the diagonal direction. The values above the
diagonal direction are set to negative infinite.

Given an input from the quantized feature representation ŷ,
we first flatten the tensor and pad it with a vector with all 0s
at the beginning. For the current symbol (upper right value of
the input), the output of the corresponding position (second
vector) only depends on the first vector and padded 0s. In the
softmax operation, the product of q and k is added with the
mask so that the values corresponding to 0s in the mask will
not change and the values above the diagonal direction will
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be negative infinite. Note that the softmax of negative infinite
is 0. By this way, each symbol only uses the information
of previous decoded symbols during test. The output is then
sent to the FFN. The last linear layer outputs a tensor with
channel size of 2d and it is then combined with output from
the hyper-decoder network to predict for the µ and σ 2 of
Gaussian distribution.

In implementation, given a feature representation ŷ ∈
Rh×w×d , we divide ŷ by 2 in each spatial direction to obtain
segments with h

2 ×
w
2 × d size. In each segment, we apply

the TransContext model for inference in parallel. The
TransContext model also contains N = 4 layers of MHSA
and FFN.

B. DEBLOCKING NETWORK
As in Sec. III-A, given an image x, we use image patches
as the input in order to leverage the transformer blocks in
the autoencoder network. During reconstruction, each vector
is reshaped to form an image patch. The patches from all
positions are merged to a complete image x̃. Experiments
show that the restored image contains some blocking artifacts
at the patch borders. This is because each vector only uses
the local information in the last linear layer and the edge
values for the adjacent patches cannot keep consistency in
the prediction. We show two examples in Fig. 6. In (a), the
reconstruction is based on non-overlapped image patches,
whereas in (b) the image patches are overlapped by two
pixels and the overlapping areas are averaged by the neigh-
boring patches. We find that (b) actually has less artifacts
than (a).

Although it can reduce some artifacts by using the method
in Fig. 6 (b), it is insufficient for image compression where
blocking noise can result in PNSR or MS-SSIM degradation.
Motivated by [42] that a network is developed to post-process
the compression artifacts in JPEG [14] for a better compres-
sion performance, we apply the model in [15] to enhance the
image reconstruction quality. The decompressed image x̃ is
fed into the deblocking network as shown in Fig. 2 to obtain
the deblocking image x̃d . Different from previous work [42]
and [31] where only the MSE loss is used during training in
accordance with the JPEG optimization metric, we train the
deblocking network with MSE or MS-SSIM loss between the
deblocking image x̃d and the original image x depending on
the optimization method of the image compression network.
An example result after applying the deblocking network is
shown in Fig. 6 (c).
The deblocking process does not increase the bitrate,

as when we complete the training process, the reconstructed
image from the image compression network can be improved
by using one feed-forward step from the deblocking network.
It can also be trained jointly with the image compression
network end-to-end. However, it will increase the model
complexity which makes it hard to train the model on one
GPU card. Therefore, in our experiment, we train the two
networks separately.

FIGURE 6. Examples of blocking artifacts for patch-based reconstruction:
(a) non-overlap, (b) overlap, (c) overlap+deblock. (please zoom in).

C. RESIDUAL ENCODING FOR VARIABLE RATE
Current learned image compression networks achieve the
state-of-the-art compression performance but they need to
train a separate model for each bit rate. In variable-rate image
compression, a single model is trained to get results for a
range of bitrate. The fine-tuning trick may reduce the total
training time but can only be applied by a trained model from
a high bit rate to a close low bit rate. For low bit rates far from
the bit rate of the pre-trained model, the performance drops
dramatically [26].

Similar to [11], we use the BPG444 codec 1 to encode and
decode the residual between the reconstructed image x̃d from
the deblocking network in Sec. III-B and the original image
x as an enhancement layer as shown in Fig. 2. The bit rate of
BPG codec is controlled by a quality parameter q. The total bit
rate for our framework is the addition of the bitrate R from the
base layer in Eq. 1 and the bitrate Rbpg from this enhancement
layer controlled by q.

IV. EXPERIMENTS
A. DATASET AND TRAINING DETAILS
1) DATASET
Since for the learned image compression model, the input
and the ground truth image are the same, no extra labels
are needed for the training. In fact, prior work conduct
experiments on different training dataset. We use a subset
of 40k images from the COCO-2014 set [43] as the training
set and compare the results on the popular Kodak PhotoCD
dataset 2 and Berkeley Segmentation Dataset (BSD) 100 test
dataset [44].

2) TRAINING SETTING
We randomly crop each image by 256×256 during training.
The learning rate is set to 0.00003 for the image compression
network. We find that a higher learning rate makes it hard for
the training to converge. The training lasts 300 epochs and we
reduce the learning rate by 0.1 after 180 epochs. We set the
batch size as 20. The learning rate for the deblocking network
is set to 0.0001. The training lasts 80 epochs and we reduce
the learning rate by 0.5 after 40 and 60 epochs. The batch
size is set to 8. We experiment on the Pytorch framework [45]
and use one TITAN X GPU for the training with the Adam
optimizer.

1http://bellard.org/bpg
2http://r0k.us/graphics/kodak/
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FIGURE 7. (a) PSNR/bpp and (b) MS-SSIM/bpp on the Kodak dataset.

B. EXPERIMENTAL RESULTS
1) RESULTS ON KODAK DATASET
Fig. 7 shows the comparison of our results with conven-
tional codecs (JPEG [14], JPEG2000 [22], BPG420 and
BPG444) and learned variable-rate image compression mod-
els Cai2018 [9], Zhang2019 [10], Akbari2020 [11] and
Fu2021 [28] on the Kodak dataset in terms of PSNR and
MS-SSIM for per bit per pixel (bpp). Our approach can
achieve comparable PSNR with BPG420. The first point in
the R-D curve actually reflects the influence of the proposed
compression model in the base layer in Fig. 1. Our result in
the base layer achieves 0.75dB higher than Akbari2020 and
1.7dB higher than Fu2021 at 0.15bpp in which BPG444 is
also applied for the residual coding.

For MS-SSIM in (b), we have better performance at the
base layer (first point at 0.21bpp) than Akbari2020 and
Fu2021. Compared with BPG444, we get 0.021 higher at
0.21 bpp. However, as the bitrate increases, our MS-SSIM
result saturates to that from BPG444 which is similar to
Fu2021. The MS-SSIM of our method shows better perfor-
mance than the traditional codecs and Zhang2019. It also

FIGURE 8. (a) PSNR/bpp and (b) MS-SSIM/bpp on the BSD100 dataset.

outperforms Cai2018 at low bit rates. Our approach does
not show advantages for MS-SSIM at high bit rates as the
residual coding with the classic codec BPG is not optimized
for MS-SSIM. However, the residual coding strategy can
provide an effective as well as simple way for variable-rate
image compression.

2) RESULTS ON BSD100 DATASET
The methods Cai2018, Zhang2019 and Akbari2020 only
show results on Kodak dataset. We also compare our results
with JPEG, JPEG2000, BPG420 and BPG444 and the
learned variable-rate image compression model Fu2021 on
the BSD100 dataset as given in Fig. 8. The overall trend
is consistent to that on Kodak dataset and it shows that the
trained models can generalize well.

3) ABLATION TEST: NON OVERLAP vs. OVERLAP
We experiment on two different partition schemes which
we call non-overlap and overlap on Kodak dataset as
shown in Fig. 9. For non-overlap, we set the patch size
with 16 × 16 . For overlap, the patch size is 18 with

VOLUME 10, 2022 50329



B. Li et al.: Variable-Rate Deep Image Compression With Vision Transformers

FIGURE 9. Ablation study of our framework.

TABLE 1. Ablation test for TransBlocks and TransContext modules
optimized with MSE loss at 0.15bpp.

TABLE 2. Results on different channel size for d in transformers.

a stride of 16. The overlapping areas are two pixels in
each direction. With the same λ in Eq. 1, the calculated
bit rate for non-overlap is less than overlap at the base
layer. After using the BPG residual coding, overlap (green
curve) show generally better PSNR performance than non-
overlap (blue curve). For non-overlap, only the local infor-
mation is used to construct each patch in the last linear
layer and the edge values for the neighboring patches
could have a large variance. For overlap, the inconsis-
tency is averaged to reduce the blocking artifacts as shown
in Fig. 6 (b).

4) ABLATION TEST: TransBlocks AND TransContext
To prove the effectiveness of the TransBlocks and TransCon-
text, we experiment to delete them respectively and keep the
remaining parts of the model same. Tab. 1 shows the results
with MSE optimization at 0.15bpp without the deblock-
ing post-processing. The first row shows the result without
the TransContext model. The second row gives the result
without the TransBlocks in the main encoder and decoder.
We show the result for the model with both modules in the
third row.

Compared with convolutional layers where the respective
field size is constrained by the kernel size, TransBlocks can
extract long-range dependency from the feature tensor. When

combined with the ResBlocks, our model extracts the local
and global information to optimize the compression loss.
The TransContext model allows to predict the Gaussian
parameters from previously decoded symbols which con-
tributes to a more accurate probability estimation for the
arithmetic coding. Tab. 1 shows that both the Trans-
Blocks and TransContext can help improve the compression
performance.

5) ABLATION TEST: DEBLOCKING NETWORK
The deblocking network is applied after we get the recon-
structed results from the mean decoder. We get about 0.2dB
improvement in PSNR and 0.001 in MS-SSIM for overlap
after the deblocking network. The PSNR curve is displayed
with the red curve in Fig. 9.

6) ABLATION TEST: FEATURE SIZE IN TRANSFORMERS
In the above experiment, we set the channel dimension
d = 512. This can better maintain the information from a
patch. We experiment on a smaller channel dimension with
d = 256. It shows that d = 512 can achieve higher PSNR
and MS-SSIM at less bit rate as given in Tab. 2. Therefore,
we use 512 as the channel dimension for other experiments.
The PSNR with d = 512 after residual coding (green curve)
is steadily better than that with d = 256 (black curve) at
various bit rates as shown in Fig. 9.

C. TIME COMPLEXITY
We discuss the running time of our framework for inference
on a E5-2620 v4 CPU (2.10GHz) with 128GB RAM. The
most time consuming part of the model is the context model
which needs to be decoded sequentially from previously
decoded symbols. For main encoder and decoder networks,
it takes about 0.05 s and 0.04 s for one forward step. For the
hyper-encoder and hyper-decoder networks, the running time
is 0.01 s and 0.01 s. The hyper-latent ẑ can be encoded and
decoded in parallel. The decoding time for one position is
around 0.04s. In [6] the latent ŷ can only be decoded one by
one and it takes h × w times of forward steps of the entropy
model. In our framework, the transformer is applied on the
local windows with size h

2 ×
w
2 and the forward steps is

reduced by 1
4 when decoding parallelly. The running time for

onewindow is around 177s. Note that the arithmetic coding in
our experiment is not optimized .3 Since different platforms
may affect the time elapse, we also test the original context
model with a masked convolution layer (5×5 kernels) on this
device. The running time is about 240s, which takes longer
than our scheme.

D. EXAMPLES
In Fig. 10 and Fig. 11, we show reconstructed examples from
different methods. In Fig. 10, the results in (e) and (f) show
more clear lines on the sail nevertheless blurry human faces.

3https://github.com/nayuki/Reference-arithmetic-coding
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FIGURE 10. Reconstructed example from different methods(bpp, PSNR, MS-SSIM).

VOLUME 10, 2022 50331



B. Li et al.: Variable-Rate Deep Image Compression With Vision Transformers

FIGURE 11. Reconstructed example from different methods(bpp, PSNR, MS-SSIM).
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The results in (b) and (c) contain more detailed features on
human faces. This is because the results in (e) and (f) are
obtained from the model in the base layer trained with
MS-SSIM loss. As the MS-SSIM loss focuses more on over-
all structures, the MS-SSIM in (e) and (f) are higher than
BPG444, whereas the PSNR in (e) and (f) are relatively
low.

At higher bit rate in Fig. 11, the visual difference is not
that significant. The MS-SSIM in (f) is slightly better than
BPG444 in (d) with less 0.04bpp. Note that in (e) and (f),
due to the residual coding scheme based on BPG which is
optimized with MSE, the results in (e) and (f) also have high
PSNR values. The wall texture on the left in (a) obtained with
BPG420 method is not well restored. The corner between
the roof and wall contour on the left in (d) is blurry. In both
figures, our results are improved when adding the deblocking
modules compared with that from the model optimized with
the corresponding loss.

V. CONCLUSION
We propose to incorporate vision transformers into a
variable-rate learned image compression framework. Differ-
ent transformer blocks are applied tomeet the various require-
ments in the subnetworks. Compared with other variable-rate
learned image compression networks, our framework can
get higher PSNR across a range of bit rates and MS-SSIM
performance at low bit rates. Ablation experiment shows the
effectiveness of the proposed TransBlocks and TransContext
model. We also experiment on two different image patch
strategies and show that the overlap partition achieves bet-
ter compression performance than the non-overlap partition.
At last we discuss the time complexity of our model and it
can reduce the inference time for the autoregressive context
model.

When applying vision transformers, the sequence length
which is the number of image patches in our framework
associates with the computation cost. More layers of the
transformer block can be added and explored if the sequence
length can be further reduced. In the future work, we may
mask out some of the patches and apply image inpainting
techniques to fill the masked patches at the decoder.
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