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ABSTRACT One of the main challenges facing the current approaches of speech emotion recognition is
the lack of a dataset large enough to train the currently available deep learning models properly. Therefore,
this paper proposes a new data augmentation algorithm to enrich the speech emotions dataset with more
sam Department, College of Computing and ples through a careful addition of noise fractions. In addition,
the hyperparameters of the currently available deep learning models are either handcrafted or adjusted
during the training process. However, this approach does not guarantee finding the best settings for these
parameters. Therefore, we propose an optimized deep learning model in which the hyperparameters are
optimized to find their best settings and thus achieve more recognition results. This deep learning model
consists of a convolutional neural network (CNN) composed of four local feature-learning blocks and a long
short-term memory (LSTM) layer for learning local and long-term correlations in the log Mel-spectrogram
of the input speech samples. To improve the performance of this deep network, the learning rate and
label smoothing regularization factor are optimized using the recently emerged stochastic fractal search
(SFS)-guided whale optimization algorithm (WOA). The strength of this algorithm is the ability to balance
between the exploration and exploitation of the search agents’ positions to guarantee to reach the optimal
global solution. To prove the effectiveness of the proposed approach, four speech emotion datasets, namely,
IEMOCAP, Emo-DB, RAVDESS, and SAVEE, are incorporated in the conducted experiments. Experimental
results confirmed the superiority of the proposed approach when compared with state-of-the-art approaches.
Based on the four datasets, the achieved recognition accuracies are 98.13%, 99.76%, 99.47%, and 99.50%,
respectively. Moreover, a statistical analysis of the achieved results is provided to emphasize the stability of
the proposed approach.

INDEX TERMS Speech emotions, deep learning, stochastic fractal search optimization, guided whale
optimization algorithm.

I. INTRODUCTION

Speech emotion recognition (SER) has received much atten-
tion in recent years [1], [2]. Although human emotions are
hard to characterize and categorize, research on machine
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understanding of human emotions is rapidly advancing. The
recognition of speech emotions usually includes extracting
paralinguistic features from speech. These features should
be independent of the speaker and lexical content of the
speech signal. Generally, the information embedded in speech
signals can be categorized into paralinguistic information
and linguistic information. Paralinguistic information refers
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to implicit features, such as the emotions harnessed in the
speech signal, which is the domain of SER [3]. On the other
hand, linguistic information refers to the context and meaning
of the speech signal, which is the domain of interest in speech
recognition.

To recognize the embedded emotions in speech, many dis-
tinguishing features can be extracted. These features include
spectral features, qualitative features, and continuous fea-
tures [4]. Many researchers have investigated the application
of these features in SER. On the other hand, other researchers
investigated the advantages and disadvantages of these fea-
tures; however, the best features that can be used for this task
cannot be identified easily. These features are usually referred
to as handcrafted features. The accuracy of these features is
relatively high; however, professional knowledge is required
for extracting these features. Consequently, deep learning is
introduced to model the extraction of high-level features from
lower-level features to save the efforts needed for extracting
the handcrafted features [5].

Currently, deep learning approaches are employed to solve
many critical problems. The strength of deep learning comes
from its ability to learn high-level features. Therefore, many
researchers have introduced these approaches to recognize
speech emotions based on many deep learning architectures.
These architectures could achieve reasonable accuracy for
the task of SER. However, more efforts are still required to
improve the recently achieved performance [6], [7].

Deep learning greatly improved the performance of speech
signal processing frameworks. Excellent results are achieved
by researchers in this field based on the application of con-
volutional neural networks (CNNs), deep belief networks
(DBNs), and long short-term memory (LSTM) [8], [9].
Special processing is required for speech signals to model
their time-varying nature. Therefore, LSTM is more suit-
able to extract the long-term contextual dependencies in the
input speech. One of the most effective features that can
be used in SER is time-frequency decomposition, which is
represented by a spectrogram. These features are proven
to give significant recognition accuracy compared to using
the raw speech signal when used to train deep learning
frameworks [10].

The hyperparameters of deep learning models affect their
performance to a certain extent. The selection of proper val-
ues of these parameters usually forms a challenge in utilizing
deep learning models for different tasks. Recently, many opti-
mization techniques have emerged to optimize the parameters
of various models. These optimization techniques include
particle swarm optimization (PSO) [11], whale optimization
algorithm (WOA) [12], gray wolf optimization (GWO) [13],
dipper throated optimization (DIP) [14], etc. In this research,
we adopted the WOA, as an example, for optimizing the
hyperparameters of the proposed deep learning model. Other
types of optimizers will be considered in the future perspec-
tives of this research.

There are many beneficial usages of SER in various appli-
cations that are based on the interaction between humans

49266

and computers. These applications include customer service,
speech synthesis, medical analysis, forensics, and smart edu-
cation. These applications highlight the significance of the
automatic recognition of speech emotions and the necessity
for achieving high recognition accuracy to realize these appli-
cations properly.

This paper presents an accurate approach for recog-
nizing speech emotions using an optimized deep learn-
ing model based on cascaded layers of CNN+LSTM and
stochastic fractal search guided whale optimization algorithm
(SFS-Guided WOA). The effectiveness of the proposed
approach is validated in terms of four standard speech
emotion datasets, namely, IEMOCAP [15], Emo-DB [16],
RAVDESS [17], and SAVEE [18]. In addition, the results of
the proposed approach are compared with the results achieved
by the other competing approaches in the literature to prove
its superiority. Moreover, statistical analysis is performed
to confirm the stability of the performance of the proposed
approach.

The structure of this paper is organized as follows. A litera-
ture review is presented in section II. The proposed approach,
along with the system architecture, is then explained in
section III. Section IV presents and discusses the results of the
conducted experiments. Finally, the conclusions and future
perspectives are given in section V.

II. LITERATURE REVIEW
Speech emotion recognition (SER) is addressed by many
researchers in the literature. In this section, we discuss some
of these research efforts focusing on their achievements.
Aharon et al. [19] employed a deep neural network to rec-
ognize speech emotions from paralingual information. This
deep network consists of convolutional and recurrent layers
to learn the inherent representations of speech emotions. This
approach utilizes the speech signal spectrogram to achieve
this goal. The processing of speech signals is performed
based on small segments with non-overlapping parts. This
approach was tested on the IEMOCAP dataset and achieved
recognition accuracy of 68% when the deep network was
combined with a high-complexity convolutional LSTM.
Jonathan et al. [20] proposed an improved approach based
on two machine learning approaches. They employed both
multitask machine learning and deep convolutional genera-
tive adversarial networks to generate a set of unlabeled data.
Using these approaches, they could leverage the size of the
speech emotions training corpus to 100 hours. This large cor-
pus could improve the performance of speech emotion classi-
fiers, and the achieved performance was better than that of the
baseline systems. The percentage of the achieved improve-
ment reached 43.88%, which competes with the methods.
Chen et al. [21] hypothesized that measuring deltas and
delta-deltas for customized characteristics not only retains
successful emotional information but also reduces the
impact of emotionally irrelevant variables, resulting in less
misclassification. Furthermore, SER is often plagued by
silent frames and emotionally meaningless frames. In the
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meantime, the attention mechanism has shown excep-
tional abilities in studying relevant feature representa-
tions for complex tasks. They considered using the Mel
spectrogram with deltas and delta-deltas as data to train
3-D attention-dependent convolutional recurrent neural net-
works (ACRNNS5) to learn discriminative features for SER.
Experiments on the Emo-DB and IEMOCAP corpora reveal
that the suggested method works well and achieves best-in-
class unweighted average recall.

Log-Mel spectrograms and high-level features are learned
from raw audio clips by Zhao et al. [22]. In this research,
the authors created a combined convolutional neural net-
work (CNN) with two branches, namely, 1D CNN and 2D
CNN. There are two stages in constructing the combined
deep CNN. The two designed architectures’ hyperparameters
are chosen using Bayesian optimization in training. After
designing and evaluating one 1D CNN and one 2D CNN
architecture, the two CNN architectures were combined after
removing the second dense layer. Transfer learning was added
to the training to help speed up the training of the com-
bined CNN. The first two CNNss to be trained were the 1D and
2D CNNs. The 1D and 2D CNN’s learned features were then
repurposed and converted to the combined CNN. The final
step was to fine-tune the merged deep CNN that had been
initialized with migrated functionality. Experiments show
that combining deep CNNs will significantly boost emotion
classification results when tested on two benchmark datasets.

Yenigalla et al. [23] suggested a phoneme-based and
spectrogram-based approach for speech emotion detection.
The phoneme sequence and spectrogram both preserve the
emotional content of expression, lost as it is translated to
text. They used various deep neural networks with phonemes
and spectrograms as inputs to conduct multiple experiments.
Three of these network architectures are discussed there,
and compared to state-of-the-art approaches on a comparison
dataset, they helped to achieve better precision. The phoneme
and spectrogram hybrid CNN model was the most reliable
model for understanding feelings on IEMOCAP data. Com-
pared to current state-of-the-art approaches, the average class
accuracy and the overall accuracy are improved.

Sarma et al. [24] used the IEMOCAP database to analyze
many DNN architectures for emotion recognition. First, they
contrast different function extraction front ends: they contrast
time-domain and frequency-domain with high-dimensional
Mel-frequency cepstral coefficient (MFCC) input (equiva-
lent to filter banks) approaches to learning filters as part
of the network. The time-domain filter-learning technique
gives them the best outcomes. The researchers then looked
at various methods for aggregating data throughout a speech.
They experimented with approaches that use time aggrega-
tion within the network and single label per utterance and
approaches that use a label that is replicated with each frame.
The best design they tried interleaves time-restricted self-
attention with time-delay neural network (TDNN) 4+ LSTM
and achieves a weighted precision of 70.6% percent, com-
pared to 61.8% achieved by the most promising method
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presented previously that was based on Fourier log-energy
input with 257 dimensions.

Latif ez al. [25] used a novel transition learning methodol-
ogy in cross-language and cross-corpus situations to enhance
the accuracy of SER systems. Compared to support vec-
tor machines (SVMs) and sparse autoencoders, deep belief
networks (DBNs) offer greater accuracy on cross-corpus
emotion detection than previous approaches on five different
corpora in three different languages. The results also show
that using many languages for training and only a small
portion of the target data in training will greatly improve
accuracy compared to the baseline, including for corpora with
few examples for training.

Zhao et al. [26] proposed two CNN+LSTM networks, one
1D CNN-+LSTM network, and one 2D CNN-+LSTM net-
work, to learn local and global emotion-related features from
speech and log-Mel spectrograms, respectively. The architec-
ture of the two networks is identical, with four local func-
tion learning blocks (LFLBs) and one LSTM layer in each.
LFLB is designed to learn local correlations and derive hier-
archical correlations, and it consists primarily of one convo-
lutional layer and one max-pooling layer. The LSTM layer is
used to learn long-term dependencies from the local learned
functions.

Sun et al. [27] presented a new algorithm that incorporates
both a sparse autoencoder and a method for focusing atten-
tion. The goal is to use an autoencoder to learn from both
labeled and unlabeled data and to use the attention function to
focus on speech frames with strong emotional content. Such
nonemotional speech frames can also be overlooked. Three
online databases with a cross-language system are used to test
the proposed algorithm. Compared to current speech emo-
tion detection algorithms, experimental findings reveal that
the proposed algorithm provides substantially more reliable
predictions.

Jiang et al. [28] suggested a feature representation extrac-
tion method based on deep learning from heterogeneous
acoustic feature groups that could include redundant and
irrelevant content, resulting in poor emotion recognition out-
put in their research. A fusion network is learned to jointly
learn the discriminative acoustic feature representation and
SVM as the final classifier after the informative features are
obtained. The proposed architecture increased recognition
efficiency by 64% compared to current state-of-the-art meth-
ods, according to experimental findings on the IEMOCAP
dataset.

Pandey et al. [29] provided an overview of deep learning
strategies for extracting and classifying emotional states from
speech utterances. They investigate the most commonly used
simple deep learning architectures in the literature. On the
two common datasets, Emo-DB and IEMOCAP, architectures
such as CNN and LSTM were used to measure the emo-
tion capture capability of various standard speech represen-
tations such as Mel-spectrograms, magnitude spectrograms,
and MFCCs. The experiments’ results and the reasoning
behind them have been discussed to determine which
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architecture and function combination is best for speech emo-
tion detection.

Meng et al. in [30] employed the bidirectional LSTM along
with CNN to recognize speech emotions. In addition, they
adopted the Mel-spectrogram features in the 3D space as the
main features used to train the CNN network. That model
was evaluated based on IEMOCAP and Emo-DB datasets.
Although the results achieved by this model are promising,
it lacks generalization, as the model performs well on the
training data; however, the performance is worse on the test
set.

Zhen et al. in [31] proposed a model composed of
CNN, BLSTM, and SVM for recognizing the speech emo-
tions based on log-Mel spectrogram features. The model is
evaluated on the IEMOCAP dataset and shows better per-
formance when compared with another approach in the lit-
erature. Despite the promising performance of the model,
it still needs to be evaluated using other datasets to show
its generalization capability. On the other hand, the study
presented in [32] showed the performance of various models
used in SER using six speech datasets. This study concluded
that the CNN+LSTM model performs better than the other
models for five out of the six datasets.

Lili Guoetal. [33] employed kernel extreme learning
machine (KELM) for classifying classes of speech emotions.
In this approach, a fusion of spectral features is used to
train the presented model. The evaluation of this model is
performed in terms of two datasets, Emo-DB and IEMOCAP.
However, the presented results show promising performance
on only one dataset, which means that the presented approach
lacks proper generalization. In addition, the authors con-
cluded that the fusion of the spectral features allows the
models to achieve higher classification accuracy.

Misbah et al. in [34] investigated the application of a deep
convolutional neural network (DCNN) to extract features
from the log-Mel spectrogram of the raw speech. The study
employed four datasets, IEMOCAP, Emo-DB, SAVEE, and
RAVDESS. The classification of speech emotions is per-
formed using four classifiers: SVM, random forest, k nearest
neighbors, and neural networks. The performance of these
classifiers is promising; however, no single classifier could
perform well on the four datasets. This indicates that these
classifiers lack generalization capability.

Sonawane et al. [35] demonstrated a deep learning
approach for speech emotion understanding. For the clas-
sification of emotions such as positive, negative, indiffer-
ent, disgust, and surprise, a multilayer convolutional neural
network is used with a basic K-nearest neighbor (KNN)
classifier. The combination of MFCC-CNN and the KNN
classifier performs better than the current MFCC algo-
rithm, according to experimental findings on a real-time
database obtained from the open-access social media site
YouTube.

Sajjad et al. [36] presented a new SER system focused on
Radial basis function network (RBFN) similarity calcula-
tion in clusters and the main sequence segment selection
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method. The STFT algorithm is used to transform the chosen
sequence into a spectrogram, which is then fed into the CNN
model, which extracts the discriminative and salient features
from the speech spectrogram. Additionally, to ensure pre-
cise recognition performance, CNN features were normalized
and fed to the deep bidirectional long short-term memory
(BiLSTM) for emotion recognition based on the learned tem-
poral information.

Kwon et al. [37] made significant contributions to
(1) improving SER precision in comparison to other methods
and (2) improving the complexity of the proposed SER
model. They suggest an artificial intelligence-assisted deep
stride convolutional neural network (DSCNN) architecture
based on the simple net approach to learn salient and dis-
criminative features from spectrograms of speech signals.
The hidden local features are learned in convolutional layers
rather than pooling layers, with unique strides to downsample
the feature maps, and fully connected layers are used to learn
the global features. This approach was based on a softmax
classifier for classifying speech emotions. On the RAVDESS
and IEMOCAP datasets, the proposed strategy improves the
overall accuracy by 4.5% and 7.85%, respectively.

Vryzas et al. [38] developed and tested SER based
on CNN. On consecutive time frames of continuous expres-
sion, emotion recognition is performed. The acted emotional
speech dynamic database (AESDD) is the dataset used for
training and analyzing the model and the techniques of
data augmentation. The AESDD is subjected to arbitrary
evaluations to act as a benchmark for human-level identifi-
cation performance. In terms of precision, the CNN model
outperforms the other models using SVM by 8.4%.

Ngoc-Huynh et al. [39] presented a multimodal approach
for recognizing speech emotions. The presented approach is
based on a multi-Level multi-head fusion (MLMHEF) atten-
tion mechanism, and recurrent neural network [44]. MFCC
features are utilized in the presented approach. Three datasets
are employed to evaluate the presented approach: IEMOCAP,
MELD, and CMU-MOSEI. Despite the promising perfor-
mance achieved by this approach, the performance varies
greatly depending on the tested dataset. Therefore, it can be
noted that this approach does not generalize well, based on
the presented results.

Orhan et al. [40] presented a model based on 3D
CNN+LSTM that an attention model guides. This model
follows the approach of deep end-to-end learning. The fea-
tures extracted from the speech signals to train the model are
Mel-frequency coefficients. The presented model is evaluated
using three datasets: RAVDESS, SAVEE, and RML. The
achieved results by this model are 96.18%, 87.50%, and
93.32%, respectively.

Turker et al. [41] developed a nonlinear multi-level feature
generation model is based on cryptographic structure. The
performance of that model is validated using four speech
emotion datasets, namely, RAVDESS, Emo-DB, SAVEE, and
EMOVO. The presented model achieved 87.43%, 90.09%,
84.79%, and 79.08% classification accuracy based on
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TABLE 1. Summary of the studies conducted on recognizing speech emotions.

these datasets, respectively, using a 10-fold cross-validation

strategy.
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Reference | Year | Methodology | Feature |  Dataset | Accuracy (%)
IEMOCAP 68.43
[21] 2018 ACRNNs Mel-spectrogram Emo-DB 7547
IEMOCAP 89.77
[22] 2018 Merged deep CNN Log-Mel spectrograms Emo-DB 9271
[23] 2018 | Multi-channel CNN | Spectrogram | IEMOCAP | 73.90
[24] 2018 | TDNN+LSTM | MFCC | IEMOCAP | 70.10
FAU-AIBO 77.15
IEMOCAP 61.32
[25] 2018 DBN eGeMAPS Emo-DB 78.51
SAVEE 68.12
EMOVO 80.11
IEMOCAP 89.16
[26] 2019 CNN+LSTM Log-Mel spectrogram Emo-DB 92.90
CASIA 83.30
[27] 2019 Sparse autoencoder Log-Mel spectrogram Emo-DB 89.70
IEMOCAP 69.50
[28] 2019 | Hybrid DNN | Heterogeneous | IEMOCAP | 64.00
IEMOCAP 50.05
[29] 2019 CNN +BLSTM MFCC + Spectrogram Emo-DB 8235
IEMOCAP 74.96
[30] 2019 ADRNN Log-Mel spectrogram Emo-DB 9078
[31] 2019 | CNN+BLSTM+SVM | Log-Mel spectrogram | IEMOCAP | 62.31
RAVDESS 65.67
[32] 2019 CNN + LSTM Mel Filter bank SAVEE 72.66
Emo-DB 69.72
. IEMOCAP 57.99
[33] 2019 KELM Spectrogram fusion Emo-DB 9245
RAVDESS 81.30
[34] 2020 DCNN + CFS + ML Log-Mel spectrogram IEMOCAP 83.80
SAVEE 83.80
Emo-DB 82.10
[35] 2020 | ICNN | MFCC | CASIA | 96.32
IEMOCAP 72.25
[36] 2020 RBFN+BiLSTM Spectrogram Emo-DB 85.57
RAVDESS 77.02
IEMOCAP 84.00
[37] 2020 DSCNN Spectrogram RAVDESS 30.00
[38] 2020 | CNN+SVM | Raw signal | AESDD | 69.20
IEMOCAP 76.98
[39] 2020 MLMHF-attention MFCC MELD 63.26
CMU-MOSEI 99.19
RAVDESS 96.18
[40] 2021 CNN+LSTM Composite features SAVEE 87.50
RML 93.20
RAVDESS 87.43
. Emo-DB 90.09
[41] 2021 SVM Twine-shuf-pat SAVEE 84.79
EMOVO 79.08
[42] 2021 | CNN+LSTM | MFCC | IEMOCAP | 79.52
RAVDESS 97.36
[43] 2022 StarGAN+DCNN Log-Mel spectrogram Emo-DB 91.06
SAVEE 92.97

A summary of the relevant milestones of SER in the liter-

ature is presented in Table 3. This summary is presented in
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terms of the year of the publication, the proposed methodol-
ogy, the type of features utilized in the research, the dataset
employed, and the achieved accuracy corresponding to each
dataset.

lll. PROPOSED METHODOLOGY

This section explains the proposed speech emotion recog-
nition (SER) methodology. The proposed approach con-
sists of a proposed data augmentation algorithm, a proposed
CNN+LSTM deep neural network, and a proposed optimiza-
tion approach using a stochastic fractal search-guided whale
optimization algorithm (SFS-Guided WOA) for optimizing
the parameters of the deep network. Figure 1 depicts the
overall architecture of the proposed SER methodology.

A. DATA AUGMENTATION

A large amount of training data is usually required for deep
learning to achieve better results. One way to increase the
number of training samples is through data augmentation.
In this paper, we propose a new data augmentation algo-
rithm as presented in Algorithm (1). This algorithm creates
additional training samples by carefully adding fractions of
noise to the clean samples. The choice of this fraction is
critical, as it may corrupt the signal content if the amount
of noise is large or may be irrelevant if the amount of noise
is too small. In this paper, we adopted the noise ratio as the
0.005 x max value in the speech signal. In this research,
after performing data augmentation, each clean sample in
the dataset will have three new samples generated by the
augmentation algorithm. Therefore, the ratio of the clean to
the newly generated samples in the augmented dataset is 1:3.

Algorithm 1 Data Augmentation

1: procedure Augment data
Ratio < 0.005
Max <« np.amax(data)
rUniform < np.random.uniform()
NoiseFactor < Ratio x Max x rUniform
Noise <« np.random.randn(len(data))
AugmentedData <— data + NoiseFactor x Noise
return AugmentedData
end procedure

R IR A S o

np: refers to the Python NumPy module.

The addition of this fraction of noise to the clean signal
is significant to improve the generalization of the proposed
deep learning model. On the other hand, the existence of
the clean samples in the dataset makes the model capable of
recognizing the speech emotions of a clean signal as well as
the noisy signal.

B. FEATURE EXTRACTION

The features extracted from the speech dataset are repre-
sented in the 2D space as log-Mel spectra. These features are
employed as a static input to the deep network to achieve a
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better distribution of emotional features. In addition, this rep-
resentation of features can extract the features corresponding
to the emotions of interest accurately when compared with
the raw spectrum and with a reduction in the dimensionality
of the feature space [30]. Moreover, the log-Mel spectrum
helps to reduce the effect of interference that may occur in
the frequency bands and improve the linearization of the
frequency perception of human ears [43]. Consequently, the
speed of training the classification model along with
the recognition process can be significantly improved.

To map the signal frequency to a log-Mel spectrum, equa-
tion (1) is employed.

f

Mel(k) = 2. 595 x log(l n ﬁ> )

where k represents the frequency of the Mel scale and
f denotes the frequency that moves on the scale of
0 <f <22,050.
The process of extracting the log-Mel spectrum is repre-
sented in the following steps.
o Framing and windowing: A window size of 25 ms or
equivalently 256 samples is used as an analysis window.
To smoothly cover the spectrum variation, a skip rate of
50% is also applied. The analysis window is applied in
terms of the Hamming window to effectively reduce the
signal distortions. The Hamming window is expressed
as presented in equation (2) for the window length is
denoted by N, and § is usually set as 0.46.

1-8)+8 T\ gcp<N—1
(1-08)+ cos(N 1> <n<N-—
w(n) = 2

0 otherwise

o Mel filter: To measure the energy of the speech signal,
the modulus of the frequency spectrum is squared. Then,
a set of triangles is applied to the Mel scale of the energy
spectrum. The application of this set of filter banks helps
reduce the harmonics and improve the smoothness of the
frequency spectrum. In addition, these filter banks can
reduce the time needed to calculate the resulting out-
put while reducing the dimension of the feature space.
In most speech processing approaches, the number of
filter banks is usually 13. The output from each triangu-
lar filter is defined as shown in equation (3), as shown
at the bottom of the next page, for k € [0,255], m €
[0, 13], and the image of the Mel-frequency filter bank is
characterized by the function denoted by f(.). Due to the
relation between the methodology of Mel-spectrogram
and its inspiration from the human auditory system, it is
usually used in several operation of speech processing,
such as speech recognition, speech synthesis, speech
emotion, etc.

C. THE PROPOSED CNN+LSTM
To understand speech emotions, researchers have one key
challenge, which is the extraction of most distinctive

VOLUME 10, 2022
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FIGURE 1. Overall architecture of the proposed speech emotion recognition.

features that represent emotions accurately. Based on the
existing methods of feature extraction, speech features can
be categorized as either studied features or handcrafted fea-
tures. Deep neural networks, such as CNNs, offer a sim-
ple way to extract features that can achieve exceptional
performance [45], [46].

To extract accurate emotional features, four neural network
layers were stacked together to form a local feature-learning
block (LFLB). These layers include a convolutional layer
for performing the convolution of the speech features with a
kernel mask, a normalization layer called batch normalization
(BN) [47], an exponential linear unit (ELU) [48], and finally,
a max-pooling layer. Four blocks of LFLB are then stacked
to form the general architecture of the proposed approach,
as shown in Figure 2. The LFLB’s main layers are the con-
volution and max-pooling layers [49]-[51]. The function of
the learning kernel is performed by the convolution layer.
The BN layer increases the efficiency and reliability of deep
networks by normalizing the activation of the convolutional
layer in each batch. The batch normalization transition keeps
the standard deviation of activation near the value of one and
the mean activation near the value of zero [52].

The ELU layer controls the BN layer’s performance. ELU
has negative value, which resets the mean of the activation
layer, allowing the learning rate to become much faster and
thus boosting the recognition accuracy accordingly. The fea-
tures can show noise and vibration resistance by using a
pooling layer. Nonlinear functions, such as max-pooling, are
the most widely used functions that can help in dividing
the input into non-overlapping regions along with their max-
values [53].

In this research, log-Mel spectrogram is used to extract
local and global features that are then learned using a com-
bination of LSTM and LFLB. The central layer of the LFLB
is the convolution layer, which is designed to process a grid
of values. It will learn sequence features based on the neigh-
boring inputs. In particular, each feature element is formed in
terms of a small number of these neighboring inputs. On the
other hand, the learned features are based on the previous
outputs. High-level features can be learned by LSTM and
CNN in conjunction and provide both long-term and local
contextual information.

The result z(7, j) can be measured by the convolution of
x(i, j) with kernel w(i, j), which has a size of @ x b. In contrast,

2(k —f(m — 1))

k<fm-—1)

Hm(k) =

2(fm+1) — k)

fm—1) <k <f(m)

(Fm =+ 1) = f(m = D)([F(m) = f(m — 1))

3)
fm) <k <f(m+1)

0
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(FOn =+ 1) = fm = D)[f (m) — f(m — 1))

k >f(m+1)
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FIGURE 2. The architecture of the proposed CNN+LSTM deep neural network. Each FLB is composed of Conv2D, Batch normalization, activation and max

pooling 2D layers.

the input to the convolution layer is x(i, j). In the conducted
experiments, the initialization of the 2D convolution kernel
w(i, j) is chosen arbitrarily.

(i, j) = x(i, j) % w(i, )

a b
- Z Z x(s, )w(i —s,j — 1) “

sS=—a s=—b

The BN layer is fed with the convolved features from the
previous layer, which are then normalized in each batch.
The BN layer uses a transformation to keep the convolved
features’ variance equals to one and the mean equals to zero.
This operation can be interpreted as follows:

4 =0BNOB + Y 2 xwi) 5)
j

"and zﬁ refer to the [ layer at which we obtain the

where z;_
i output and the j” input feature at the (I — 1) layer; the
convolution kernel between the j” and i features is denoted
by wfj

The normalization of the features learned by the convolu-
tion layer is denoted by the function BN(-). In addition, the
network activation function is denoted by o () and is defined
as:

by x>0
o = {a(ex -1 x<0 ©

where e is Euler’s sum and o« > 0. The nonlinear
down-sampling operation is performed by the pooling layer,
which decreases the feature resolution. The following are the
characteristics provided by the max-pooling layer.

! !
;= maxz 7
! VpeQ P @

where € represents the k" pooling region. The /" max-

pooling layer output and input feature are denoted by zf( and
le, at index k and p, respectively.

LSTM is used to learn long-term information, however the
stacks of LFLB are used to learn the local information. Out-
side a cell with a self-recurring relationship, LSTM can add
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or remove data on a block state based on three components:
an input, output, and gates. Softmax is used to render predic-
tions that include both local and global context information
using the features tested. The fully connected layer is used to
generalize these functions into the output space.

When designing a deep architecture, selecting a collection
of hyperparameters is crucial. To improve the efficiency of
the deep network, optimization of the hyperparameter is per-
formed on a separate data collection. Random search and grid
search have been successfully used in several deep learning
applications to accelerate deep design training. As Bayesian
optimization is suggested, it has been shown that it produces
improved outcomes with fewer studies [54]. The Bayesian
optimization approach is used to select the hyperparameters
for the proposed deep network.

Bayesian optimization is a sequential architecture
approach that effectively reduces the objective function. The
hyperparameters in our experiments are optimized using
Hyperopt, a Python library. Hyperopt determines a minimiz-
able objective function and uses it as a random function [55].
Over the objective function, a prior is often applied. The prior
is modified based on the gathered function evaluations to
form the posterior distribution over the objective function.
Using the posterior distribution, an acquisition mechanism is
established. The hyperparameters are then iteratively chosen.
The options distribution Crmsprop’, ’sgd’, ’adam’, *adagrad’)
is followed to select an appropriate optimization algorithm.
The best model is returned after practicing with the optimized
hyperparameters [56].

D. HYPERPARAMETERS OPTIMIZATION

As the proposed CNN+LSTM consists of a set of hyperpa-
rameters, the significant parameters in this set are the learning
rate and label smoothing regularization factor. The learning
rate affects network performance and directly determines the
convergence speed along with the model accuracy. On the
other hand, the smoothing regularization factor affects the
intensity of the disturbance applied to the correct labels and
thus affects the correctness of the input labels to the model.
In this research, both of these parameters are optimized to
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determine their optimal values to improve the trained model
accuracy. The optimization of these parameters is performed
in terms of the recently published SFS-guided WOA.

The basic idea of SFS-Guided WOA algorithm is based on
the behavior of whales, which trap their prey using bubbles
that push them up to the surface in the form of a spiral
loop. In this SFS-Guided WOA, there is a whale that looks
for the optimal values of the parameters, and this whale is
guided by three other random whales [57]. This strategy is
useful in improving the exploration and exploitation features
of this optimization task. The representation of these whales
is described by the following equation.

— - =
W+ 1) =wi x Wgna
— —
+ 7 %W % (W ana2 — W rana3)
=\ L= W
+(A=2)xw3x (W) — Wiana) (8B)

— — —
where W ,ana1, W ranaa, and W 4,43 represent the three ran-
dom whale_)s, where EECh random whale represents a potential
solution. W (¢) and W (¢ + 1) indicate the current and updated
. . . — —> —
solutions at iteration number ¢. The w1, w5 and w3 parameters
are three random variables with values of [0, 0.5], [0, 1], and
[0, 1], respectively. To smoothly change between exploitation
and exploration, the value of 7 decreases exponentially
using the following equation for Max;,., indicates the max-
imum number of iterations.

— ! ?
7z =1-— )
(Maxiter )

BP2
BP6

BP3
BP

BP4

BP5
o

Diffusion

o
@
3

FIGURE 3. The diffusion around the best solution in a random fractal
sample.

Statistical fractal search employed in this algorithm
depends on diffusion-limited aggregation (DLA), which gen-
erates the objects’ fractal shape. The SFS technique uses dif-
fusion and two kinds of updating processes. Figure 3 depicts
a graphical form of the SFS diffusion process. For the best-
solution BP, a list of solutions BP1, BP2, BP3, BP4, and BP5
are listed around this best solution. Algorithm 2 presents the
full process of SFS-guided WOA. For more details about this
optimization algorithm, please refer to [58].
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IV. EXPERIMENTAL RESULTS

To recognize the embedded emotions in the input speech, the
speech utterance is segmented if it was longer than 8 sec-
onds, and is padded to 8-second length otherwise. The FFT
with window length of 2048, and hop length of 512 are
used in the process of computing the log-Mel spectrogram.
Consequently, the log-Mel spectrogram is estimated with
251 frames and 128 Mel frequency bins [59]. The 128 x
251 matrices are employed in the conducted experiments
to provide a feedback to the CNN+LSTM network. The
resulting 2D log Mel-spectrogram patches are fed to the
CNN+LSTM network to learn the high-level contextual
information.

A. EXPERIMENTAL PLATFORM

The platform used in running the conducted experiments has
a set of parameters presented in Table 2. The main factor
for accelerating the training process is the utilization of the
available GPU and memory. These resources allow running
the experiments with a batch of size >= 16, which enables
completing the model training process in a relatively short
time.

TABLE 2. Specifications of the experimental platform.

CPU Intel Core i7
Hardware environment GPU GeForce RTX2070 Super
RAM 16 GB
Ubuntu 20.04
Software environment | Platform TensorFlow 1.15

CUDA9.0 + Cudnn7.1
Spider + Python3.7

B. EXPERIMENTAL DATASETS
In this research, four datasets were included in the conducted
experiments. These datasets are introduced in the following.

« RAVDESS: This dataset is composed of audio clips of
songs and speech. The clips are recorded by 24 speak-
ers; 12 women and 12 men. The emotional expressions
included in the speech clips are surprise, fear, anger, sad-
ness, happiness, calm, and disgust. On the other hand,
the expressions included in the song clips are fear, anger,
calm, sadness, and happiness. Each sentence is recorded
twice by each speaker. The number of song clips is 1,012
and the number of speech clips is 1,440.

« Emo-DB: This dataset is recorded by the Department of
Technical Acoustics, the Technical University of Berlin.
The recording is performed in anechoic chamber. The
number of utterances included in this dataset is 500.
The emotions included in the recorded utterances are
disgust, boredom, fearfulness, anxiety, anger, happiness,
and neutral. The speakers of the utterances are aged
between 20 and 30 years.

o SAVEE: This dataset is collected by the University of
Surrey. The emotions included in the recordings of this
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Algorithm 2 :SFS-Guided-WOA [57]

%
1: Inmitialize the population W;(i = 1, 2, ..., n) with fitness function F,,, where n is the population size and Max;,, represents

the maximum number of iterations.

2: Initialize the WOA parameters _a), A, E’>, l, 71), 72>, 73)

3: Initialize the guided-WOA parameters WE , WE, v7§

4: Sett =1

5: Convert the solutions to binary solutions [0 or 1].

6: Calculate the fitness flﬂgtion F, for each agent W ;

7: Find the best solution W*

8: while t < Max;;., do

9: for(i=1:i<n+1)do

10: if (73 < 0.5) then

11: if A | < 1)then

12: Update the pggition of _c)urg:nt search agent as in the following equation.
Wit+1)=W*t)— A.D,
— —= = —
D =|C.W*(t)— W()|

13: else

— — — .

14: Select the three random search agents W ,4nq1, W rana2, and W 4,43 from the current solutions.

15: Update the (Z) parameter by the following exponential form.
- t
= l - (Maxiler)

16: Update position of current search agent as in the following equation.

— - .= o —>\ L= . o

Wi+1D=wi*Wynar + 2 w2k (Wignaa — Wianaz) + (1 — 2) x w3 « (W (@) — Wigna1)

17: end if

18: else

19: Update the position of current search agent as in the following equation.

Wt +1)= D¢ cos@rl) + W)
20: end if
21:  end for
22: for(i=1:i<n+1)do

23: Calculate the following equation to_l)lpdate solutions based on SFS algorithm.
—> —
W = Gaussian(pgz, ) + (1 x W* —n' x P;)

24:  end for RN
25:  Update @, A, C,1,73

26:  Convert the updated solution to binary using siggoid function.

27 Calculate the fitness function F,, for each agent W ;

—
28:  Find the best solution W* from the updated solutions.

29: Setr=1r+1
30: end whili)
31: Return W*

dataset are neutrality, surprise, sadness, happiness, dis-
gust, anger,and fear. These recordings are collected by
four men aged between 27 and 31 with native English-
speaking.

o IEMOCAP: This dataset is multispeaker, and multi-
modal. The number of recording hours of this dataset
is 12. The collected data includes text transcriptions,
motion capture of faces, speech, and video. The dataset
is composed of frustrating, exciting, happiness, anger,
sadness, neutrality.

To used these datasets in the conducted experiments, each
dataset is split into 80% for training/validation and 20% for
testing. In addition, to allocate a subset of this dataset for
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validation, the training/validation part is split further into
80% for training and 20% for validation. The input to the
proposed model is the log Mel-spectrograms of the input
speech utterance. The log Mel-spectrograms are calculated
for 3 seconds of the input speech utterance. Utterances that
are less than 3 seconds are extended to 3 seconds by a zero-
padding operation, otherwise they are split into 3 seconds
chuncks.

C. MODEL TRAINING AND TESTING

The experimental data were arbitrarily divided into two
groups, with the training group receiving 80% of the
data and the study set receiving 20%. Experiments of
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TABLE 3. Summary of the architecture of the proposed CNN+LSTM deep
network.

Layer | Output Shape | # Params
Conv2D (128,251, 64) 640
Batch_normalization (128, 251, 64) 256
Activation (128, 251, 64) 0
MaxPooling2D (64, 125, 64) 0
Conv2D (64, 125, 64) 36,928
Batch_normalization (64, 125, 64) 256
Activation (64, 125, 64) 0
MaxPooling2D (16, 31, 64) 0
Conv2D (16, 31, 128) 73,856
Batch_normalization (16, 31, 128) 512
Activation (16, 31, 128) 0
MaxPooling2D 4,7,128) 0
Conv2D 4,7, 128) 147,584
Batch_normalization 4,7, 128) 512
Activation 4,7, 128) 0
MaxPooling2D (1,1, 128) 0
Reshape (1, 128) 0
LSTM (256) 39,4240
Dense (6) 1542
Activation (6) 0
Total number of params 656,326
Number of trainable params 655,558
Number of nontrainable params 768

comparable findings demonstrate that the CNN+LSTM net-
work is capable of accurately detecting speech emotions.
On average precision, the constructed CNN+LSTM network
performs satisfactorily compared to other well-established
function representations and methods.

In the conducted experiments, only the most accurate
and well-fit models are taken into consideration. The valid-
ity accuracy of the learned model is an important predic-
tor of its generalization. The best predictive model will be
available when the validation accuracy hits its limit during
CNN+LSTM network preparation. As a result, the recorded
model not only suits the experimental results well but also
performs well in terms of predicting SER.

The CNN+LSTM deep network architecture is summa-
rized in Table 3. Four local function learning blocks are
depicted in the table. Convolutional layers, batch normaliza-
tion, activation, and max-pooling layers are all used in each
learning block. The table also shows the form of each layer.
An LSTM layer is applied after our local function learning
blocks to learn the global feature from the input spectrogram.

To verify the generalization ability of the developed
CNN+LSTM network, the performance is recorded for the
training and verification sets. Five-fold cross-validation was
used to evaluate the true generalization error of the network.
Figure 4 depicts the progress of the loss values during the
training of the network. As shown in the figure, the model
could learn the significant features necessary for classifying
speech emotions accurately. The loss values become close to
zero after starting from epoch number 60.

In the literature, many methods have been proposed to
reduce the likelihood or the amount of overfitting in studies.
Bad predictions for untrained sample data are caused in part
by overfitting. When a model is overfitted, it memorizes
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the training data instead of learning to predict better. The
phenomenon of overfitting can be caused by a variety of fac-
tors. Overfitting can occur because of the complexity of the
deep network or because the network is overtrained. There-
fore, model selection, early stopping, batch normalization,
regularization, and cross-validation are adopted to overcome
overfitting [60]-[63].

Early stopping, as shown in Figure 4, will prevent over-
training and increase the prediction ability of the model.
Performance monitoring can be used to track training accu-
racy and validation accuracy. The number of epochs with no
change in the display is the patience. The network would have
superior predictive efficiency, while the validity accuracy
does not increase in testing.

In addition, the accuracy of the trained model is recorded
during the training process. Figure 4 shows the progress of the
accuracy during the training epochs. As shown in the figure,
the progress of the accuracy of the trained model moves
smoothly for the selected learning rate. The model accuracy
of the training sets achieves the best performance after the
60th iteration for the four datasets. In addition, the progress
of the validation accuracy stabilizes after reaching the 60th
iteration, which means that the model learns the training data
accurately and is ready to generalize for the test set.

The accuracy increased significantly as a result of the use
of data augmentation during the training period. As a result,
the average recognition accuracy of the correctly identified
emotions in the test sample was 99.2%, which is higher than
all current competing approaches. The other rival method
with close recognition precision was introduced in [26],
which is based on a CNN+LSTM deep network but does
not use data augmentation, making it less resilient to input
speech emotions. This comparison clearly shows that the
suggested solution outperforms the competition in regard to
understanding speech emotions.

The confusion matrix of the recognition of speech emo-
tions in the test set is shown in Figure 5. The test set is
usually the final judge of the effectiveness of the developed
approach. As shown in this figure, the proposed approach can
successfully recognize almost all the speech emotions in the
test set with very high accuracy. This reflects the efficiency
of the proposed deep network along with the notion of data
augmentation and parameter optimization, which positively
affects the overall recognition accuracy.

D. COMPARISON WITH EXISTING SYSTEMS

The proposed approach is compared with a set of compet-
ing approaches in the literature to validate the superiority
of the proposed approach. Table 4 presents the classifica-
tion accuracy achieved by each approach, including the pro-
posed approach. As shown in the table, the performance of
the proposed approach outperforms the performance of the
other approaches applied to the RAVDESS dataset, where
the maximum accuracy achieved was 97.36.46%, but the
proposed approach could achieve an accuracy of 99.47%.
A similar interesting performance of the proposed approach
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FIGURE 4. Progress of the loss and accuracy values using four speech emotion datasets during the training process.

is achieved when it is compared with the performance of other
approaches applied to the SAVEE and Emo-DB datasets.
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On the other hand, the existing approaches could not achieve
an accuracy of more than 89.16% when applied to the
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FIGURE 5. Confusion matrix of testing the four datasets (a) RAVDESS, (b) SAVEE, (c) Emo-DB, and (d) IEMOCAP.

IEMOCAP dataset. However, the proposed approach could
achieve higher accuracy, which reached 98.13% on the same
dataset.

E. STATISTICAL ANALYSIS
Another perspective of evaluation of the proposed approach
is presented in this section in terms of in-depth statisti-
cal analysis of the achieved results based on the employed
datasets and in comparison with the other competing
approaches.

Figure 6 presents multiple measures of the statistical
analysis of the achieved results. One of these measures is

VOLUME 10, 2022

heteroscedasticity, which measures the residual between the
predicted emotion and the absolute residual of the recognition
values, considering that the sum and mean of the residuals are
equal to zero, as shown in Figure 6a. To achieve the ideal case,
the residual values should be distributed uniformly around
the horizontal axis, which is clearly shown in the figure.
In addition, the heteroscedasticity plot is shown in Figure 6b.
Homoscedasticity describes whether the error term is the
same across the values of independent variables. Figure 6¢
also shows the quantile-quantile (QQ) plot and probabil-
ity plot. Since the distributions of points in the QQ plot
are well fitted on the predetermined line, the actual and

49277



IEEE Access

A. A. Abdelhamid et al.: Robust SER Using CNN-+LSTM Based on SFS Optimization Algorithm

TABLE 4. Comparison between the performance of the proposed approach and the other competing approaches.

Dataset \ Reference Feature \ Classification accuracy (%)
CNN + LSTM [32] Mel Filter bank 65.67
DCNN + CFS + ML [34] Log-Mel spectrogram 81.30
RBFN+BiLSTM [36] Spectrogram 77.02
RAVDESS StarGAN+DCNN [43] Log-Mel spectrogram 97.36
TLCNN-RAM [64] Log-Mel spectrogram 94.78
Convolution-LSTM [65] Log-Mel spectrogram 92.33
Proposed Log-Mel spectrogram 99.47
CNN + LSTM [32] Mel Filter bank 72.66
DCNN + CFS + ML [34] Log-Mel spectrogram 83.80
StarGAN+DCNN [43] Log-Mel spectrogram 92.97
SAVEE TLCNN-RAM [64] Log-Mel spectrogram 89.02
Convolution-LSTM [65] Log-Mel spectrogram 85.46
Proposed Log-Mel spectrogram 99.50
ADRNN [30] Log-Mel spectrogram 85.61
CNN + LSTM [32] Mel Filter bank 69.72
DCNN + CFS + ML [34] Log-Mel spectrogram 82.10
Emo-DB RBFN+BiLSTM [36] Spectrogram 85.57
StarGAN+DCNN [43] Log-Mel spectrogram 91.06
TLCNN-RAM [64] Log-Mel spectrogram 80.71
Convolution-LSTM [65] Log-Mel spectrogram 83.46
Proposed Log-Mel spectrogram 99.76
CNN+LSTM [26] Log-Mel spectrogram 89.16
ADRNN [30] Log-Mel spectrogram 74.96
IEMOCAP | CNN+BLSTM+SVMs [31] | Log-Mel spectrogram 62.31
DCNN + CFS + ML [34] Log-Mel spectrogram 83.80
RBFN+BiLSTM [36] Spectrogram 72.25
CNN+LSTM [42] MFCC 79.52
DBN [46] Mel filer banks 73.78
Proposed Log-Mel spectrogram 98.13

TABLE 5. Theoretical and actual means of the achieved accuracy by the proposed and the other competing approaches.

| ADRNN | TLCNN+RAM | Convolution-LSTM | DCNN+CFS+ML | CNN+LSTM | Proposed

Theoretical mean | 0 | 0 | | 0 | 0 | 0
Actualmean | 9021 | 9472 | \ 95.03 | 9224 | 9947
Number of values | 18 | 18 | | 18 | 18 | 18

TABLE 6. ANOVA test for the proposed approach and the other competing approaches.

| SS | DF | MS | F(DFn,DFd) | Pvalue

Treatment (between columns) | 935.9 |

| 187.2 | F(5,102)=335.6 | P<0.0001

Residual (within columns) | 56.89 | 102 | 0.5577 | - | -

Total | 9928 | 107 | - | - | -

predicted residuals are considered to be linearly related. This
confirms the performance of the proposed CNN+LSTM
approach. Figure 6d presents the heatmap plot with ordinary
one-way ANOVA.

Figure 7 shows the curve of the receiver operating char-
acteristic (ROC) for the proposed optimized CNN+LSTM
model and the other competing models. This figure indicates
that the proposed model distinguishes data with a large area
under the curve (AUC) with a value of approximately 1.0.
In addition, a histogram of the achieved accuracies using
the proposed and other approaches is presented in Figure 6f.
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In this figure, the presented models were evaluated using mul-
tiple test sets, and then the accuracy was binned and counted
to make this plot. As shown in the figure, the proposed
approach could achieve a stable performance while varying
the test sets from the four datasets. The achieved performance
resides in the scale of accuracy > 98%. However, the highest
accuracy achieved by the other approaches is within the range
of 88% to 95%.

Moreover, Figure 7 shows the ranges of accuracy for
each of the presented approaches, including the pro-
posed approach. As shown in the figure, the competing

VOLUME 10, 2022



A. A. Abdelhamid et al.: Robust SER Using CNN+LSTM Based on SFS Optimization Algorithm

IEEE Access

Residual plot
4_
2 . s o
© ° A .
S
% [ IO PRR. S...... . .
& 1 °
-2 . L oo
-4 ——T L
85 90 95 100
Predicted Y

(a) Residual plot of ordinary one-way ANOVA.

QQ plot
—_ 2 e
© S
P
3 g
(2]
2 o+ :
ko &
o S
g _2-®
o
-4 = 1 1 1
-4 2 0 2

Actual residual
(c) QQ plot for ordinary one-way ANOVA.
ROC curve: ((Proposed): (DCNN + CFS + ML))
1009—0
9
80
60

40

Sensitivity%

0-¢ I I I 1 1
0 20 40 60 80 100

100% - Specificity%
(e) ROC curve.

FIGURE 6. Statistical analysis of the achieved results.

approaches expose a variation in the performance, whereas
the performance of the proposed approach exposes a stable
performance in classifying the speech emotions. These values
are represented in terms of the average accuracy for each
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(f) Histogram of the achieved accuracy.

run in the test set. The theoretical and actual means of the
achieved accuracy are also shown in Table 5. The mean values
in this table are calculated in terms of the four employed
datasets.
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FIGURE 7. Stability of the accuracy achieved by the proposed and the other competing approaches.

TABLE 7. Two-tailed t-test of the performance achieved by the proposed model and the other competing models over 18 runs.

| ADRNN | TLCNN+RAM | Convolution-LSTM | DCNN + CFS+ML |  Proposed
. df | =527.6,df=17 | =554.0,df=17 | (=539.7,df=17 | =747.6,df=17 | =322.0,df=17
Pvalue (two tailed) | <0.000 |  <0.0001 <0.0001 | <0.0001 | <0.0001
P value summary | . | . - | ok | .
Significant (alpha=0.05)? | Yes | Yes Yes | Yes | Yes
Discrepancy | 90.21 | 94.72 92.27 | 95.03 | 92.24
SD of discrepancy | 0.7254 | 0.7254 0.7254 | 0.5393 | 1.215
SEM of discrepancy | 0.171 | 0.171 0.171 | 0.1271 | 0.2865
95% confidence interval ‘ 89.84 to 90.57 ‘ 94.36 to 95.09 91.91 to 92.64 ‘ 94.77 t0 95.30 ‘ 91.63 to 92.84
R squared (partial eta squared) | 0.9999 | 0.9999 0.9999 | 1.0000 | 0.9998

TABLE 8. Comparison between the performance of the proposed
optimized model with and without data augmentation.

Dataset | Without augmentation | With augmentation
RAVDESS ‘ 94.11% ‘ 99.47%

SAVEE ‘ 92.59% ‘ 99.50%

Emo-DB ‘ 93.83% ‘ 99.76%
IEMOCAP ‘ 91.55% ‘ 98.13%

The ANOVA test results for SER based on the proposed
approach compared to other competing approaches are shown
in Table 6. The two tailed t-test of SER results based on
the proposed approach compared to other approaches is also
shown in Table 7. These results confirm the superiority of
the proposed approach with parameter optimization using
the guided whale optimization algorithm and indicate the
statistical significance of the proposed approach for the SER
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TABLE 9. Comparison between the performance of the softmax classifier
and two other classifiers.

Classifier | RAVDESS | SAVEE | Emo-DB | IEMOCAP

|
Softmax | 99.50% | 99.47% | 99.76 |  98.13
K-NN | 93.11% | 94.50% | 92.32% | 90.81%
SVM | 97.41% | 98.43% | 9891% | 96.06%

tested problem compared to the other competing approaches.
Table 10 shows the proposed algorithm’s descriptive statistics
compared to other deep learning techniques over 18 runs.
Finally, a set of experiments are conducted to evaluate
the effectiveness of the data augmentation and its impact on
the achieved results. In this set of experiments, we tested
the proposed approach without employing the proposed
data augmentation and the results were recorded. Table 8
present the findings of this evaluation. As shown in the
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TABLE 10. Statistical analysis of the achieved results based on the proposed approach and the other competing approaches over 18 runs.

ADRNN ‘ TLCNN-RAM ‘ Convolution-LSTM ‘ DCNN + CFS + ML ‘ CNN+LSTM ‘ Proposed

|
Number of values | 18 | 18 | 18 | 18 | 18 | 18
Minimum | 8815 | 92.78 | 90.33 | 93.09 | 88.46 | 99.47
25% Percentile | 90.15 | 94.78 | 92.33 | 95.09 | 92.46 | 99.47
Median | 90.15 | 94.78 | 92.33 | 95.09 | 92.46 | 9947
75% Percentile \ 90.15 \ 94.78 \ 92.33 \ 95.09 \ 92.46 \ 99.47
Maximum | 9215 | 96.78 \ 94.33 \ 96.09 | 9446 | 9947
Range | 4 | 4 | 4 | 3 | 6 | 0
10% Percentile |  89.95 | 93.68 \ 91.23 \ 94.89 | 9026 | 9947
90% Percentile | 9125 | 94.98 \ 92.53 \ 95.19 | 9356 | 9947
Mean | 9021 | 94.72 \ 92.27 \ 95.03 | 9224 | 9947
Std. Deviaion | 07254 | 07254 | 0.7254 \ 0.5393 | 1215 | 0
Std. Error of Mean | 0.171 | 0.171 \ 0.171 \ 0.1271 | 02865 | 0
Coefficient of variation | 0.8041% |  0.7658% | 0.7861% \ 0.5675% | 1318% | 0.000%
Geometric mean | 902 | 94.72 | 92.27 | 95.03 | 92.23 | 99.47
Geometric SD factor | 1.008 | 1.008 \ 1.008 \ 1.006 | 1013 | 1
Harmonic mean | 902 | 94.72 | 92.27 | 95.03 | 92.22 | 99.47
Quadratic mean | 90.21 | 94.73 \ 92.28 \ 95.04 | 9225 | 9947
Skewness | 0.08563 |  0.08563 | 0.08563 \ -2.604 | ;s -
Kurtosis | 6363 | 6363 \ 6.363 \ 11.78 | 563 | -
Sum | 1624 | 1705 \ 1661 \ 1711 | 1660 | 1790

table, the proposed algorithm of data augmentation has a
significant impact of the achieved results and thus recom-
mended. In addition, the adopted softmax classifier is com-
pared with two other classifiers to show its effectiveness.
Table 9 presents the comparison results. As shown in the
table, the other classifiers included in the experiments are
K-NN with K equals to the number emotion categories
in the dataset, and SVM with a kernel function of type
(radial basis function). The presented results show the effec-
tiveness of the adopted softmax classifier in the proposed
approach.

V. CONCLUSION

A new approach for recognizing emotions embedded in
a speech signal is proposed in this paper. The proposed
approach is based on utilizing deep learning through devel-
oping cascaded layers of feature learning blocks with long
short-term memory layer. The feature learning blocks are
composed of four layers, namely, convolutional, batch nor-
malization, activation, and max pooling. These layers are
used to extract high level features from the log Mel-spectrum
of the given speech samples. The log-Mel spectrograms
are used to extract the local correlations and contextual
information of the spoken utterances. To improve the per-
formance of the proposed deep network, two hyperparame-
ters were optimized using the whale optimization algorithm
which is guided by the stochastic fractal search method.

VOLUME 10, 2022

These hyperparameters are the learning rate and the label
smoothing regularization factor. The evaluation of the pro-
posed approach is performed in terms of four speech emo-
tion datasets, namely, [IEMOCAP, Emo-DB, RAVDESS, and
SAVEE. To train the proposed model using these datasets,
a new data augmentation algorithm is proposed to increase
the number of training samples and to boost the generaliza-
tion capability of the model. Experimental results show the
effectiveness of the proposed approach in recognizing speech
emotions of the adopted four datasets accurately. In addi-
tion, a comparison with the other competing approaches is
performed to show the superiority of the proposed model.
Moreover, a statistical analysis is performed to emphasize
the stability of the performance of the proposed approach in
recognizing speech emotions.
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