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ABSTRACT In domains where data are sensitive or private, there is great value in methods that can learn in a
distributed manner without the data ever leaving the local devices. In light of this need, federated learning has
emerged as a popular training paradigm. However, many federated learning approaches trade transmitting
data for communicating updated weight parameters for each local device. Therefore, a successful breach
that would have otherwise directly compromised the data instead grants whitebox access to the local model,
which opens the door to a number of attacks, including exposing the very data federated learning seeks to
protect. Additionally, in distributed scenarios, individual client devices commonly exhibit high statistical
heterogeneity. Many common federated approaches learn a single global model; while this may do well
on average, performance degrades when the i.i.d. assumption is violated, underfitting individuals further
from the mean and raising questions of fairness. To address these issues, we propose Weight Anonymized
Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with
a shared dictionary of weight factors for neural networks. Experiments on MNIST, FashionMNIST, and
CIFAR-10 demonstrate WAFFLe’s significant improvement to local test performance and fairness while
simultaneously providing an extra layer of security.

INDEX TERMS Federated learning, Indian buffet process, personalization and fairness.

I. INTRODUCTION
With the rise of the Internet of Things (IoT), the proliferation
of smart phones, and the digitization of records, modern
systems generate increasingly large quantities of data. These
data provide rich information about each individual, open-
ing the door to highly personalized intelligent applications,
but this knowledge can also be sensitive: images of faces,
typing histories, medical records, and survey responses are
all examples of data that should be kept private. Federated
learning [1] has been proposed as a possible solution to this
problem. By keeping user data on each local client device and
only sharing model updates with the global server, federated
learning represents a possible strategy for training machine
learning models on heterogeneous, distributed networks in a
privacy-preserving manner. While demonstrating promise in
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such a paradigm, a number of challenges remain for federated
learning [2].

As with centralized distributed learning settings [3], many
federated learning algorithms focus on learning a single
global model. However, due to variation in user charac-
teristics, personal data are likely to exhibit significant sta-
tistical heterogeneity. To simulate this, federated learning
algorithms are commonly tested in non-i.i.d. settings [1],
[4]–[6], but data are often equally represented across clients
and ultimately a single global model is typically learned.
As is usually the case for one-size-fits-all solutions, while
the model may perform acceptably on average for many
users, some clients may see poor performance. Questions of
fairness [7], [8] may arise if performance is compromised for
individuals in the minority in favor of the majority.

Another challenge for federated learning is security. Data
privacy is the primary motivation for keeping user data local
on each device, rather than gathering it in a centralized
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location for training. In traditional distributed learning sys-
tems, data are exposed to additional vulnerabilities while
being transmitted to and while residing in the central data
repository. In lieu of the data, many federated learning
approaches require clients to send weight updates to train
the aggregated model. However, the threat of membership
inference attacks [9], [10] or model inversion [11], [12] mean
that private data on each device can still be compromised if
federated learning updates are intercepted or if the central
server is breached.

We propose Weight Anonymized Factorization for
Federated Learning (WAFFLe), leveraging Bayesian non-
parametrics and neural network weight factorization to
address these issues. We make the following contributions:
i) Rather than learning a single global model, we learn a
dictionary of rank-1 weight factor matrices. By selecting and
weighting these factors, each local device can have a model
customized to its unique data distribution, while sharing
the learning burden of the weight factors across devices.
ii) We employ the Indian Buffet Process [13] as a prior to
encourage factor sparsity and reuse of factors, performing
variational inference to infer the distribution of factors for
each client. iii) While updates to the dictionary of factors
are transmitted to the server, the distribution capturing which
factors a client uses are kept local. This adds an extra insu-
lating layer of security by obfuscating which factors a client
is using, hindering an adversary’s ability to perform member-
ship inference attacks or dataset reconstruction. iv) Finally,
individually customized models represent in more fairness.

We perform experiments on MNIST [14], FMNIST [15],
and CIFAR-10 [16] in settings exhibiting strong statistical
heterogeneity. We observe that the model customization cen-
tral to WAFFLe’s design leads to higher performance for
each client’s local distribution, while also being significantly
fairer across all clients. Finally, we perform membership
inference [9] and model inversion [11] attacks on WAFFLe,
showing that it is much harder to expose user data than
with FedAvg [1].

II. METHODOLOGY
A. SHARED DICTIONARY OF WEIGHT FACTORS
1) SINGLE GLOBAL MODEL
Consider N client devices, with the ith device having data
distribution Di, which may differ as a function of i. In many
distributed learning settings, a single global model is learned
and deployed to all N clients. Thus, assuming a multilayer
perceptron (MLP) architecture1 with layers ` = 1, . . . ,L, the
set of weights θ = {W `

}
L
`=1 is shared across all clients. To sat-

isfy the global objective, θ is learned to minimize the loss
on average across all clients. This is the approach of many
federated learning approaches. For example, FedAvg [1]

1While we restrict our discussion to fully connected layers here for
simplicity, this can be generalized to other types of layers as well. See
Appendix A for 2D convolutional layers.

minimizes the following objective:

min
θ

L (θ ) =
N∑
i=1

piLi(θ ) (1)

where Li(θ ) := Exi∼Di [li(xi; θ )] is the local objective func-
tion, N is the number of clients, and pi ≥ 0 is the weight of
each device i. However, given statistical heterogeneity, such
a one-size-fits-all approach may lead to the global model
underfitting on certain clients; often this translates to how
close a particular client’s local distribution is to the population
distribution. As a result, this model may be viewed as less fair
to these clients with less common traits.

2) INDIVIDUAL LOCAL MODELS
On the other extreme, we may alternatively consider learning
N local models θi = {W `

i }
L
`=1, each only trained onDi. In this

case, each set of weights θi is maximally specific to the data
distribution of each client i. However, each client typically
has limited data, which may be insufficient for training a full
model without overfitting; the total number of parameters that
must be learned across all clients scales with N . Additionally,
learning N separate models does not leverage similarities
between client data distributions or the shared learning task.

3) SHARED WEIGHT FACTORS
To make more efficient use of data, we instead propose a
compromise between a single global model and N individual
local models. Specifically, we allow each client’s model to
be personalized to the client’s local distribution, but with all
models sharing a dictionary of jointly learned components.
Using a layer-wise decomposition [17], we construct each
weight matrix with the following factorization:

W `
i = W `

a3
`
iW

`
b , 3`i = diag(λ`i ) (2)

where W `
a ∈ RJ×F and W `

b ∈ RF×M are global parameters
shared across clients and λ`i ∈ RF is a client-specific vector.
Note that the construction is not a post-training process-
ing such as singular value decomposition(SVD) on trained
weights but a parameters format before training. This factor-
ization can be equivalently expressed as

W `
i =

F∑
k=1

λ`i,k

(
w`a,k ⊗ w`b,k

)
(3)

wherew`a,k is the k
th column ofW `

a ,w
`
b,k is the k

th row ofW `
b ,

and ⊗ represents an outer product. Written in this way, the
interpretation of the corresponding pairs of columns and rows
w`a,k and w

`
b,k as weight factors is more apparent:W `

a andW `
b

together comprise a global dictionary of the weight factors,
and λ`i can be viewed as the factor scores of client i used
to select the corresponding rank-1 matrices formed using
weight factors. Differences in λ`i between clients allows for
customization of the model to each client’s data distribution
(see Figure 1), while sharing of the underlying factorsW `

a and
W `
b enables learning from the data of all clients.
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FIGURE 1. In WAFFLe, the clients share a global dictionary of rank-1 weight factors {W `
a,W `

b }. Each client uses a
sparse diagonal matrix 3`i , specifying the combination of weight factors that constitute its own personalized
model. Neither the client data Di nor factor selections 3`i leave the local device.

Algorithm 1 Updating Scheme in Each Communication
Input: local training epochs E , learning rate η
Server randomly selects subset St of clients
Server sends {Wa, r,Wb} to St
for client i ∈ St in parallel do

Wa, r,Wb,π ici, d i � CLIENTSTEP(Wa, r,Wb,π i, ci, d i)
Send {Wa, r,Wb} to the server.

end for
Server aggregates and averages updates {Wa, r,Wb}

Algorithm 2 Client Updating Function
function CLIENTSTEP(Wa, r,Wb,π i, ci, d i)

for e = 1, · · · ,E do
for minibatch b ∈ Di do

Update {Wa, r,Wb,π i, ci, d i} by minimizing (11)
end for

end for
return Wa, r,Wb,π i, ci, d i

end function

We constitute each of the client’s factor scores λ`i as the
element-wise product:

λ`i = r` � b`i (4)

where r` ∈ RF indicates the strength of each factor and
b`i ∈ {0, 1}

F is a binary vector indicating the active factors.
As explained below, b`i is typically sparse, so in general each
client only uses a small subset of the available weight factors.
Throughout this work, we use the absence of the ` superscript
(e.g., λi) to refer to the entire collection across all layers for
which this factorization is done. We learn a point-estimate for
Wa, Wb and r.

B. THE INDIAN BUFFET PROCESS
1) DESIDERATA
Within the context of federated learning with statistical het-
erogeneity, there are a number of desirable properties we

wish the client factor scores to have collectively. Firstly,
λi should be sparse, which encourages consolidation of
related knowledge while minimizing interference: client A
should be able to update the global factors during training
without destroying client B’s ability to perform its own
task. This encourages fairness, as in settings with multiple
subpopulations, this interference is most likely to be at
the smaller groups’ expense. On the other hand, we would
also like factors to be reused among clients. While data
may be non-i.i.d. across clients, there are often some sim-
ilarities; thus, shared factors distribute learning across all
clients’ data, avoiding the N independent model’s scenario.
Finally, in the distributed settings considered in federated
learning, the total number of nodes is rarely pre-defined.
Therefore, there needs to be a way to gracefully expand
to accommodate new clients to the system without
re-initializing the whole model. This includes both increas-
ing server-side capacity if necessary and initializing new
clients.

2) PRIOR
Given these desiderata, the Indian Buffet Process (IBP) [13]
is a natural choice. As a prior, the IBP regularizes client
factors to be sparse, and new factors are introduced but at a
harmonic rate, preferring reusing factors as much as possi-
ble over initializing new ones. This Bayesian nonparametric
approach allows the data to dictate client factor assignment,
factor reuse, and server-side model expansion. We use the
stick-breaking construction of the IBP [18] as a prior for the
factor selection:

v`i,κ ∼ Beta(α, 1) (5)

π`i,k =

k∏
κ=1

v`i,κ (6)

b`i,k ∼ Bernoulli(π`i,k ) (7)

VOLUME 10, 2022 49209



W. Hao et al.: WAFFLe: Weight Anonymized Factorization for Federated Learning

where k indexes the factor, π`i,k denotes the probability of the
k th factor being active, and α is a hyperparameter controlling
the expected number of active factors and the rate of new
factors being incorporated. Note that in the stick-breaking
construction, π`i,k is generated using a cumulative product of
Beta random variables (v`i,κ ).

3) INFERENCE
We learn the posterior distribution for the random variables
φi = {bi, vi}. Exact inference of the posterior is intractable,
so we employ variational inference with mean-field approxi-
mation to determine the active factors for each client device,
using the variational distributions:

q(b`i , v
`
i ) = q(b`i )q(v

`
i ) (8)

b`i ∼ Bernoulli(π`i ) (9)

v`i ∼ Kumaraswamy(c`i , d
`
i ) (10)

learning the variational parameters {π i, ci, d i} for each
queried client using Bayes by Backprop [19]. Needing a
differentiable parameterization, we use the Kumaraswamy
distribution [20] as a replacement for the Beta distribution
of vi and utilize a soft relaxation of the Bernouilli distribu-
tion [21]. The objective for each client is to maximize the
variational lower bound:

Li(θ ) =
|Di|∑
n=1

Eq log p
(
y(n)i
∣∣φi, x(n)i ,Wa,Wb, r

)
− KL

(
q
(
φi
)
||p
(
φi
))︸ ︷︷ ︸

R

(11)

R =
L∑
`=1

Eq(v`i )
[
KL

(
q(b`i )||p(b

`
i |v

`
i )
)]

+KL
(
q(v`i )||p(v

`
i )
)

where θ = {Wa,Wb, r, bi} and |Di| is the number of training
examples at client i. Note that in (11) the first term provides
label supervision and the second term (R) regularizes the
posterior with the IBP prior. The KL divergence in R is
approximated by sampling from the posterior distribution.

C. CLIENT-SERVER COMMUNICATION
1) TRAINING
Before the training begins, the global weight factors {Wa,Wb}

and the factor strengths r are initialized by the server. Once
initialized, each training round begins with {Wa,Wb, r} being
sent to the selected subset of clients. Each sampled client then
trains the model on their own private datasetDi for E epochs,
updating not only the weight factor dictionary {Wa,Wb} and
the factor strengths r , but also its also own variational param-
eters {π i, ci, d i}, which controls which factors it uses. Once
local training is finished, each client sends {Wa,Wb, r} back
to the server, but not {π i, ci, d i}, which remain with the client
with data Di. After the server has received back updates

from all clients, the various new values for {Wa,Wb, r} are
aggregated with a simple averaging step. The process then
repeats, with the server selecting a new subset of clients to
query, sending the new updated set of global parameters, until
the desired number of communication rounds have passed.
This process is summarized in Algorithm 1 and 2.

2) EVALUATION
When a client enters the evaluation mode, it requests the
current version of global parameters {Wa,Wb, r} from the
server. If the client has been previously queried for federated
training, the local model consists of the aggregated global
parameters and the factor score vector generated by its own
local variational parameters {π i}. Otherwise, the client uses
only the aggregated {Wa,Wb, r}. Note that if a client has
been previously queried, the most recently cached copy of
the global parameters is an option if a network connection is
unavailable or too expensive; in our experiments, we assume
clients are able to request the most up-to-date parameters.

3) SECURITY
Data security is one of the central tenets of federated learning.
Simpler, more standard methods of training a model could be
utilized if all data were first aggregated at a central server.
However, sensitive client data being intercepted during trans-
mission or the server’s data repository being breached by an
attacker are major concerns, motivating federated learning’s
approach of keeping the data on the local device. On the
other hand, keeping the data client-side may not be sufficient.
Just as data can be compromised in transit or at the central
database in non-federated settings, federated training updates
are similarly vulnerable. In methods like FedAvg, this update
is the entirety of the model’s parameters. Effectively, this
means that FedAvg trades yielding the data immediately for
surrendering whitebox access to the model, which opens the
model to a wide range of malicious activities [9], [11], [12],
[22], [23], including, critically, exposing the very data that
federated learning aims to protect. With WAFFLe, clients
transmit back the entire dictionary of weight factors {Wa,Wb}

and r, but not {π i, ci, d i}. As such, the knowledge of which
specific factors that a particular client uses is kept local.
Therefore, even if messages are intercepted, an adversary
cannot completely reconstruct the model, hampering their
ability to perform attacks to recover the data.

III. RELATED WORK
A. STATISTICAL HETEROGENEITY
Statistical heterogeneity of the data distributions of client
devices has long been recognized as a challenge for federated
learning. Despite acknowledging statistical heterogeneity,
many federated learning algorithms focus on learning a single
global model [1]; such an approach often suffers from model
divergence, as local models may vary significantly from each
other. To address this, a number of works break away from the
single-global-model formulation. Several [4], [24] have cast
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federated learning as amulti-task learning problem, with each
client treated as a separate task. FedProx [25] adds a proxi-
mal term to account for statistical heterogeneity by limiting
the impact of local updates. Others study federated learning
within a model-agnostic meta-learning framework [26], [27].
[28] recognize performance degradation from non-i.i.d. data
and propose global sharing of a small subset of data, which
while effective, may compromise privacy. In settings of high
statistical heterogeneity, fairness is also a natural question.
AFL [7] and q-FFL [8] propose methods of focusing the
optimization objective on the clients with the worst perfor-
mance, though they do not change the network itself to model
different data distributions.

B. PRESERVING DATA SAFETY
While much progress has been made in machine learning
with public datasets [14], [16], [29], in real-world settings,
data are often sensitive, potentially for propriety [30], [31],
security [32], or privacy [33] reasons. Protecting user data
is one of the primary motivations for federated learning
in the first place. Approaches include releasing artificial
data [34], [35], homomorphic encryption [36], or differential
privacy [37]–[39]. However, artificial data can still strongly
resemble the original data, and sharing the model architecture
and its parameters presents risks associated with whitebox
access, leaving the data vulnerable to attacks such as mem-
bership inference [9] or model inversion [11], [12], [23].

C. BAYESIAN NONPARAMETRIC FEDERATED LEARNING
Several previous works have applied Bayesian nonparame-
terics to federated learning, primarily as a means for param-
eter matching during aggregation. Instead of averaging the
parameters weight-wise without considering the meaning of
each parameter, past works have proposed using the Beta-
Bernouilli Process [40] for matching parameters, first with
fully connected layers [41], but later also extended by [42]
to convolutions and LSTMs [43]. In contrast, our method
utilizes Bayesian nonparametrics for modeling rank-1 factors
for multitask learning, instead of the aggregation stage.

D. PERSONALIZED FEDERATED LEARNING
Personalized FL models has become a recent focus. One
approach is to mix the global and local model parameters dur-
ing optimization [44]. However, this requires meta-features
from each client, which partially violates the goal of pri-
vacy in FL. Another commonly used strategy is splitting
neural networks [45], [46]: the model is divided into two
parts, the feature extractor and the personalized layers. The
feature extractor is aggregated and shared by the server,
and both parts are trained for a personalized model. Recent
work also explore meta-learning, particularly model-agnostic
meta-learning (MAML) [47]. For example, Per-FedAvg [48]
builds a meta-model initialization that is then updated by
a gradient step for a personalized model. However, meta-
optimization often requires computing second-order deriva-
tives, which can be computationally prohibitive for FL.

pFedMe [49] proposes decoupling the process of optimizing
personalizedmodels from learning the global model. pFedMe
keeps the learning process of FedAvg while optimizing the
personalized model in parallel, showing performance superi-
ority over Per-FedAvg [48].

IV. EXPERIMENTS
A. EXPERIMENTAL SET-UP
1) STATISTICAL HETEROGENEITY
Settings with higher statistical heterogeneity are more chal-
lenging for federated learning than when data are i.i.d. across
clients, as well as more representative of the real-world, so we
focus our experiments on the former. We consider two forms
of statistical heterogeneity.

a: UNIMODAL NON-I.I.D.
We first consider the non-i.i.d. setting introduced by [1].
This is a widely used evaluation setting, commonly referred
to as ‘‘non-i.i.d.’’ or ‘‘heterogeneous’’ in other federated
learning works, to distinguish it from completely i.i.d. data
splits. We refer to this as unimodal non-i.i.d. to distinguish it
from our second setting, which is also non-i.i.d. The primary
purpose of such a partition is to investigate the behavior of
federated average algorithms when each client has data from
only a subset (Z ) of classes.
This type of partition begins by sorting all data by class.

Given N client devices, the samples from each class are
evenly divided into shards of data, each consisting of a single
class, resulting in NZ shards across all classes. These shards
are then randomly distributed to the N clients such that each
receives Z shards. The data in the Z shards for each client
is then shuffled together and split into a local training and
test set. This ensures that the local test set for each client is
representative of its own private data distribution.While this
setting can be challenging, it has the property that the classes
present in every client’s data is equally represented in the
global data distribution.As a result, a single global model may
perform reasonably uniformly across all clients.

b: MULTIMODAL NON-I.I.D.
While the unimodal non-i.i.d. partition does explore the non-
i.i.d. nature of class distribution among clients, it does not
adequately characterize the tendency for subpopulations to
exist, with some being more prevalent than others. We pro-
pose a new non-i.i.d. setting to capture this, which we call
multimodal non-i.i.d., as each subpopulation group can be
thought of as a mode of the overall distribution. In the real
world, the mode can correspond to age, gender, ethnicity,
wealth, or a number of other demographic factors. The num-
ber of subpopulation group is arbitrary, but we choose two
for simplicity, creating ‘‘majority’’ and ‘‘minority’’ subpop-
ulations. In our experiments, the two modes are odd digits
(N1 = 100) versus even digits (N2 = 20) for MNIST [14],
footwear and shirts (N2 = 20) versus everything else
(N1 = 90) for FMNIST [15], and animals (N1 = 90) versus
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FIGURE 2. Example data allocation process to N clients for MNIST and Z = 2 in the unimodal i.i.d. (left) and
multimodal i.i.d. (right) settings. Notice that the primary difference is the grouping of the data into two
subpopulations (here referred to as ‘‘Majority’’ and ‘‘Minority’’) before sharding and allocating Z shards to each
client.

vehicles (N2 = 20) for CIFAR-10 [16], where N1 and N2 are
the number of clients in the majority and minority subpopu-
lations, respectively.

Once the classes have been separated by group, the process
proceeds similarly to the unimodal i.i.d. partition process,
with the data being divided into shards and then randomly
allocated to clients within each subpopulation. We make the
shards equal in size both within and across modes, so in
instances where there are more data shards available than
there are clients, we discard the unallocated data. Just as for
unimodal non-i.i.d., local training and test sets are created
for each client from its allocated data. An example multi-
modal non-i.i.d for MNIST is shown in Figure 2. Compared
with unimodal non-i.i.d, the difference is that there is now
a 5 : 1 ratio of odd to even digits in the total population,
resulting in the clients with only even digits being in the
minority of the global population. Note that multimodal non-
i.i.d setting is not a distributed imbalanced classification set-
ting. In multimodal non-i.i.d setting, the data amount of each
class is even if aggregated while imbalanced classification
setting is not. The hidden subpopulations lead to unfair model
performance caused by the uniform sampling of clients.

2) MODEL ARCHITECTURE AND TRAINING SETTING
For MNIST [14] digit recognition, we use a multilayer per-
ceptron with 1-hidden layer with 200 units using ReLU acti-
vations [50]. Based on this model, we constructed WAFFLe

TABLE 1. Sub-population local test performance analysis.

with F = 120 factors. The traditional 60K training examples
are partitioned into local training and test sets as described
in Section IV-A. Stochastic gradient descent (SGD) with
learning rate η = 0.04 is employed for all methods.
For FMNIST [15] fashion recognition, we use a convolu-

tional network consisting of two 5×5 convolution layers with
16 and 32 output channels respectively. Each convolution
layer is followed by a 2×2 maxpooling operation with ReLU

49212 VOLUME 10, 2022



W. Hao et al.: WAFFLe: Weight Anonymized Factorization for Federated Learning

TABLE 2. Local test performance for Z = 2.

activations. A fully connected layer with a softmax is added
for the output. Based on this model, we constructWAFFLe by
only factorizing the convolution layers, with F = 25 factors.
As with MNIST, the traditional 60K training examples are
used to form the two local sets. SGD with learning rate
η = 0.02 is used as the optimizer for all methods.
For CIFAR-10 [16], we usewe use a convolutional network

consisting of two 3×3 convolution layers with 16 and 16 out-
put channels respectively. Each convolution layer is followed
by a 2 × 2 maxpooling operation with ReLU activations.
These two convolutions are followed by two fully-connected
layers with hidden size 80 and 60, with a softmax applied for
the final output probabilities. To construct WAFFLe, we set
the number of factors F = 10 for the two convolution layers,
F = 80 for the first fully connected layer, and F = 40 for the
second fully connected layer. The 50K training examples are
used for constructing the local train and test sets. SGD with
learning rate η = 0.02 is utilized for all methods.

For all federated learning methods, the server selects a
fraction C = 0.1 of clients during each communication
round, with T = 100 total rounds for all methods. Each
selected client trains their own model for E = 5 local epochs
with mini-batch size B = 10.
For FedProx [25], the proximal parameter µ is set to 1.0.

For q-FFL [8], we searched q ∈ {0.001, 0.005, 0.01, 0.1,
1, 3, 5} and found q = 0.001 as the best setting, matching
the settings of [8] on more complex data.

B. LOCAL TEST PERFORMANCE
We compare WAFFLe with FedAvg [1], the fairness-oriented
q-FFL [8], and FedProx [25], which augments FedAvg with
a proximal term designed for high statistical heterogeneity.
We record local test performance averaged across all clients
for both types of non-i.i.d. data allocation in Table 2, along
with the total number of learnable parameters. WAFFLe
performs well despite strong statistical heterogeneity, as each
client can learn a personalized model by selecting differ-
ent factors from {Wa,Wb}; having a model specific to each
data distribution results in higher local test performance
than the baselines. This advantage is especially apparent
when the data are distributed multimodal non-i.i.d., mainly
because WAFFLe more effectively models underrepresented
clients.

Interestingly, we find that WAFFLe outperforms the base-
lines particularly significantly for CIFAR-10, the most chal-
lenging of the tested datasets, with WAFFLe’s local test

performance outstripping the other methods by 18.8% and
20.9% for unimodal and multimodal settings, respectively.
This demonstrates WAFFLe’s ability to scale to complex
tasks beyond MNIST, a common federated learning test bed.
Notably, even though WAFFLe effectively learns a different
model for each client, this does not lead to the computation or
memory costs typically associated with independent models.
WAFFLe’s number of communication rounds is largely the
same, and by sharing rank-1 factors, each weight factor can
be represented compactly, resulting in a total number of
parameters that is fewer than the single model used by the
baselines, despite using the same architecture.

C. TRAINING EFFICIENCY COMPARISON
We plot local test accuracy against the global epoch for
FedAvg, FedProx and WAFFLe on MNIST, FMNIST, and
CIFAR-10 averaged over all clients for unimodal non-
i.i.d. data in Figure 4. A similar comparison is made
between FedAvg andWAFFLe for multimodal non-i.i.d. data
in Figure 5, with the majority and minority learning curves
separately shown. For both cases, the clear gap between
curves shows that WAFFLe achieves better performance
throughout training. Notably, WAFFLe converges at a similar
rate as FedAvg with respect to the global epoch number;
this is important as the number of communication rounds is
often considered one of the primary bottlenecks in federated
learning.

In the multimodal non-i.i.d. case, the difference is
especially stark for the minority subpopulation, which
lags significantly behind the majority when modeled with
FedAvg’s one-size-fits-all approach. Interesting, in addition
to having lower value, the FedAvg minority’s training curve
is not as smooth, with large dips and spikes, especially
when compared with the majority subpopulation’s curve.
We hypothesize that this may be due to the smaller sub-
population being more vulnerable to being unrepresented
during client sampling, which may lead to catastrophic for-
getting [51]. We find this to be an interesting future direc-
tion of research. In comparison, the WAFFLe minority, with
its separate set of customized weight factors, has a much
smoother training trajectory.

D. FAIRNESS
Average performance over all clients as in Table 2 is a
commonly reported metric, but we argue that it does reveal
the full story. We report subpopulation mean performance
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FIGURE 3. FedAvg and WAFFLe performance distribution across clients in the multimodal non-i.i.d. setting for (a) MNIST, (b) FMNIST and (c) CIFAR-10.

FIGURE 4. Local test performance for unimodal non-i.i.d. degree Z = 2. (a) MNIST; (b) FMNIST; (c) CIFAR-10.

FIGURE 5. Local test performance for majority and minority subpopulations for multimodal non-i.i.d. degree Z = 2. (a) MNIST; (b) FMNIST; (c) CIFAR-10.

and overall population variance in Table 1. We observe that
FedAvg, which learns a single global model, focuses on
minimizing mean error across the population, resulting in
stronger performance for the clients in the majority. However,
as a result, clients in the minority are severely compromised,
as evidenced by the large difference (‘‘Gap’’) between major-
ity (Major.) and minority (Minor.) values in Table 1; for
example, FedAvg’s performance for the ‘‘evens’’ group of
clients is almost 30% lower than that of the ‘‘odds’’ group.
This is gap is especially clear when visualizing the distri-
butions of final local test performance for each client in
the majority and minority groups (Figure 3). This underfit-
ting can also be seen to exist throughout training from the
‘‘FedAvg_Minority’’ curve in Figure 5, which lags far below
the ‘‘FedAvg_Majority’’ in all three datasets. On the other
hand, because of WAFFLe’s shared weight factor dictionary
design (Equation 3), different knowledge can be encoded in

separate weight factors, which can be used by different parts
of the population. As a result, despite certain classes being
underrepresented (both in terms of clients, and total samples)
in the training set, WAFFLe is able to successfully model
them, with performances on par with the overall population.
Notably, we achieve this without explicitly enforcing fairness
through client sampling during training [7], [8], which can
be incorporated to further encourage uniform performance
across clients.

E. DATA SAFETY
A primary objective of federated learning is to keep data
safe. However, as mentioned in Section II-C, the predominant
federated learning strategy of each client sending their entire
updated model’s weights still leaves the client’s data vulner-
able. We demonstrate this with both membership inference
and model inversion attacks.
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TABLE 3. Membership inference attacks.

FIGURE 6. FMNIST model inversion attacks.

Membership inference attacks (MIAs) [9], [10] can be used
to infer whether a given data query was used for model train-
ing, leveraging the tendency of machine learning to overfit
or memorize training data. As such, a successful MIA can be
used by an attacker to surmise the content of a client’s private
data from the model. We compare a LeNet [14] FedAvg [1]
model with an analogous WAFFLe model, training both
on 1000 CIFAR-10 samples per client. We attack both with a
MIA inspired by [9], using a small ensemble of 3 ‘‘shadow’’
models. As shown in Table 3, this simple attack achieves a
high success rate at identifying a FedAvg client’s training
data, as intercepting the training update gives the full model.
On the other hand, WAFFLe’s training update only send
partial model information, as the identity of the active factors
is kept private. As a result, MIA success rate on WAFFLe
is only moderately higher than random chance (50%). This
means it is significantly harder to identify the private training
data for WAFFLe, relative to FedAvg.

We also perform amodel inversion attack [11], [23] on both
FedAvg andWAFFLe. Unlike MIAs, which must start from a
query data input, model inversion attacks seek to reconstruct
the inputs used to train a model from the trained model itself;
successful inversion attacks pose a significant risk from a data
security perspective. We perform a model inversion attack on
FedAvg and WAFFLe models trained on FMNIST, showing
randomly selected results in Figure 6 recovered from an
individual user. Importantly, reconstructions on FedAvg are
significantly sharper, with the class identity far clearer than
for WAFFLe, meaning FedAvg is more vulnerable to model
inversion attacks.

We report two quantitative metrics [52] to evaluate
model inversion attack in Table 4. i) Peak Signal-to-Noise
Ratio (PSNR) is the ratio of an image’s maximum squared
pixel fluctuation over the mean squared error between the tar-
get image and the reconstructed image. The higher the PSNR,
the better the quality of the reconstructed image. However,
clear reconstruction images reveal the identity information of

TABLE 4. Data safety comparison on FMNIST.

TABLE 5. Personalization comparison on CIFAR-10.

the client’s data. For each class, for example T-shirt, we com-
pute the PSNRbetween the reconstructed T-shirt and the aver-
age image of randomly selected T-shirt from the training data.
The average PSNR of all classes of FedAvg and WAFFLe is
reported. ii) Attack Accuracy (Attack Acc) is the accuracy of
the input reconstructed image by an evaluation classifier that
is trained separately. If the evaluation classifier achieves high
accuracy, the reconstructed image is considered to expose
identity information about the target label. We obtain an eval-
uation classifier with accuracy 96.67%. This evaluation clas-
sifier is used to classify the images reconstructed by FedAvg
and WAFFLe. The average attack accuracy is reported. For
both PSNR and attack accuracy, lower values indicate more
secure method. In Table 4, WAFFLe shows superior per-
formance over FedAvg on both PSNR and attack accuracy,
proofing more secure against model-inversion attack.

F. PERSONALIZATION
We further conduct experiments to compare against two per-
sonalized FLmethods FedPer [46] and pFedMe [49] based on
CIFAR-10 under both unimodal and multimodal settings for
Z = 2. The local test performance is reported in Table 5.
WAFFLe outperforms FedPer by offering personalization
for multiple layers while FedPer only focuses on the last
layer of the neural networks. Also, WAFFLe and FedPer
outperforms pFedMe by 9.19% and 6.96% under multimodal
setting respectively, highlighting that the methods based on
model splitting are more effective than regularization-based
methods for complicated non-i.i.d. settings.

G. ABLATION STUDIES
1) STATISTICAL HETEROGENEITY (Z)
WAFFLe is specifically designed for statistical heterogeneity,
as each client can select different weight factors, effectively
learning personalized models. WAFFLe was shown to excel
when Z = 2, as this is a strongly non-i.i.d. setting: as each
client only has samples from two classes.We also did experi-
ments in unimodal settings with less statistical heterogeneity,
for Z = {3, 4}. Although it takes longer to converge in
these cases,WAFFLe still outperforms FedAvg by 7.20% and
2.74%, respectively. The learning curve comparison when
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FIGURE 7. Learning efficiency comparison when Z = 3.

TABLE 6. Unimodal local test accuracy vs local epochs.

Z = 3 is shown in the Figure 7. Note that FedProx is
based on FedAvg combining a L-2 norm on the local weights
during training. The difference between FedProx and FedAvg
is highly dependent on the parameter for the proximal term.
We follow the setting in the previous work [25] and set the
parameter as 0.2 which is not significant enough to differen-
tiate FedProx and FedAvg in extremely non-i.i.d setting.

2) LOCAL EPOCHS (E)
Training client devices for more local epochs allows each
server to collect a bigger update from each device, increasing
local computation in exchange for fewer total communication
rounds. This is often a desirable trade-off, as communication
costs are commonly viewed as the primary bottleneck for
federated learning. However, too many local epochs can lead
to divergence during the aggregation step. We study the influ-
ence of local epochs E for unimodal non-i.i.d. in Table 6 and
for multimodal non-i.i.d. in Table 7 using the same settings
as in Section IV-A except for reducing the global training
epochs T to 50 and the learning rate η to 0.02 for all methods
in multimodal non-i.i.d scenario. We observe that WAFFLe
can handle increased number of local epochs, improving
performance for all three datasets.

3) IBP SPARSITY (α) AND NUMBER OF FACTORS (F )
At the cost of more parameters, an increasing number
factors F and higher IBP parameter α gives client more
expressivity for modeling its local distribution.

We study the influence of α and F for an MLP architecture
on MNIST partitioned in multimodal non-i.i.d. settings in
Tables 9 As expected, the higher α and F are, the better

TABLE 7. Multimodal local test accuracy vs local epochs.

TABLE 8. Sparsity comparison on MNIST.

TABLE 9. Multimodal local test accuracy vs α and F .

performancewe observe, though in practicewe prefer lowerα
and F for efficiency. On the other hand, the overall difference
in local test accuracy does not vary drastically, meaning that
WAFFLe is fairly robust to both hyperparameters.

To empirically demonstrate the data-driven sparsity intro-
duced by IBP prior, we also considered an alternative
non-Bayesian version of our model. Specifically, we replace
WAFFLe’s inferred per-client weight factors with per-client
weight factors optimized by standard gradient descent, and
use an L1 sparsity constraint on factor usage as a replace-
ment for the sparsity induced by the IBP. We list the test
accuracy under Unimodal on MNIST in the Table 8. Note
that our Bayesian formulation (WAFFLe) outperforms the
non-Bayesian version while also avoiding the hyperparam-
eter tuning of the weight of the sparsity term, which the
non-Bayesian version is somewhat sensitive to.

V. CONCLUSION
We have introduced WAFFLe, a Bayesian nonparametric
framework for federated learning, employing shared rank-1
weight factors. This approach allows for learning indi-
vidual models for each client’s specific data distributions
while still sharing the underlying learning problem in a
parameter-efficient manner. Our experiments demonstrate
that this model customizability makes WAFFLe successful at
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improving local test performance and, more importantly, sig-
nificantly improves fairness in model performance when the
data distribution among clients is multimodal. Furthermore,
we are able to scale our results to CIFAR-10 and convolu-
tional networks, where we observe the biggest improvements.
We also show that by keeping the active factors selected
by each model private on each device along with the data,
WAFFLe’s communication rounds only send partial model
information, making it significantly harder to perform mem-
bership inference or gradient-based model inversion attacks
on the private data.

APPENDIX A GENERALIZING WEIGHT FACTORIZATION
TO CONVOLUTIONAL KERNELS
While introducing WAFFLe’s formulation in Section II-A,
we assumed a multilayer perceptron (MLP) model, as illus-
trating our proposed shared dictionary with the 2D weight
matrices composing fully connected layers is made especially
clearer. While MLPs are sufficient for simple datasets such
as MNIST, more challenging datasets require more complex
architectures to achieve the most competitive results. For
computer vision, for example, this often means convolutional
layers, whose kernels are 4D. While 4D tensors can be simi-
larly decomposed into rank-1 factors with tensor rank decom-
position, such an approach would result in a large increase
in the number of parameters in the weight factor dictionary
due to the low spatial dimensions of the convolutional kernels
(e.g., 3 × 3) in most commonly used architectures. Instead,
we reshape the 4D convolutional kernels into 2D matrices
by combining the three input dimensions (number of input
channels, kernel width, and kernel height) into a single input
dimension. We then proceed with the formulation in (2).
Similar approaches can be taken to generalize our formulation
to other types of layers.
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