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ABSTRACT For fluoroscopic imaging, flat-panel dynamic detectors can acquire X-ray image sequences
with frame rates higher than 300 frames per second. However, the sequentially acquired images have artifacts
due to the lag signals, which are caused from trapping charges in the amorphous structure and incomplete
reads. Furthermore, the lag signal lowers the noise power spectrum (NPS) of the detector; hence, the detector
performance can be inflated. Conventional approaches for correcting the measured NPS are based on the lag
correction factor (LCF). Various LCF measurement methods have been developed based on moving average
and auto-regressive models. Current methods require high computational complexities with many images.
In this paper, we first review the current methods and next propose three LCF measurement methods in
simplified forms under an autoregressive model of order 1 based on the temporal periodogrammean and line
means. Here, we suggest schemes that deal with several disturbances, such as nonuniform temporal gains
and exposure leaks, to accurately measure LCF. A comparative review of the LCF measurement methods
can establish a taxonomy of measurements. Through extensive experiments using X-ray images acquired
from dynamic detectors, it is shown that the proposed methods yield comparable performances with lower
computational complexities compared to the existing methods.

INDEX TERMS Auto-regressive model, flat-panel dynamic detector, lag correction factor, lag signal,
moving average model, periodogram, power spectral density, X-ray image.

NOMENCLATURE
a Parameter in AR(1).
D, R Line mean difference and ratio.
fMA,n, fAR,n Signals with lag for MA(L) and AR(1).
f̄MA,n, f̄AR,n Decaying signals with lag and leak.
f̂MA,n, f̂AR,n Decaying signals for pulse x-rays.
gn, ḡn Independent and decaying signals.
h` Causal system for MA(L).
If , Jf Spatial and temporal periodogram mean.
L Order of the MA model.
N Number of image frames.
NPSf Noise power spectrum of f .
qn Signal with nonuniform temporal gain.
rAR Lag correction factor for AR(1).
rMA Lag correction factor for MA(L).
U2 Number of pixels per image.
uo Position of the x-ray off at n = 0.
α, ν Frame gap and the signal per pixel period.

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

1q Image difference for the U-L scheme.
γn Nonuniform temporal gain.
µ,µε Means of g and the exposure leak.
ρ` Pearson correlation coefficient of fMA,n.
φ` Unit step function.

I. INTRODUCTION
For fluoroscopic imaging, dynamic detectors can acquire
X-ray image sequences with frame rates higher than
300 frames per second (fps). In flat-panel (FP) dynamic
detectors [1] with amorphous Si or amorphous In-Ga-Zn-O
(a-IGZO) thin-film transistor (TFT) panels [2], [3], trap-
ping charges in the amorphous structure and incomplete
reads yield lag signals to the subsequent exposed image
frames [4]–[6]. Afterglows at the scintillator layer can also
cause lag signals, which is usually much less than the case
of trapping charges [7]. Because the main cause of the lag
signals is incomplete reads, we can observe near constant
lag signal magnitudes even when the frame interval is as
small as 3ms. Sequentially acquired image frames have lag
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artifacts, which appear in the form of temporal blurring and
ghosting [8], [9]. The lag signals also affect diagnostic com-
puted tomography (CT) and cone-beam CT reconstruction
[10]–[12] in producing various lag artifacts. Hence, research
has been conducted to solve various problems related to the
lag signals [13], [14].

Noise properties of radiography detectors from photon
and electric noise can be evaluated by measuring the noise
power spectrum (NPS) [15]–[17], which is the power spec-
tral density (PSD) of X-ray images acquired under speci-
fied irradiation conditions with uniform intensity [18]–[22].
However, the lag signal lowers the NPS curve; hence, the
detector performance can be inflated. A correction technique
for the measured NPS should be developed to determine the
true detector noise performance. Conventional approaches
for correcting the measured NPS are based on using the lag
correction factor (LCF) [16], [23]–[27]. Designing detectors,
which produce weak lag signals, is also important to reducing
the lag artifacts. Accurately measuring the degree of lag
signal strength can be a guideline for improving the lag
performance [26], [27] by observing the effect of changes in
incident doses, frame rates, readout circuits, TFT panels, and
other possible factors. The LCF value has the maximal value
of 1 if there are no lag signals. By measuring the LCF for a
given dynamic detector, we can also evaluate the degree of
lag signal strength.

In the literature, several LCF measurement methods have
been proposed based on two types of linear lag models:
the moving average and autoregressive models. The cur-
rent methods can use the first moments, such as the mean,
or the second moments, such as the variance, including the
correlation and temporal PSD from acquired X-ray image
frames [28, p. 296]. Here, the first and second moments can
be obtained from transient decaying after the X-ray turns off
and steady-state frames, respectively. The image frames can
be obtained from a continuous X-ray with a constant potential
generator [29, p. 301], [30, p. 14] through a continuous
fluoroscopy mode or from a pulsed X-ray with switching
through a pulsed fluoroscopy mode [29, p. 307] to reduce
motion blurring [31, p. 322].

Matsunaga et al. [23] considered an autoregressive model
of order 1 (AR(1)) [22, p. 787], [32, p. 886] to describe
the lag signals in imaging systems. Subsequently, they pro-
posed two measurement methods; the first one uses a cor-
relation between two consecutive images, and the second
one uses a mean ratio of fully exposed to the next non-
exposed image. This ratio is commonly used to specify a
lag performance for dynamic detectors in percent. Based on
a moving average model of order L (MA(L)) [22, p. 788],
[32, p. 886] several methods have been proposed as follows.
Busse et al. [16], [25] considered a temporal periodogram
mean to calculate the LCF based on the temporal PSD. This
method is recommended in the IEC62220-1-3 standard [16].
However, in calculating PSD, various disturbances can distort
the measured values. For example, in acquiring image frames
under an X-ray source, the gains of image frames can be

non-uniform because of inconsistent detector readout circuits
as well as X-ray source. Hence, this nonuniform temporal
gain (NTG) should be corrected to accurately estimate LCF,
particularly when using PSD [25], [26], [33]. Furthermore,
the PSD method has the disadvantage of using a lot of
images (64 -128 images). Granfors and Aufrichtig [24] pro-
posed a measurement method that uses the block means of
frames acquired under the pulsed X-ray source. However,
the IEC62220-1-3 standard recommends using a continuous
X-ray source to control the X-ray quality [16]. Kim and Lee
[26] proposed an extendedmethod from the correlation-based
method ofMatsunaga et al. to a scenario of theMA(L) model,
where a series of correlations are employed. To extend the
Granfors-Aufrichtig method to the continuous X-ray source,
Kim and Lee [27] proposed several methods based on line
means.

In this paper, we first analyze and compare the existing
LCF measurement methods based on the MA(L) and AR(1)
models. Through the analyses and comparisons, we can pre-
dict various characteristics of the LCF values measured using
existing methods. We next propose three LCF measurement
methods in simplified forms based on the AR(1) model from
the notions of the temporal periodogram mean [25] and line
means [27]. The proposed methods can simply measure the
LCF values by obtaining a single parameter from several
images for the AR(1) model with performances comparable
to those of the MA(L) model. To alleviate the NTG problem
for the approach of PSD as well as correlations, we use
a correction scheme called the upper-lower (U-L) scheme
based on a notion of image difference [17], [26], [34]. A gate
line scan of the TFT array is performed for an FP X-ray
detector to read out charges from photodiodes of pixels [35],
[36]. Leak currents can be generated and accumulated even
when the TFT gates are off due to various conditions, such
as incident light photons entering the TFT gates [35], [37],
[38]. The leak current can produce crosstalk artifacts [35],
[39] in radiography imaging and distort themeasured LCF for
the methods that are based on the line means [27]. For such
methods, a technique for the exposure leak compensation is
also considered in this paper.

The remainder of this paper is organized as follows.
In Section II, we formulate the NPS and define two different
LCF formulations. In Section III, we review the existing LCF
measurement methods based on the MA(L) and AR(1) mod-
els. Subsequently, we propose three simple methods based
on the AR(1) model in Section IV. Experimental results for
dynamic detectors and discussions are presented in SectionV,
and the paper is concluded in the last section.

II. NOISE POWER SPECTRUM AND LAG CORRECTION
FACTORS
In this section, we first formulate the NPS of a detector and
next derive two formulations of LCF for the MA(L) and
AR(1) models, respectively.

The NPS of noise can provide amounts of photon, electric,
and fixed pattern noises of a dynamic detector [16]. The NPS
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FIGURE 1. Linear lag models in fluoroscopic imaging. (a) Moving average
model of order L (MA(L)). (b) Autoregressive model of order 1 (AR(1)).

values of a detector can be measured using the Fourier trans-
form of the auto-covariance function of an image signal [19].
For practical measures of NPS [20], [21], [32], we generally
use an empirical mean of periodograms [21, p. 112], [40],
[41], where the mean is an asymptotically unbiased estimate
of NPS [21].

For a sequence of uniformly exposed images, we consider a
weakly stationary sequence fn[u] with themean ofµ := E{fn}
and variance of Var{fn}, for the pixel position u of the nth
image frame, where u := (u1, u2) ∈ {0, · · · ,U − 1}2. Let If
denote the periodogram mean of fn defined as

If [v] := E

 1
U2

∣∣∣∣∣∑
u

(fn[u]− µ)WuTv
U

∣∣∣∣∣
2
 , (1)

for v ∈ {0, · · · ,U − 1}2, where uT implies the transpose of
vector u and WU := e−2π j/U [42, p. 235]. Let NPSf denote
the NPS of fn for the nth frame. We then obtain an asymptotic
relationship: If → NPSf , as U → ∞ [21]. For practical
measurements using the acquired fn, we can obtain If from a
smoothed periodogram of a samplemean of the periodograms
based on the Bartlett-Welch method [40], [41].

Because the lag signal in FP dynamic detectors acts as a
low-pass filter for the noise signals, measured NPS values
are lower than those of a detector that has no lag signals [23].
The detective quantum efficiency (DQE) values are inversely
proportional to the NPS values [16], [43, p. 311]. Hence, if we
use these lower NPS values, the DQE values can be increased;
in other words, the performance of a dynamic detector can
be inflated incorrectly. To evaluate the detector performance
correctly, we should correct the measured NPS values con-
sidering the effect of the lag signal. Relationships between
the true and measured NPS values can be asymptotically
obtained by calculating the periodogram means. Here, LCF
can successfully describe the relationships [24].

From the literature on the lag signals, we can summarize
two linear lag models: moving average and autoregressive
models. In this section, we define two different LCF formula-
tions depending on the lag models. The first lag model has a
form of the MA(L) model [22, p. 288], [24], [32] as shown in
Fig 1(a). For a pixel position u, let gn[u] denote a signal that
is independent and identically distributed. The MA(L) model
with a signal fMA,n is defined as

fMA,n[u] =
L∑
l=0

gn−`[u]h`, (2)

where h` is a causal system, such that
∑L
`=0 h` = 1 with

nonnegative h` [44]. Here, L is the order in theMA(L) model.
Let IfMA [v] and Ig[v] denote the periodogram means of fMA,n
and gn, respectively, and are defined in (1). The periodogram
means of the model in (2) satisfies IfMA [v] = rMAIg[v], where
rMA implies the LCF under theMA(L) model and is defined as

rMA :=
L∑
`=0

h2`. (3)

The LCF of (3) satisfies 0 < rMA ≤ 1 and thus IfMA [v] ≤
Ig[v] holds. By using this LCF, we can asymptotically
correct the measured NPS to obtain the true NPS from
NPSg[v] ≈ NPSfMA [v]/rMA.
The second linear lag model has a form of the AR(1)

model [22, p. 287], [32] as shown in Fig.1(b) which is consid-
ered byMatsunaga et al. [23]. The AR(1) model with a signal
fAR,n is then defined as

fAR,n[u] = afAR,n−1[u]+ (1− a)gn[u], (4)

where the parameter a satisfies 0 ≤ a < 1. From the
AR(1) model in (4), we can obtain a relationship of IfAR [v] =
rARIg[v], where rAR implies the LCF under the AR(1) model
and is defined as

rAR :=
1− a
1+ a

. (5)

Hence, the AR(1) model can simplify the measurement of
LCF using only one parameter a. The LCF in (5) also satisfies
0 < rAR ≤ 1, and thus IfAR [v] ≤ Ig[v] is similar to the
MA(L) scenario. By using this LCF, we can also asymptoti-
cally correct the measured NPS to obtain the true NPS from
NPSg[v] ≈ NPSAR,f [v]/rAR.
We now observe a relationship between the LCF values of

rMA and rAR. When h` = (1 − a)a` in the LCF of (3), Kim
and Lee [26] derived a relationship as

lim
L→∞

rMA
∣∣
h`=(1−a)a`

= rAR. (6)

For relatively small values of a, (1 − a)/(1 + a) ≈ (1 −
a)2 holds. In other words, we can obtain an approximation of
rMA ≈ rAR for L = 0. Hence, the first coefficient h0 = (1−a)
can be sufficient to calculate LCF, as Granfors and Aufrichtig
discussed [24].

III. LAG CORRECTION FACTOR MEASUREMENTS
Various measurement methods for LCF have been proposed
depending on the linear lag models and X-ray source types
as summarized in Table 1. We review the existing methods
in this section. We next introduce the AR1, AR3, and AR4
methods, which are listed in Table 1 as ‘‘Proposed’’ in the
following section.

In Table 1, MA1−MA5 are methods of measuring LCF
based on the MA(L) model and AR1−AR5 are based on
the AR(1) model. MA1, MA2, AR1, and AR2 use the
steady-state second moments [28, p. 296] of image frames
acquired from both continuous and pulsed X-ray sources.
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TABLE 1. Measurement methods for the lag correction factor (LCF) .

Here, signal variances or periodograms are used. The method
using steady-state image frames has the advantage that the
X-ray does not need to be stopped halfway. As the first
moment [28, p. 296] methods, where signal means are used,
MA3, MA4, AR3, and AR4 use the transient decaying image
frames acquired from the continuous X-ray source and MA5
and AR5 use the transient decaying image frames acquired
from the pulsed X-ray source.

A. MA1: TEMPORAL PERIODOGRAM METHOD FOR MA(L)
The MA1 method [16], [25] calculates a temporal peri-
odogram mean JfMA defined as JfMA = Jf |fn=fMA,n , where

Jf [k] := E

 1
N

∣∣∣∣∣
N−1∑
n=0

(fn[u]− µ)Wnk
N

∣∣∣∣∣
2
 , (7)

for k = 0, . . . ,N−1. The temporal periodogrammean JfMA is
an asymptotically unbiased estimate of the temporal PSD of
fMA asN increases. We can then obtain JfMA [k] = |Hk |

2 Jg[k],
where Hk is the discrete Fourier transform of h` and Jg is the
temporal periodogram mean of g in a similar manner to (7)
[32]. From the independence assumption on gn along n, Jg is
constant. BecauseH0 = 1, we obtain JfMA [k] = |Hk |

2JfMA [0],
where JfMA [0] is an estimate of the PSD of fMA at zero fre-
quency [45], [46]. Therefore, from Parseval’s theorem, the
LCF of (3) satisfies rMA = N−1

∑N−1
k=0 |Hk |

2; thus, the LCF
from MA1 can be expressed as [25]

rMA =
1
N

∑N−1
k=0 JfMA [k]

JfMA [0]
. (8)

Kim [47] suggested high-precision measurement methods
that can be used to estimate JfMA . In (8), JfMA [0] is the tem-
poral periodogram mean at zero frequency and is important
for calculating accurate LCF values because JfMA [0] is the
denominator of the LCF in (8). Menser et al. [48] interpolated
JfMA [0] from neighbor values. Kim [46], and Gonzales-Lopez
and Canpos-Morcillo [49] employed efficient detrending
schemes to obtain accurate zero-frequency PSD values.
Ji et al. [50] calculated a trend variance to alleviate the
influence of unpredictable trends. Kim and Lee [45] proposed
a high-precision estimate for the zero-frequency PSD.

B. MA2: TEMPORAL CORRELATION METHOD FOR MA(L)
The MA2 method [26] uses temporal correlation coefficients
between the same position pixels acquired at different times.

For appropriately measured correlations, MA2 can be insen-
sitive to various disturbances compared to MA1. Let ρ`
denote the Pearson correlation coefficient of fMA,n and be
defined as ρ` := Cov{fMA,0[u], fMA,`[u]}/Var{fMA,0[u]}, for
pixel positions u and ` = 0, . . . ,L. Kim and Lee [26] showed
that the LCF of (3) can be a function of ρ` as

rMA =
1

2
∑L
`=0 ρ` − 1

. (9)

Here, if ρ` = a`, then limL→∞ rMA
∣∣
ρ`=a`

= rAR holds [51].
Furthermore, for L = 1 and a relatively small a, 1/(2a+1) ≈
(1 − a)/(1 + a). Hence, we can obtain an approximation of
rMA ≈ rAR holds, where ρ0 = 1 and ρ1 = a. In a similar
discussion of (6), a parameter a can be sufficient to calculate
LCF even for the MA(L) model if a is relatively small.

C. MA3, MA4: LINE ESTIMATE METHODS FOR MA(L)
For the continuous X-ray source, Kim and Lee [27] pro-
posed line estimation methods, which are referred to as MA3
and MA4. Note that the IEC62220 standards recommend
using a continuous X-ray source to control the X-ray quality.
We assume that the X-ray tube turns off after reading the gate
line of u1 = uo, for u2 = 0, . . . ,U − 1, while the frame for
n = 0 is scanning. Let ḡn denote a lag-free image sequence
for the nth frame. For the frame of n = 0, the pixel ḡ0 of the
gate line of u1 satisfies

E {ḡ0[u]} = µ+
(
uo − u1

)
νφu1−uo−1, (10)

for u2 = 0, . . . ,U − 1. We can observe from (10) that
E{ḡ0[u]} linearly decreases after u1 = uo. Here, φ` is a unit
step function defined as φ` := 1, for ` ≥ 0 and 0, otherwise.
For the frame of n = 1, the image satisfies

E{ḡ1[u]} =
(
uo − u1

)
νφuo−u1 , (11)

for u2 = 0, . . . ,U − 1. For n ≥ 2, E {ḡn[u]} = 0 holds.
Based on the MA(L) model, let f̄MA,n denote the temporally
decaying image frames acquired from the continuous X-ray
source and be defined as f̄MA,n[u] :=

∑L
`=0 ḡn−`[u]h`. Kim

and Lee [27] proposed an algorithm to measure the LCF
based on a summation of squares of line-mean differences
using f̄MA,n. Light photons exposed into the TFT elements
can produce leak currents even when the gate is off [27] as
addressed in Appendix A. Crosstalk artifacts can be observed
from exposure leaks. For the LCF obtained based on the line
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mean difference, the exposure leak signal can distort the mea-
surement of LCF. In order to compensate for the leak signal,
themean of the exposure leak signal is subtracted.We call this
method MA3 [27]. Instead of the the line mean difference,
we can use a summation of squares of line-mean ratios. This
algorithm, which is called MA4, does not require any leak
compensation schemes. However, due to the empirical line
mean in the denominator, the estimate precision of MA4
can be worse than that of MA3 especially at relatively low
doses [27].

D. MA5: GRANFORS-AUFRICHTIG METHOD FOR MA(L)
The MA5 method [24] uses block means of image frames for
the pulsed X-ray source. Let f̂MA,n denote the acquired image
frames as f̂MA,n[u] :=

∑L
l=0 ĝn−l[u]hl based on the MA(L)

model. Here, ĝn is defined as ĝn[u] := gn[u] for n ≤ 0, and
0 otherwise. From the LCF for the MA(L) model of (3), the
LCF is given as

rMA =
1
µ2

L∑
`=0

(
E
{
f̂MA,`[u]

}
− E

{
f̂MA,`+1[u]

})2
. (12)

E. AR2, AR5: MATSUNAGA METHODS FOR AR(1)
TheMatsunagamethods [23], which is referred to as AR2 and
AR5, is based on the AR(1) model, where a single parameter
a is sufficient to calculate the LCF of rAR from (5).
MA2 uses the L correlation coefficients of ρ` based on

MA(L). In contrast, for the AR(1) model, the first correlation
coefficient is sufficient to obtain a parameter for the LCF
calculation from (5) as

a =
Cov

{
fAR,0, fAR,1

}
Var

{
fAR,0

} . (13)

We term this method, which calculates the LCF using a
in (13), AR2. Note that correlation methods for MA(L) and
AR(1) are MA2 and AR2, respectively.

For the AR(1) model, let f̂AR,n denote the transient decay-
ing image frames. f̂AR,n is then defined as f̂AR,n[u] =
af̂AR,n−1[u]+(1−a)ĝn[u] and is acquired for the pulsed X-ray
source. The LCF rAR can then be calculated using (5). Using
block means from fAR,n, parameter a can also be obtained as

a =
E
{
f̂AR,1

}
E
{
f̂AR,0

} . (14)

We term this method AR5. In (14), the frame f̂MA,0 is obtained
when the X-ray is fully exposed to a pulsed X-ray source and
f̂MA,1 is obtained when the X-ray turns off.

Generally, the parameter obtained using (14) is used to
indicate the detector lag performance for the first frame in
percent. However, the method for obtaining the parameter
a using (14) can be applied for the pulsed X-ray source.
In measuring the block means of (14), the exposure leak
signal is not produced because the readout process does not
run during the X-ray exposure from the pulsed X-ray source.

FIGURE 2. Decaying line means from two transient image frames when
the X-ray tube turns off at u = uo of n = 0 in an FP dynamic detector.
When the X-ray is exposed to the TFT elements the exposure leak signal
yields a mean of µε (Appendix A).

IV. SIMPLE METHODS BASED ON THE
AUTO-REGRESSIVE MODEL
In this section, we propose three LCF measurement methods
based on the AR(1) model in order to reduce computational
complexities. The basic characteristics of the proposed meth-
ods are classified in the place marked ‘‘Proposed’’ in Table 1.

A. AR1: TEMPORAL PERIODOGRAM METHOD FOR AR(1)
We propose an LCF measurement method based on a tem-
poral periodogram under the AR(1) model. We calculate the
temporal periodogram mean for the AR(1) model in a similar
manner to JfMA . Let JfAR denote the temporal periodogram
mean of the AR(1) signal fAR,n of (4). From Appendix B,
we can obtain

rAR =
JfAR [1]
JfAR [0]

. (15)

In (15), JfAR [0] and JfAR [1] are the periodogram values of
consequent two images fAR,0 and fAR,1 for N = 2 in (7).
Hence, by calculating only these two values, we can simply
measure the LCF value from (15) based on the AR(1) model.
Note that MA1 requires images as many as N = 64− 128 to
calculate LCF from (8). We call this method AR1, which is
summarized as follows.
AR1 Method (Temporal Periodogram):

1) Calculate the temporal periodogram means JfAR,n [0] and
JfAR,n [1] using (7).

2) Determine rAR based on AR(1) using (15).

Note that the LCF value of the existing MA1 in (8) can-
not be equal to that of AR1 in (15) for any N . This fact
implies that the proposed AR1 is not a special case of the
existing MA1.

B. AR3: DIFFERENCE OF THE LINE MEANS FOR AR(1)
Using the line means, we propose a measurement method
based on the AR(1) model in a similar manner to MA3.
We consider a transient decaying AR(1) model f̄AR,n for the
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FIGURE 3. Example of the proposed AR3 method based on the line
means for the AR(1) model. The measured LCF values are 0.9414 and
0.9385 without µε subtraction.

continuous X-ray source as

f̄AR,n[u] = af̄AR,n−1[u]+ (1− a)ḡn[u], (16)

where the mean of ḡn is defined in (10) and (11). For the
image frames of n = 0 and 1, the line means with respect to
the horizontal gate scan u1 are given as E{f̄AR,0[(u1, u2)]} +
µεφuo−u1 and E{f̄AR,1[(u1, u2)]}, respectively. as illustrated
in Fig. 2. Here, the frame of n = 0 contains the leak signal
µεφuo−u1 (Appendix A). Without lag signals, the line mean
becomes zero after uo of n = 1 as the dotted line in Fig. 2.
However, due to the lag signals, the line mean does not reach
zero immediately.

Using the two line means of Fig. 2, let D denote the line
mean difference defined as

D(u1) := E
{
f̄AR,0[(u1, u2)]

}
+ µεφuo−u1

−E
{
f̄AR,1[(u1, u2)]

}
, (17)

for u1 = 0, . . . ,U − 1. Note that the line means are inde-
pendent of u2. From Appendix C, D of (17) can be rewritten
as

D(u1) =


(1− a) [µ+ (u1 − uo)ν]+ µε,

for u1 = 0, . . . , uo − 1,
(1− a) [µ+ (1− a)(uo − u1)ν] ,

for u1 = uo, . . . ,U − 1.

(18)

An example of D is illustrated as ‘‘D’’ in Fig. 3, where D can
be described with two linear polynomials. The intersection of
the left polynomial, which is subtracted by µε , and the right
polynomial occurs at u1 = uo. Therefore, a can be given as

a = 1−
D(uo)
µ

(19)

and rAR can be calculated using (5). Here, subtracting the
exposure leak mean µε from the left polynomial implies a
leak compensation. We call the LCF measurement from (19)
AR3 and summarize the method as follows.
AR3 Method (Line Mean Difference):
0) For a signal mean µ, obtain the leak mean µε

(Appendix A).

1) Calculate the line means and obtain the difference D
of (17).

2) Conduct linear fitting to obtain linear polynomials.
3) Determine uo from the intersection of the left polyno-

mial with µε subtraction and the right polynomial, and
obtain a from (19). rAR can then be obtained using (5).

Note that the proposed AR3 uses a line-mean difference of
two images instead of complicated summations of squares of
line-mean differences of the MA3 case. Hence, the computa-
tional complexity of AR3 is much lower than the MA3 case.

In the example of Fig. 3, by subtracting the leak mean
µε from the left polynomial, the intersection is uo =
1, 312 and the LCF is 0.9414. However, without considering
the leak mean, the intersection is 1, 306 and the LCF slightly
decreases to 0.9385. Hence, in AR3, the LCF value, which is
obtained without the leak compensation, is less than the true
LCF value.

C. AR4: RATIO OF THE LINE MEANS FOR AR(1)
Similar to MA4, the line mean of n = 1 can be divided by the
line mean of n = 0 to obtain the LCF for the AR(1) model.
Let R denote the line mean ratio and be defined as

R(u1) :=
E{f̄AR,1[(u1,u2)]}

E{f̄AR,0[(u1,u2)]}+µε ·φuo−u1
, (20)

for u1 = 0, . . . ,U − 1. From Appendix C, (20) can be
rewritten as

R(u1) =

 [aµ+ (1− a)(uo − u1)ν]/(µ+ µε),
for u1 = 0, . . . , uo.

a, for u1 = uo + 1, . . . ,U − 1.
(21)

An LCF measurement method, which is called AR4, can be
summarized as follows.
AR4 Method (Line Mean Ratio):
1) Calculate the line means and obtain the ratio R of (20).
2) Conduct a linear fitting for R to obtain a. rAR can then

be calculated using (5).
An example of the proposed AR4 method is illustrated

in Fig. 4. The intersection between the linear polynomials
occurs at 1, 311, which is close to uo = 1, 312 of AR3 as
shown in Fig. 3. Hence, we can approximetely obtain the
X-ray off position uo from the intersection in AR4. Note
that AR4 does not require the leak compensation in a similar
manner to MA4 and has a lower encoding complexity than
the MA4 case. However, as mentioned in Subsection III-C,
empirical estimates of the denominator of (20) can worse the
LCF estimate precision especially at low doses compared to
the AR3 case.

V. RESULTS AND DISCUSSIONS
In this section, we first introduce the experimental results of
the LCF measurements for an FP detector. A dynamic detec-
tor of DRTECHCo. Ltd. (www.drtech.co.kr) was used, where
the a-IGZO TFT panel with a-CsI(TI) scintillator controlled
the photodiodes. X-ray raw image frames were acquired
under the continuous fluoroscopy mode at frame rates of
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FIGURE 4. Example of the proposed AR4 method based on the line
means for the AR(1) model. The measured LCF value is 0.9403.

10 fps and 30 fps under the RQA5 condition of IEC62220-1-3
for the continuous X-ray source. We next discuss several
issues on measuring LCF values.

A. EXPERIMENTAL RESULTS
With respect to different incident doses, Figs. 5 and 6 show
the LCF values measured using the eight measurement meth-
ods of MA1-MA4 and AR1-AR4 including the proposed
AR1, AR3, and AR4. In this experiment, we did not consider
MA5 and AR5, which require the pulsed X-ray source. The
mean values of the measured LCF values over the doses are
summarized in Table 2, where the LCF values are similar to
the values introduced in the literature [23]–[27], [52]. For
10 fps, the mean LCF values for the MA(L) and AR(1)
models were r = 0.9364 and r = 0.9398, respectively.
The methods MA3, MA4, AR3, and AR4, which are based
on line means, provided consistent LCF values for a wide
range of doses and decreasing values at low doses as shown in
Fig. 6.MA2 andAR2, which are based on variances, provided
constant LCF values for all doses. However, MA1 and AR1,
which are based on temporal periodogram means, do not
show consistent values over the doses.

B. NONUNIFORM TEMPORAL GAIN CORRECTION
In calculating Jf of (7) for MA1 and AR1, various distur-
bances, such as NTG, can distort LCFmeasuring. To describe
NTG, we introduce a weakly stationary random sequence γn
with mean E{γn} = 1 and variance Var{γn}, and modify the
image model of (2) considering NTG as [26], [33]

qn[u] := γnfn[u], (22)

where qn is a signal with NTG, and γn is independent of the
pixel values fn. In the NTGmodel of (22), we assume that the
variance of γn is significantly smaller than the mean of γn,
i.e., 1� Var{γn}. Hence, we can obtain an approximation of
1+Var{γn} ≈ 1. Under the assumption of 1� Var{γn} [17],
from (7) and Appendix D, we can obtain an approximation of
the temporal periodogram mean of qn as

Jq[k] ≈ Jf [k]+ µ2Jγ [k], (23)

FIGURE 5. Comparisons of the LCF measurements for 10 fps.
(a) Comparison of MA1-MA4 for the MA(L) model. (b) Comparison of
AR1-AR4 for the AR(1) model.

where Jq and Jγ are defined in a similar manner to Jf
using (7). In (23), Jq has a bias of µ2Jγ , which is due
to the NTG of γn and is proportional to the square of the
signal mean µ. Although Jγ is relatively small, because the
signal mean µ is practically large, the bias µ2Jγ cannot be
negligible. Hence, the bias prevents accurate measurement
of Jf from the acquired X-ray images qn. Low frequencies
of k , Jγ [k] in particular can indicate large values; thus, the
resultant LCF value can be significantly lower than the true
LCF [26].

To reduce the bias from NTG [26], [27] for a given
n, we can estimate the gain γn from a conditional mean
E{γnfn[u] | γn} = γnµ and, by dividing the nth frame
by the gain γn, we can directly correct the NTG of γn
[25]. Instead of this direct NTG correction, which is a divi-
sion of γn, we can use the notion of image differences as
described by Kim [17], and Kim and Lee [51]. Note that
this signal-difference approach can alleviate both nonuniform
gains and offsets [53].

For an image q with U × U pixels, the image difference
1q between the upper and lower pixels can be calculated as

1q[u] :=
1
√
2

[
q[u]− q

[
u+

(
0,
U
2

)]]
, (24)

for u ∈ {0, · · · ,U − 1} × {0, · · · ,U/2 − 1}. The image
difference 1qn, which is defined as 1qn := 1q|q=qn , has
a mean of zero because the mean of the upper image part is
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TABLE 2. Mean values of the measured LCF values of Figs. 5 and 6 over the doses.

FIGURE 6. Comparisons of the LCF measurements for 30 fps.
(a) Comparison of MA1-MA4 for the MA(L) model. (b) Comparison of
AR1-AR4 for the AR(1) model.

equal to that of the lower image part within an image frame.
In other words, the signal mean of µ in (23) becomes zero;
hence, the temporal periodogram mean J1q can approximate
the temporal periodogram mean Jf of (7). Therefore, we can
obtain an accurate LCF based on the image difference of (24)
independent of NTG γn. Here, we assume that pixels that are
separated by U/2 pixels are mutually independent as the α-
mixing (or m-dependent) condition [28, p. 387]. We call this
preprocessing approach of (24) the U-L scheme.

In calculating the correlations for MA2 and AR2, the
NTG of (22) can also distort correlation measuring. Using
the acquired image qn, the measured correlation coefficient
is given as Cov{q0, q`}/Var{q}. Here, from the law of total
covariance,

Cov{q0, q`} = (1+ Cov{γ0, γ`})Cov{f0, f`}

+µ2Cov{γ0, γ`} (25)

holds with a bias of Cov{γ0, γ`}(Cov{f0, f`} + µ2). Hence,
we cannot accuratelymeasure the LCF of (9) by using the cor-
relation coefficients obtained using qn. Under the assumption
of 1 � Var{γn}, the bias term in (25) can be approximated

FIGURE 7. Comparisons of the NTG correction using the U-L scheme.
(a) Comparison of MA1 and MA2 for the MA(L) model. (b) Comparison of
AR1 and AR2 for the AR(1) model.

as µ2Cov{γ0, γ`}. Here, the U-L scheme can be used to
eliminate the µ2 value and thus the bias µ2Cov{γ0, γ`}.
The measured correlation coefficient is then expressed as
Cov{1q0,1q`}/Var{1q0} using the difference 1qn of (24).
Here, Cov{1q0,1q`} = Cov{f0, f`} and Var{1q0} ≈
Var{f0} hold. Therefore, by using the U-L scheme, the LCF
value can be accurately estimated from MA2 or AR2. In cal-
culating the covariances, their offsets should be removed [26],
[33]. Using conditional covariances in estimating the corre-
lations, we can also efficiently alleviate the NTG problem
without any preprocessing [33].

The comparison results for the NTG correction are illus-
trated in Fig. 7. If we did not apply any gain correction
schemes, such as ‘‘MA1’’ and ‘‘MA2’’ in Fig. 7(a), the esti-
mate accuracies were lowwith respect to the dose because the
lowest LCF value, r = 0.6403, was significantly lower than
the mean LCF values summarized in Table 2. Applying the
U-L scheme to alleviate the NTG problem yielded relatively
acceptable estimate accuracies as ‘‘MA1 (U-L correction)’’
and ‘‘MA2 (U-L correction)’’ in Fig. 7(a). The estimates of
the LCF using the AR1 and AR2 methods are illustrated in
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FIGURE 8. Comparisons of the leak compensations. (a) Comparison of
MA3 and MA4 for the MA(L) model. (b) Comparison of AR3 and AR4 for
the AR(1) model.

Fig. 7(b). For AR1 and AR2, it seems that the LCF estimates
were less sensitive to NTG because conducting the NTG cor-
rection by applying the U-L scheme does not yield evidently
different LCF values. Hence, we can obtain reliable LCF
values using the AR1 and AR2 methods without carefully
considering various disturbances compared to the cases of
MA1 andMA2. As Fig. 7(a) shows, theMA1method without
the U-L scheme yielded lower LCF values compared to the
other cases.

C. LEAK COMPENSATION
In the MA3 method, applying the leak compensation to
correct the exposure leak can remove the increased signal
mean and thus provide accurate LCF values. The comparison
results for the leak compensation are illustrated in Fig. 8.

We first observe an effect on the leak compensation for the
MA3 method from Fig. 8(a). MA3 uses line estimates, which
are compensated for the exposure leak and then normalized
using a signal mean square. If we did not apply the leak
compensation, which is the subtraction of µε , for the MA3
method as ‘‘MA3 (no leak compensation)’’ in Fig. 8(a), the
estimate curve has a considerable deviation from the leak
compensation case of ‘‘MA3’’ in Fig. 8(a). Hence, MA3
should consider the leak compensation using the exposure
leak mean to obtain accurate LCF values. On the other
hand, MA4 uses a non-uniformly normalized line estimate,
where any information on the exposure leak is not required.

FIGURE 9. Example of the temporal periodogram mean at a low incident
dose of 35nGy with 30 fps.

Experimental results on MA4 are compared with those of
MA3 as ‘‘MA4’’ in Fig. 8(a). We can observe that, for rela-
tively high doses, the results of MA3 and MA4 are very sim-
ilar. Hence, we can obtain reliable LCF values from the MA4
method without carefully considering leak signals. However,
for relatively low doses, MA4 shows some deviations from
the LCF values of MA3.

We next observe an effect of the leak compensation for
the proposed AR3 and AR4 methods. The estimates of LCF
from the AR3 and AR4 methods are shown in Fig. 8(b).
The LCF estimates with the leak compensation (‘‘AR3’’) is
definitely higher than that without the compensation (‘‘AR3
(no leak compensation)’’). However, it seems that the LCF
estimates are less sensitive to leaks because conducting the
leak compensation does not indicate evidently different LCF
values as much as those in Fig. 8(a). For AR4, it does not
seem to follow the trend of AR3. In particular, AR4 exhibits
relatively lower LCF values compared to the AR3 case at low
doses. However, the LCF estimates of AR4 are greater than
those of AR3 without the leak compensation for most doses.
Although the proposed AR4method does not require any leak
compensation, the proposed AR3 method can be employed
to obtain further accurate LCF values for a wide range of
incident doses.

D. LCF MEASURED AT LOW DOSES
We now observe the measured LCF values at low incident
doses. At relatively low doses, the measured LCF values
exhibit different trends depending on whether the first or
second moment is used. The MA1, MA2, AR1, and AR2
methods, which are based on the second moments, yield
consistent LCF values with those of other doses (Figs. 5, 6,
and 7). However, for relatively low doses as shown in Fig. 9,
both the dark and white temporal periodogram mean curves
exhibit increasing curves rather than generally constant or
decreasing curves. Hence, the estimates from the methods of
the second moment can be inaccurate because the increasing
spectrum of the dark images can affect the total spectrum.
In contrast, MA3, MA4, AR3, and AR4, which are based on
the first moments, yield LCF values that hardly change for
a wide range of doses, as Granfors [6] and Hunt et al. [54]

VOLUME 10, 2022 49109



E. Lee, D. S. Kim: Linear Lag Models and Measurements of Lag Correction Factors

FIGURE 10. Comparison of the estimate precisions for the LCF
measurement methods.

mentioned, and they exhibit slightly decreasing values at low
doses [27] (Figs. 5, 6, and 8). Starman et al. [14] introduced
an exposure-dependent lag model, where the mean lag signal
increased as the exposure decreased. Busse et al. [25] also
observed a similar estimate curve from 0.94 to 0.89 as the
incident dose decreased.

E. MEASUREMENT PRECISIONS
Fig. 10 shows a comparison of the estimated precisions for the
LCF methods by conducting 10 iterations and calculating the
empirical mean and standard deviation values. If the standard
deviation-to-mean ratio is small, then the estimate precision
is high [27].

The methods measured with the steady-state second
moments (MA1, MA2, AR1, and AR2) yield better preci-
sions at a low dose of 53.7 nGy than those of the transient
first moments (MA3, MA4, AR3, and AR4). However, the
methods obtained using the transient first moments yield
higher precision for a wide range of incident doses such
as 447 nGy than those of the steady-state second moments.
We can observe from Fig. 10 that the proposed AR1 method
exhibits lower precisions than MA1, where both methods
use the temporal periodogram mean. However, because AR1
can use only two frames, i.e., N = 2, while N = 64 or
N = 128 for theMA1method, the proposed AR1method can
significantly reduce the computational complexity. In order
to improve the estimate precision of AR1, we can calculate
multiple LCF values for multiple pairs of images and con-
duct their averaging. The proposed AR3 and AR4 methods
exhibit high estimate precisions similar to MA3 and MA4
for a wide range of doses. However, the estimate precision
of AR3 is better than that of AR4 at relatively low doses as
shown in Fig. 10. Note that the proposedmethods can provide
low computational complexities similar to the AR1 method
because of the simple lag model of AR(1).

VI. CONCLUSION
In this paper, we first summarized and analyzed current
lag correction factor (LCF) measurement methods consid-
ering the two linear lag models: the moving average and
autoregressive models. Based on the moving average model,

FIGURE 11. Pixel photodiode and a readout circuit with TFT. The TFT and
exposure leak signals are produced due to light photons.

using steady-state image frames, MA1 considers a temporal
periodogram mean, and MA2 uses the temporal correlation
coefficients. These methods are sensitive to the non-uniform
temporal gain (NTG). To alleviate the effects of NTG,
we could use the U-L scheme. MA5 uses the block means of
the temporally decaying image frames after the X-ray turns
off for the pulsed X-ray source. MA3 and MA4 uses line
estimation methods to extend MA5 to the continuous X-ray
source. Here, MA3 requires an exposure leak compensation.
Based on an autoregressive model, AR2 and AR5 use a
correlation coefficient and mean ratio, respectively. We next
propose three LCF measurement methods as in simplified
forms for the autoregressivemodel based on the notions of the
temporal periodogram mean and line means. The proposed
methods can simply measure the LCF values by measuring a
single parameter for the autoregressive model of order 1 with
performances comparable to the methods of the moving aver-
age model. Using steady-state image frames, we can use
the proposed AR1 method, which is based on the temporal
periodogram mean. If decaying image frames after the X-ray
tunes off are available, we can use the proposed AR3 or AR4
methods, which can provide high-precision estimates based
on line means. Here, AR3 method requires an exposure leak
compensation.

APPENDIX A: LEAK SIGNAL MEANS
The readout circuit with TFT is illustrated in Fig. 11. We can
consider following types of leak signals concerned with the
photosensitive TFT switch.
• TFT leak signal
• Exposure leak signal

The TFT leak signal is formed from a charge leakage of
charged photodiodes through TFT when the gate is off and
is dependent on the drain-source voltage or the amount of
charge that is integrated from the incident light photons at
the photodiodes as shown in Fig. 11 [35]. The a-IGZO TFT
can increase the mobility and decrease the leak current when
the TFT gate is off compared to the amorphous Si case
[37], [52], [55], [56]. However, a-IGZO TFT also suffers
from permanent or metastable changes in the gate voltage
shifts and thus produces TFT leak current due to environment
effects including exposure to light [37], [38]. The exposure
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leak signal is from the charges produced by TFT elements
by the incident light or UV photons to the TFT elements
as shown in Fig. 11. Hence, this leak signal is dependent
on the incident exposure strength and is independent of the
integrated charges of photodiodes. In order to reduce both
leak signals, a metallic light shield for the TFT gate can be
considered based on an inverted TFT structure [35]. Besides
the TFT and exposure leak signals, there are leak currents of
amorphous TFT from channel charge emission [39], [57].

For a continuous fluoroscopy mode under an x-ray tube
with a constant potential generator [58], a pixel integrates
charges during the image frame period of U + α pixels.
Hence, for a given pixel, the signal meanµ can be represented
as µ : = ν · (U+α) (DV, digital value), where ν (DV/pixel)
is a value yielded for a pixel period and is dependent on the
incident exposure [27].

We first consider the TFT leak signal. When scanning
pixels for a steady state image sequence, the connected
U − 1 photodiodes have increasing charges depending on the
gate line position u1. Thus, the accumulated signal value is
given as

ν

[
U+α−1∑
k=1

k −
α−1∑
k=1

(k + u1 + 1)

]
, (A 1)

for u1 = 0, . . . ,U − 1, and can be expanded as

ν

2
[(U + α)(U1 + α − 1)− (2u1 + α + 1)α]

=
ν

2
[U (U − 1)+ 2(U − u1 − 1)α] . (A 2)

Assume that each pixel produces a TFT leak ξT (1/pixel) per
signal mean. Letting µT [u1] denote the accumulated TFT
leak signal, we can obtain µT by multiplying the TFT leak
coefficient ξT to (A 1) as

µT [u1] := ξTµ
U (U − 1)+ 2(U − u1 − 1)α

2 (U + α)
. (A 3)

From (A 3), we can observe that the TFT leak signal is strictly
decreasing as u1 increases. Because limα→0 µT [u1] = ξTµ ·
(U − 1)/2, the TFT leak signal is constant over u1 if there is
no gap between image frames.

We now observe the exposure leak signal. Assume that an
exposed TFT element produces an exposure leak of ξε per
signal mean. The signal mean with the accumulated exposure
leak can then be given as

µε := ξεµU (A 4)

if U horizontal pixels are exposed to light. Hence, the signal
mean µf , which include both leak signals, can be written as

µf [u1] = µ+ µT [u1]+ µε . (A 5)

We now measure the leak coefficients ξT and ξε from
image frames with Pb plate shadows as in Fig. 12. From
the beginning of the second frame, we can observe an added

FIGURE 12. Measurements of the leak coefficients from the image frames
with Pb plate shadows [27]. The image frames are acquired from a
dynamic detector under the continuous fluoroscopy mode for the
continuous X-ray.

FIGURE 13. Leak coefficients ξT and ξε with respect to the signal mean µ
for various X-ray tube voltages. A CsI(Tl)-scintillator dynamic detector
(DRTECH Co. Ltd., www.drtech.co.kr) with 1,644× 1.652 pixels of a
98 µm/pixel pitch was used. The scan time for a pixel was 104.24 µs with
5 fps and the frame gap was α = 274.65 pixels.

leak signal from both TFT and exposure leak signals as
‘‘Exposure+TFT Leaks’’ and can be expressed as

ξT s(b)+ ξεµd(b), (A 6)

In (A 6), ξT s(b) can be obtained at ‘‘TFT Leak’’ in Fig. 12.
Here, s(b) is the accumulated mean values from the pixels,
which are connected to the corresponding data line and are
charged from the x-ray exposure of the right part, and is
given as s(b) :=

∑U−1
u1=a2 p(u1, b) at u2 = b. Hence, we can

obtain ξT . By subtracting ξT s(b) from (A 6), we can obtain
ξεµd(b). Here, d(b) is the number of exposed pixels that
are connected to the corresponding data line and is given as
d(b) :=

∑U−1
u1=a2 1. Hence, we can obtain ξε . Measured leak

coefficients are illustrated in Fig. 13.

APPENDIX B: TEMPORAL PERIODOGRAM FOR AR(1)
From (4) and (7), the temporal periodogram of fAR,n can be
expanded as

JfAR [0] = E
{
1
2
|(f0 − E {f0} + (f1 − E {f1})|2

}
= Var{fAR,0} + Cov{fAR,0, fAR,1} (B 1)

and

JfAR [1] = E
{
1
2
|(f0 − E {f0} − (f1 − E {f1})|2

}
= Var{fAR,0} − Cov{fAR,0, fAR,1}, (B 2)
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for N = 2. Hence, from the LCF of AR(1) in (5), we can
obtain (15).

APPENDIX C: LINE MEAN DIFFERENCE
The line mean of the frame of n = 0 is given as

E
{
f̄AR,0[u]

}
+ µεφuo−u1

= aE
{
f̄AR,−1[u]

}
+ (1− a)E{ḡ0[u]} + µεφuo−u1

= µ+ (1− a)(uo − u1)νφu1−uo−1 + µεφuo−u1 (C 1)

based on the AR(1) model of (16). In (C 1),µε is the exposure
leak mean [27] as shown in Fig. 2. The image frame of
n = 1 is f̄1[u], and its line mean is given as

E
{
f̄AR,1[u]

}
= aE

{
f̄AR,0[u]

}
+ (1− a)E{ḡ−1[u]}

= aE
{
f̄AR,0[u]

}
+ (1− a)(uo − u1)νφuo−u1 , (C 2)

where E
{
f̄AR,0[u]

}
can be obtained using (C 1). Hence,

from (C 1) and (C 2), we can obtain the line mean difference
D of (18). Note that the line means can be estimated using the
sample means along data line u2.

APPENDIX D: BIAS FROM THE NONUNIFORM TEMPORAL
GAIN
For a weakly stationary sequence fn, consider a sequence
qn = γnfn[u], where γn is defined in (22). The tempo-
ral periodogram mean of qn is Jq[k] = E{N−1|

∑N−1
n=0

(γnfn[u]− µ)Wnk
N |

2
} and can be expanded as

Jq[k] = (1+ Var{γn})Var{fn}

+
2
N

[
N−1∑
`=1

N−`−1∑
n=0

0(n, n+ `) cos
(
2π

k`
N

)]
+µ2Jγ [k], (D 1)

where 0(n, n + `) := (1+ Cov {γn, γn+`})Cov {fn, fn+`}.
From the assumption that 1 � Var{γ }, we can obtain
approximations as (1+ Var{γn}) ≈ 1 and 0(n, n + `) ≈
Cov {fn, fn+`}. Hence, using (D 1) and the relationship of Jf
as

Jf [k] = Var{fn}

+
2
N

[
N−1∑
`=1

N−`−1∑
n=0

Cov {fn, fn+`} cos
(
2π

k`
N

)]
,

(D 2)

we can obtain an approximation of

Jq[k] ≈ Jf [k]+ µ2Jγ [k], (D 3)

where a bias term µ2Jγ [k] is produced from the NTG γn.
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