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ABSTRACT Blackouts have severely damaged cyber-physical power systems over the years, resulting in
malfunctions that have rapidly spread within the electrical network. Selecting a set of critical nodes for
human control can avoid similar situations. We propose a critical node evaluation method based on pinning
control theory that uses a minimum nonzero eigenvalue of a modified Laplacian matrix as the evaluation
index. Computational complexity can be markedly reduced using matrix analysis theory to sort screening
conditions.Multiple nodes are controlled to form critical node groups in the directedweighted cyber-physical
power system. We can thus more accurately find an optimal set of controlled nodes compared with other
critical node evaluation strategies. Through theoretical and simulated verifications, we conclude that the
addition of two nodes, which are used as active and standby dispatching centers of the communication
network, is more effective and can result in a cyber-physical power system with better connectivity.

INDEX TERMS Cyber-physical power system, critical node group, Laplace matrix, pinning control theory.

I. INTRODUCTION
Power grid blackouts are caused by both internal and external
factors, including overload, control or protection failures,
and natural disasters, which cause some virtual nodes in a
power communication network to withdraw from an opera-
tion, thereby causing cascading failures [1]–[6]. Therefore,
focusing on the critical node strength in daily operations is
conducive to improving the safety of power grid operation
and reducing the probability of large-scale power outages.
Liu et al. [7] combined node centrality and the degree of cas-
cading failure decoupling and proposed an evaluation method
for the importance of coupled network nodes to distin-
guish the critical nodes in a power communication network;
[8]–[11] evaluated the critical nodes in the power commu-
nication network based on the comprehensive evaluation
method of multi-attribute decision-making; [12]–[14] used
the information entropy weight method to calculate the objec-
tive weight of the degree centrality and betweenness central-
ity to determine the importance of each node by the TOPSIS
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Algorithm to complete the identification of critical nodes
in the power communication network; [15] used the node
contraction method to evaluate the importance of nodes in
the communication network; [16] developed an index set of
communication networks using complex system theory that
included the node combination degree and communication
efficiency to evaluate node importance; and Zhou et al. [17]
introduced information indexing to identify and rank critical
nodes in a cyber-physical power system. However, in these
studies, the importance of each node was only studied for a
single node in the system.

However, in some natural systems, some nodes are not
important when considered individually but were important
when combinedwith other nodes. For example, Fig. 1 shows a
simplified IEEE-14 node connection diagram. Assuming that
the greater the influence of a node is, the more critical the
node is as a measurement criterion, then node 4 is the node
with the greatest influence in the system when considered
individually because the number of nodes that node 4 affects
or reaches is 5, which is the largest among other nodes. For
example, nodes 2, 5, 6 and 9 each affect or reach 4 other
nodes. Therefore, node 4 is more important than nodes 2, 5,
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FIGURE 1. IEEE-14 node model spot-line illustration.

6, and 9. However, when considering the node group, when
we compare {2, 4} with {5, 6}, we observe the number
of nodes that they influence together; when a node with the
same effect occurs within a group, it only counts once. The
number of nodes that {2, 4} jointly connect to are 1, 3, 5,
7 and 9, and the total number of nodes is 5, while the nodes
that {5, 6} jointly influence or reach are 1, 2, 4, 11, 12 and
13, and the number of nodes is 6. Thus, the former group
affects fewer nodes than the latter. In this case, the importance
of the node group containing node 4 is weaker than that of the
node group not including node 4. When nodes are combined,
we cannot measure the importance of the node group by the
evaluation method of the importance of a single node. The
importance evaluation of the node group is different from
the importance evaluation of a single node, and the common
influence of the nodes in the node group is more important.
Therefore, the study of node groups is more meaningful than
that of individual nodes.

Although studies have investigated critical node groups in
the power grid [18]–[21], they have only considered a single
network. Therefore, based on these problems, we investigate
the critical node groups in a cyber-physical power system
in this study. The primary questions to be answered are as
follows:

1) How can vital node groups be defined and identified for
a double-layer coupled power information network?

2) How can a small set of nodes be chosen to maximize
the control scale?

3) How can the group of nodes that have the most impact
on the system and satisfy a certain cost be selected?

The primary contributions of this study are as follows:
1) By establishing a directed weighted cyber-physical

power system, the minimum non-zero eigenvalue of
a modified Laplacian matrix is used as the evaluation
index, and a vital node group evaluation strategy based
on pinning control theory is proposed;

2) The indicators described above are used to filter the
essential node groups in the power grid and communi-
cation network, and then, they are combined to obtain
the critical node groups in the cyber-physical power
system.

3) Compared with other methods, the proposed algo-
rithm can be used to find critical node groups more

FIGURE 2. System model.

accurately, which reduces the complexity of the screen-
ing process.

II. CRITICAL NODE GROUP EVALUATION ALGORITHM
A. SYSTEM MODEL AND MATRICES
The system model used in this study is shown in Fig. 2.
In the power grid, we simplify the considered equipment as
follows: generators and substations are nodes, transmission
lines are edges, and reactance values are the edge weights.
In the communication network, we simplify dispatch cen-
ters as nodes, communication lines as edges, and link use
rates as edge weights. The nodes of the power network and
the communication network thus constitute a ‘‘one-to-one’’
coupling connection. The communication network uses the
nodes with the highest degree as the primary and standby
dispatch centers. These nodes do not connect with the power
grid nodes directly. The energy and information flow on a
coupled line is bidirectional. In addition, the power grid and
the communication network each have different topological
structures and node states.

Network control is an important research topic. To make
a network tend to be controllable, we often choose how to
control the nodes, but in many scenarios, it is unrealistic to
control all the nodes in the network, particularly in large-
scale networks. Therefore, to save costs, we can control the
entire network using controllers on some nodes, and using
coupling relationships, this strategy can achieve pinning con-
trol.We believe that nodes that can play a important role using
a small number of controllers must be the most important
group of nodes in the network. We thus focus on screening
critical node groups in a network based on this concept. Based
on pinning control theory [22]–[25], we assume that A is the
power grid; B is the communication network; lA and VA

={
v1A, v2A, . . . , vlA

A
}
are the number of controlled nodes and

the set of controlled nodes in the power grid, respectively; lB
and VB

=
{
v1B, v2B, . . . , vlB

B
}
are the number of controlled

nodes and the set of controlled nodes in the communication
network, respectively; and SA and SB are the target states of
the power grid and the communication network, respectively.
Applying pinning control theory, the target states SA and SB

of the power grid and the communication network nodes
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tend to be consistent; then, the cyber-physical power system
can achieve intralayer synchronization through the coupling
relationship.

The numbers of nodes in the power grid and communica-
tion network are N1 and N2, respectively, and their topology
can be represented by adjacency matrices A =

[
aij
]
N1×N1

and
B =

[
bij
]
N2×N2

. For the weighted directed cyber-physical
power system described in this paper, the value of element
aij in the power grid adjacency matrix A is:{

aij = ωAij , when node i points to node j
aij = 0, when node i does not point to node j

(1)

ωAij is the weight of the power grid edge ij, and the adjacency
matrix A is:

A =

 a11 · · · a1N1
...

. . .
...

aN11 · · · aN1N1


N1×N1

(2)

The value of element bij in the communication network
adjacency matrix B is:{

bij = ωBij , when node i points to node j
bij = 0, when node i does not point to node j

(3)

where ωBij is the weight of the communication network edge
ij and the adjacency matrix B is:

B =

 b11 · · · b1N2
...

. . .
...

bN21 · · · bN2N2


N2×N2

(4)

The Laplacian matrix LA =
[
lAij
]
N1×N1

corresponding to

the power grid can be calculated by the adjacency matrix A,
and the value of the element lAij is as follows: lAij = −aij, when node i points to node j

lAii =
∑N1

j=1,j6=i
aij, i = j

(5)

The Laplace matrix LA is:

LA =

 lA11 · · · lA1N1
...

. . .
...

lAN11
· · · lAN1N1


N1×N1

=


∑N1

j=2, a1j · · · −a1N1

...
. . .

...

−aN11 · · ·
∑N1

j=1,j6=N1
aN1j


N1×N1

(6)

The Laplacian matrix LB =
[
lBij
]
N2×N2

corresponding to

the communication network can be calculated by the adja-
cency matrix B, and the value of the element lBij is as follows: lBij = −bij, when node i points to node j

lBii =
∑N2

j=1,j6=i
bij, i = j

(7)

The Laplace matrix LB is:

LB =

 lB11 · · · lB1N2
...

. . .
...

lBN21
· · · lBN2N2


N2×N2

=


∑N2

j=2, b1j · · · −b1N2

...
. . .

...

−bN21 · · ·
∑N2

j=1,j6=N2
bN2j


N2×N2

(8)

For the convenience of subsequent descriptions, we let L
be the Laplace matrix LA or LB corresponding to the power
grid or the communication network, respectively, where L is
a matrix of N rows and N columns, and N = N1 or N2.
The element in L is the reactance of the power grid or
the link usage rate of the communication network, which
characterizes the topological properties of power grids and
communication networks:

θ =

wp1 · · · · · ·

...
. . .

...

· · · · · · wpN−l

 = diag
{
wp1,...,wpN−l

}
(9)

where θ is a diagonal matrix, and l is the number of controlled
nodes in the power grid or communication network. All ele-
ments of this matrix are 0 except for along the diagonal. Addi-
tionally, P = {p1, . . . , pN−l} is an uncontrolled set of nodes
among N nodes, and V = {v1, . . . , vl} is a controlled set of
nodes among N nodes. In a directed weighted power grid or
communication network, the element

{
w1, . . . ,wpN−l

}
is the

sum of the weights of the edges, where each node in P points
to a node in V . In the power grid, this expression is the sum
of the reactance values of the edges. In the communication
network, edge links are treated as the sum of utilization.

B. SYSTEM RAYLEIGH QUOTIENT AND MINIMUM
EIGENVALUE
The definition of the Rayleigh quotient R(x) for any vector
x ∈ C , where C is the set of complex numbers, in the
power grid and communication network is shown in Defini-
tion 1, where the maximum and minimum values correspond
to the eigenvalues of the Laplacian matrix of the power
grid and communication network, respectively, as shown in
Theorem 1.
Definition 1: The Rayleigh quotient RL (x) of L for any

vector x satisfies the relation: RL(x) =
(
xHLx

)
/
(
xHx

)
(x 6=

0, xH is the conjugate transpose of x).
The Rayleigh quotient Rθ (x) of θ for any vector x satisfies

the relation [26]: Rθ (x) =
(
xHθx

)
/
(
xHx

)
(x 6= 0, xH is the

conjugate transpose of x).
In these quotients, x is a convenient vector for calculation,

and its value is unrelated to the power network and commu-
nication network.
Theorem 1: For the Laplacian matrix L corresponding to

the power grid or communication network, its nonzero eigen-
values satisfy λmax = λN ≥ λN−1 ≥ · · · ≥ λ1 = λmin [27];
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FIGURE 3. Comparison of two directed weighted graphs. (a) The first
directed weighted graph. (b) The second directed weighted graph.

then, there are the following relationships:

λ1xHx ≤ xHLx ≤ λN xHx (∀x ∈ C) (10)

λmax = λN = max
x 6=0

RL(x) = max
xH x=1

xHLx (11)

λmin = λ1 = min
x 6=0

RL(x) = min
xH x=1

xHLx (12)

Similarly, for the diagonal matrix θ , its nonzero eigenvalue
λmax = λN ≥ λN−1 ≥ · · · ≥ λ1 = λmin also satisfies the
above relationship, and its expression is as follows:

λ1xHx ≤ xHθx ≤ λN xHx (∀x ∈ C) (13)

λmax = λN = max
x 6=0

Rθ (x) = max
xH x=1

xHθx (14)

λmin = λ1 = min
x 6=0

Rθ (x) = min
xH x=1

xHθx (15)

When the matrix θ is in this relationship, the minimum
nonzero eigenvalue λ1 can be the minimum reactance value
in the power grid, and these link the rates used in the commu-
nication network.

The minimum nonzero eigenvalue of the Laplace matrix
characterizes the connectivity of the power grid and the
communication network. For example, in the two weighted
directed graphs shown in Fig. 3, the minimum nonzero
eigenvalue of Fig. 3(a) is calculated as -0.1256 according
to Eq. (12), which is greater than the minimum nonzero
eigenvalue of Fig. 3(b), i.e., -0.4142. Fig. 3 also shows that
(a) is more connected than (b). Therefore, the node groupwith
the largest minimum nonzero eigenvalue is optimal when
comparing the same number of node groups.
Definition 2: For the graph G = (v, ε) of the power grid

or communication network, G′ = (v′, ε′) is a subgraph of G,
where v′ ∈ v,ε′ ∈ ε are the points and edges of the power grid
or communication network, respectively; H is a subgraph of
G containing the uncontrolled node set P; L is the Laplace
matrix of the power grid or communication network; and
LN−l is the remaining matrix after deleting the corresponding
rows and columns of the control node set V in the Laplacian
matrix L from the power grid or communication network. The
following relationship exists [28]:

LN−l = L(H )+ θ (16)

Theorem 2: The set of controlled nodes of the power grid
or communication network is known to be V = {v1, . . . , vl},
the set of uncontrolled nodes is P = {p1, . . . , pN−l}, and the
sum of the weights of the edges, which refer to the edges
connecting the node in P pointing to the nodes in V in power

grids or communication grids, is
{
w1, . . . ,wpN−l

}
. Then, the

minimum nonzero eigenvalue λ1 (LN−l) corresponding to
LN−l of the power grid or communication network satisfies
the following relationship:

λ1 (LN−l) ≤
wp1+···+wpN−l

N − l
(17)

Proof: From Definition 2, H is a subgraph of G con-
taining the uncontrolled node set P in the power grid or
communication network.

We let x0 =
(
1/(N − l)1/2

)
∗ (1, 1, . . . , 1)T be an

(N−l)×1 column vector. FromTheorems 1 and 2, we deduce
the following:

λ1 (LN−l) = min
xH x=1

[
xTL(H )x + xT θx

]
≤ xT0 L(H )x0 + xT0 θx0

= 0+
(

1
√
N − l

, . . . ,
1

√
N − l

)
∗


1

√
N−l
...
1

√
N−l


=

wp1+···+wpN−l
N − l

(18)

C. ALGORITHM TO REDUCE COMPUTATIONAL
COMPLEXITY
Based on matrix analysis theory, we can begin the screening
process to reduce the amount of calculation.

If the vital node group is directly evaluated by Theorem 2,
the number of node combinations C l

N is large, and selecting
the optimal node group from these combinations would be
time-consuming, particularly in large networks. Therefore,
we use two screening processes to reduce the computational
complexity.

1) SINGLE NODE FILTER
The variable e represents the sum of the weights of some
edges inside the controlled node set (i.e., the sum of the
weights of the edges of the controlled nodes pointing to
other controlled nodes in the power grid or communication
network), and k invi represents the in-degree of the controlled
node vi, which represents the sum of the weights of the edges
pointing to this node in the power grid or communication
network. Then, the following holds:

=
wp1+···+wpN−l

N − l
(19)

From Eqn. (18) and (19), we obtain:

λ1 (LN−l) ≤
k inv1 + k

in
v2 + · · · + k

in
vl − e

N − l

≤
k inv1 + k

in
v2 + · · · + k

in
vl

N − l
(20)

We can find a set of critical node groups through Eqn.
(20) because only the total in-degree of nodes can satisfy this
formula. This formula is not satisfied when the total in-degree
of the formed node group is small, which may occur when
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selecting l nodes for nodes with very small in-degree values
in a node group, even if the first l − 1 nodes with the largest
in-degree combine with them. For example, we assume that
there are four nodes with in-degrees of 1, 3, 4, and 5 in the
network. When the number of control nodes is 3 and using
the same λ1, then selecting nodes with in-degrees of 3, 4, and
5 to calculate the right-hand side of the inequality of Eqn. (20)
gives the minimum value that satisfies this equation. Even if
these nodes combine with nodes in degrees 4 and 5, this nodal
relationship in degree one cannot be met. The first screen-
ing excludes the nodes whose in-degree k in does not satisfy
Eqn. (21) in the power grid and communication network:

k in ≥ (N − l)× λ∗1 −
l−1∑
i=1

k ini (21)

where λ∗1 is the minimum nonzero eigenvalue of the modified
Laplacian matrix in the current power grid or communication
network. Eqn. (21) is the condition for screening a single
node. If the number of nodes to be filtered out is a, then the
number of combinations can be reduced byC l

N−C
l
N−a, which

shows that the first screening effectively reduces the amount
of calculation. By screening the nodes through Eqn. (21),
if the remaining nodes are combined, there will be two cases.
One case occurs when nodes with smaller in-degree connect
with the node with the largest in-degree. Then, the number of
combinations is

∑q
i=1

(
C i
mC

l−i
N−a−m

)
, where m is the number

of nodes with small in-degree, and q = min(l,m). The second
case occurs with a combination of nodes with a general in-
degree, and the number of combinations isC l

N−a−m. The total

number of combinations is
∑q

i=1

(
C i
mC

l−i
N−a−m

)
+ C l

N−a−m,

which is much smaller than C l
N before screening.

2) NODE GROUP FILTER
After the first screening, which combines nodes according to
the number of pinned nodes l, the number of node groups will
be significant. This situation is not conducive to screening
essential node groups. Therefore, a second screening is con-
ducted to reduce the number of node groups. First, we sort the
nodes after the first screening according to the node in-degree
to select the first l nodes. According to Eqn. (22), we can
obtain λ∗ as the basis for subsequent screening. ∗ in the upper
right corner indicates the optimal λ. The corresponding value
of the parameter of the node of λ∗ is calculated as follows:

λ∗ =
k in
∗

v1 + k
in∗
v2 + · · · + k

in∗
vl − e

∗

N − l
(22)

To determine whether there is a λ1 (LN−l) larger than λ∗ in
the critical node group under the same control node number l:

λ1 (LN−l) ≥ λ∗ (23)
k inv1 + k

in
v2 + · · · + k

in
vl − e

N − l
> λ∗ (24)

k inv1 + k
in
v2 + · · · + k

in
vl

N − l
> λ∗ (25)

Algorithm 1 Reduction of Computational Complexity
Require:

Power grid/communication network node;
Ensure:

The most critical node group of the power
grid/communication network;

1: For l ← 1 : N do
2: Filter out nodes with low in-degree by Eqn.(21);
3: Calculate λ∗ by Eqn.(22);
4: Try to find the node group that satisfies Eqn.(23);
5: Filter by Eqn. (24);
6: If there is a larger λ1 (LN−l), then take it as the latest λ∗

and repeat steps 3-5;
7: Find the node group with the largest λ1 (LN−l);
8: End
9: Remove node groups with the same λ1 (LN−l) but larger

than l;

If there is a larger λ1 (LN−l) afterward, then the current
λ1 (LN−l) is considered to be the latest λ∗, and screen-
ing occurs again by the above steps. The final maximum
λ1 (LN−l) is used as the optimal eigenvalue when the number
of control nodes is l. Assuming that the number of control
nodes is different, but the maximum nonzero eigenvalue is the
same, then we select a group of critical nodes with a relatively
small number of nodes while considering the cost and control
difficulty.

The computational complexity will reduce significantly
after two screenings, as follows:

If we do not filter, there are C l
N node groups to evaluate

together, the complexity is O
(
nl
)
, l is the number of pin-

ning nodes, and its value range is an integer greater than
or equal to 1. As the number of pinning nodes increases,
the complexity will gradually increase. We can combine∑q

i=1

(
C i
mC

l−i
N−a−m

)
+ C l

N−a−m node groups after the first
step of screening; to evaluate the critical node group, the
complexity isO(log n). This result shows that with an increas-
ing number of pinning nodes, the complexity after the first
screening decreases below O

(
nl
)
. In the second screening,

if a larger λ1 (LN−l) cannot appear, only the node groups
after the first screening to complete the evaluation of the
critical node groups are also less than the number of node
combinations C l

N without filtering. The complexity is also
less thanO

(
nl
)
. If there is a larger λ1 (LN−l) after the second

screening, we can reduce the number of node combinations
again according to steps 3-5 of Algorithm 1. Then, the com-
plexity will be lower than O(log n).
The two screening steps to reduce the computational com-

plexity into Algorithm 1 are summarized below.
Algorithm 1 finds the node group that maximizes the

smallest nonzero eigenvalue of the power grid and com-
munication network with the least computation. This node
group can allow the network to maintain the best connectivity
when the number of controlled nodes is l. Therefore, the
most critical node group is considered under this number
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Algorithm 2 Finding the Critical Node Groups of a
Cyber-Physical Power System According to the Number of
Pinned Nodes
Require:

Directed weighted adjacency matrix for the power
grid/communication network;

Ensure:
Optimal pinning node group V = {v1, . . . , vl} of the
cyber-physical power system;

1: for l ← 1 : N do
2: Select the first l nodes according to the in-degree ranking

of the power grid/communication network,and calculate
λ∗;

3: Screen the power grid/communication network through
Algorithm 1;

4: Combine critical node groups of power grids and com-
munication grids;

5: End
6: Remove node groups with the same λ1 (LN−l) but larger

than 1;

of controlled nodes. According to the network size, control,
and computational difficulty requirements investigated in this
study, we only observe node groups with five or fewer nodes
in the single-layer network and then combine the critical node
groups of the two-layer network. Themost critical node group
in the power network can affect the power network with the
largest range and can affect some nodes in the communica-
tion network through the coupling relationship between the
power network and the communication network. However,
it is not necessarily the communication network with the
largest range. In the same way, the most critical node group
in the communication network can affect the communication
network with the largest range. The coupling relationship can
also affect some power network nodes, but it is not necessarily
the power network with the largest range. Combining the
node groups canmaximize the influence of the cyber-physical
power system under the number of pinning nodes and achieve
a better result. Similarly, we compare the size of the smallest
nonzero eigenvalue after the combination. If the minimum
nonzero eigenvalues ofmultiple groups of nodes are the same,
we select a smaller number of nodes as the current optimal
node group.

D. CRITICAL NODE GROUP ALGORITHM FOR THE
CYBER-PHYSICAL POWER SYSTEM
We will now introduce the general steps to judge the critical
node groups of the cyber-physical power system, which are
described in Algorithm 1.

Because the focus of this study is the selection strategy of
pinning nodes and the optimization of the pinning control
strategy, the network can still maintain good connectivity
when controlling fewer nodes. The smallest nonzero eigen-
value of the Laplacian matrix characterizes the network’s
connectivity, indicating that the larger the eigenvalue is, the
better the connectivity. Therefore, an eigenvalue can be used

to evaluate the node selection strategy. Next, some matrix
analysis theories are used to facilitate the proposed derivation
of the control node group to reduce the amount of calculation.

III. EXPERIMENTAL ANALYSIS
In this section, the IEEE-30 node system and the IEEE-118
node system are used to create the power network and are
coupled with two corresponding scale-free communication
networks for simulation. The power network also determines
whether the cost of two more nodes paid by the communi-
cation network is worthwhile. The simulation analysis shows
the effectiveness of the proposed algorithm in reducing the
number of required calculations. Comparedwith other critical
node group evaluation methods, when selecting the same
number of node sets, the algorithm in this paper can make
the network have better connectivity.In addition, the optimal
pinning node group will have different results under different
coupling methods.

A. DISCUSSION OF CRITICAL NODE GROUPS
First, the evaluation of the essential node groups is observed
in the small-scale cyber-physical power system, where λA, λB
and λ are the minimum non-zero eigenvalues of the power
grid, the communication network, and the cyber-physical
power system, respectively; and the same is true for the latter
table.

In the power grid layer with one control node, the most
critical node group is {30}, and the corresponding λA =
−0.0655. With two control nodes, {10,30} is selected
as the critical node group, and the corresponding λA =
−0.0653. Using the proposed algorithm and taking these
values as the training index and screening groups, respec-
tively, the node group{27, 29} yields the smallest nonzero
eigenvalue to be the largest value, which is λA = −0.0643.
Therefore, this node group is optimal when the number
of control nodes is two. With three pinning control nodes,
{10,27,30} is selected as the node group for the first
training, and the minimum nonzero eigenvalue is λA =
−0.0641. Next, the proposed algorithm is used, and there
are no node combinations with larger eigenvalues. Therefore,
{10,27,30} is the critical node group when the number
of pinning control nodes is three. With four pinning con-
trol nodes, the optimal node group derived by the proposed
method is {10,24,27,30}, and the minimum nonzero
eigenvalue is λA = −0.0559. With five pinning control
nodes, the optimal node group is {10,24,27,29,30},
which has the same minimum nonzero eigenvalue as the node
group with fewer nodes. This result indicates that the connec-
tivity effect brought by the two groups of nodes is the same.
Thus, with four or five control nodes, {10,24,27,30} is
the best group. These conditions are shown in Table 1.

Based on the same concept, the first communication net-
work layer has twomore nodes than the power network. In the
communication network, these additional nodes can act as
active and standby dispatch centers, which are responsible
for the safe operation and economic dispatch of the entire
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TABLE 1. Critical node groups in the power grid (IEEE-30).

TABLE 2. Critical node groups in the communication network (scale-free
network with 32 nodes).

TABLE 3. Critical node groups in the communication network (scale-free
network with 32 nodes).

power grid according to the prescribed power generation
plan and monitoring principles. These nodes, which are not
coupled directly with the power grid to prevent the occurrence
of faults and affect functionality, can still typically operate.
With one control node, the node group is {3}, and the
minimum nonzero eigenvalue is λB = −0.0094. With two
control nodes, the critical node group is {3,5}, and the
minimum nonzero eigenvalue is λB = −0.0082. With three
control nodes, the optimal node group is {3,5,15}, and
the minimum nonzero eigenvalue is λB = 0.0012. With four
control nodes, the minimum nonzero eigenvalue is always
maintained at 0.0012. Thus, with three, four or five control
nodes, the node group when the number of control nodes
is three is selected (i.e., {3,5,15}). These conditions are
shown in Table 2 below. Similarly, the second communication
network (i.e., the number of nodes in the communication
network) is the same as that of the power grid and includes
active and standby dispatch centers, which are coupled ‘‘one-
to-one’’ with the power grid. These results are shown in
Table 3.

From these results for the power grid layer, the critical node
group does not add nodes to the original node group as the
number of nodes increases and changes. Due to its scale-free
characteristics, the degree difference between nodes is very
large for the communication network layer. In this case, the
nodes that contribute the most to the network connectivity
are usually those with large degrees; thus, the node incre-
ment increases. However, we must still choose the critical
node group because the number of control nodes is different,
and the minimum nonzero eigenvalue is the same. A greedy
algorithm cannot be used to evaluate the critical node group
directly. Previous results show that the larger the minimum
nonzero eigenvalue is, the better the connectivity of the net-
work. In comparing the two communication networks, the

TABLE 4. Critical node groups in the cyber-physical power system
(IEEE-30 and 32 scale-free ‘‘one-to-one’’ connection).

TABLE 5. Critical node groups in the cyber-physical power system
(IEEE-30 and 30 scale-free ‘‘one-to-one’’ connection).

connectivity of the second type of communication network is
not as good as that of the first. Therefore, in communication
network modeling, the cost of two more nodes is worthwhile.
This conclusion must be verified in a cyber-physical power
system.

We now evaluate the critical node groups in the
cyber-physical power system. First, the power grid is coupled
with the first communication network. When each network
layer has a pinning node, the minimum nonzero eigenvalue
is λ = −0.0568. With two pinning nodes, this value is λ =
−0.0556; when each network layer has three pinning nodes,
the minimum nonzero eigenvalue is λ = −0.0555. With four
nodes each, the communication network can only have three
nodes to form a critical node group when combined because
the optimal number of nodes in the communication network
after the comparison in Table 2 is 3, and the minimum
nonzero eigenvalue is λ = −0.0480. With 10 control nodes,
the power grid can only have four nodes, and the commu-
nication network can only have three nodes. The combined
effect is the same as that in the previous case, which shows
that as the number of control nodes increases, the minimum
nonzero eigenvalue also increases. However, because it is
impractical to control many nodes when selecting a node
group, it is necessary to choose a node group according to the
requirements. This situation is described in Table 4. Similarly,
the coupling results with the second communication network
are shown in Table 5.

Comparing Tables 4 and 5 shows that the connectivity of
the second type of cyber-physical power system is worse than
that of the first. These results again indicate that the price
paid by two nodes yields better network connectivity while
avoiding failures that affect functionality. In the same way,
the evaluation of essential node groups of large-scale cyber-
physical power systems uses the same method. Although no
descriptions are provided in this study, similar results are
observed, and the evaluation of critical node groups in the
cyber-physical power system is shown in Tables 6-10.

The two communication networks are also in the same
situation in the large-scale cyber-physical power system,
which shows that the price paid by the two additional
communication network nodes is still beneficial. Therefore,
we continue to use the first communication network for
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TABLE 6. Critical node groups in the power grid (IEEE-118).

TABLE 7. Critical node groups in the communication network (scale-free
network of 120 nodes).

TABLE 8. Critical node groups in the communication network (scale-free
network of 118 nodes).

TABLE 9. Critical node groups in the cyber-physical power system
(IEEE-118 and 120 scale-free ‘‘one-to-one’’ connection).

connection purposes in future research. The number of nodes
in a single-layer network is different, but the minimum
nonzero eigenvalue is the same, which may also occur in the
cyber-physical power system. As shown in Table 9, when
the total number of control nodes is 5 and 8, the minimum
nonzero eigenvalues are the same; thus, we investigate the
case where the total number of control nodes is 5.

In the cyber-physical power system, the difference in the
importance of the node group composed of all nodes of
the power grid and the communication network is shown in
Tables 11 and 12.

These two tables show that the minimum nonzero eigen-
value corresponding to the node group composed of all power
grid nodes is larger than that composed of the communication
network in a small-scale or large-scale cyber-physical power
system. This result shows that the node group consisting of all
power grid nodes is more important than the communication
network node group.

We are taking a small-scale cyber-physical power system
as an example if we are looking for critical node groups in
the cyber-physical power system from an overall perspective.
The results show in Table 13.

Comparing Table 13 and Table 4, When the number of
pinning nodes is 2 and 4, the minimum non-zero eigenvalues
obtained by this method are smaller than that of the way
in this paper, which indicates that the connectivity of the

TABLE 10. Critical node groups in the cyber-physical power system
(IEEE-118 and 118 scale-free ‘‘one-to-one’’ connection).

TABLE 11. Comparison of the importance of node groups composed of
all nodes in power grid and communication network (IEEE-30 and
32 scale-free ‘‘one-to-one’’ connection).

TABLE 12. Comparison of the importance of node groups composed of
all nodes in power grid and communication network (IEEE-118 and
120 scale-free ‘‘one-to-one’’ connection).

TABLE 13. Find critical node groups from an overall perspective (IEEE-30
and 32 scale-free ‘‘one-to-one’’ connection).

network is not as good as the method in this paper. In the case
of many pinning nodes, this method can make the network
connectivity more dominant. However, we can find that the
nodes in the critical node group of this method are all from
the power grid under the same number of pinning nodes. If the
power grid is severely damaged, we cannot knowwhich nodes
in the communication network could be controlled to improve
the connectivity. Therefore, the method in this paper is more
effective.

B. DISCUSSION OF THE PROPOSED ALGORITHM TO
REDUCE THE NUMBER OF CALCULATIONS
Algorithm 1 primarily reduces the number of calculations
by performing two screenings in Steps 2 and 5. Step 2 of
Algorithm 1 can reduce the number of nodes and simplify
the calculation only for a single node’s in-degree. However,
Step 5 of Algorithm 1 can reduce the number of node com-
binations and increase the accuracy, and the two screening
processes can reduce the amount of calculation. Tables 14-17
show the results of reducing the number of calculations.

As shown in Tables 14-15, the number of nodes in the
power grid is either 30 or 118 before passing through
Step 2 of Algorithm 1. The number of node groups decreases
after filtering, e.g., in a 120-node scale-free communication
network, when the number of control nodes is small (i.e.,
l = 2). Although the reduced number of nodes is only two,
the number of subsequent node combinations will be reduced
by C2

120 − C2
118 = 237, which contributes to a reduction

in the amount of computation. As shown in Tables 16-17
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TABLE 14. Results after the first screening of the power grid (IEEE–30/IEEE–118).

TABLE 15. Results after the first screening of the communication network (32-node/120-node).

TABLE 16. Results after the second screening of the power grid (IEEE-30/IEEE-118).

TABLE 17. Results after the second screening of the communication network (32-node/120-node).

TABLE 18. Critical node groups in the cyber-physical power system
(IEEE–30 and 32 scale-free ‘‘multiple-to-multiple’’ connection).

for the IEEE-30 power grid and the 32-node communication
network, the number of node groups after screening gradually
decreases with an increasing number of pinned nodes. This
result likely occurs because the fundamental node group with
the largest in-degree may be critical in itself with this number
of restrained nodes. Therefore, if its λ is larger, there will
be fewer remaining node groups that meet the second filter
condition. After passing through Step 5 of Algorithm 1, the
number of node combinations decreases even further (e.g.,
in the IEEE-30 power grid). With five pinning control nodes,
the number of node combinations is reduced by C5

30 − 10 =
142506 groups after the second screening, which markedly
reduces the number of calculations. These results also show
that the proposed algorithm effectively reduces the number of
calculations and screens many node combinations with low
values.

C. COMPARISON WITH OTHER CRITICAL NODE
EVALUATION METHODS
In this section, we compare the proposed method with the
other three methods:

1) Betweenness centrality (BC): This strategy uses the
betweenness of a node as an indicator and considers
that the more times a node acts as an intermediary node,
the more critical it is;

2) Degree centrality (DC): This strategy uses the degree of
the node as an indicator and considers that the greater
the degree of the node, the more critical it is; and

3) Information entropy strategy (S): This strategy consid-
ers that the greater the probability of a node being a
neighbor node by other nodes, the more critical it is;

Figs. 4 and 5 visually compare the usage of the four strate-
gies on the cyber-physical power system to demonstrate the

superior performance of the proposed algorithm when evalu-
ating critical node groups. These figures show that the mini-
mum nonzero eigenvalue obtained by the proposed method
is the largest with different numbers of pinning control
nodes, whether a small-scale or a large-scale cyber-physical
power system is used. Also, the network’s connectivity
is optimal, reflecting the proposed algorithm’s superiority.
The other methods mentioned in this article can find in
single-node importance evaluation articles that perform well
in the single-node evaluation and have their basis. Never-
theless, the figure shows that when using these excellent
single node importance detection algorithms to assess critical
node groups, they cannot make the network have excellent
connectivity. Because these methods do not consider the
common influence of nodes, their influence nodes may have
influenced nodes multiple times. They do not delete the
number of affected nodes from the statistics, which creates
the illusion that the node group has a lot of influence. If it
affects many nodes repeatedly, there will jointly affect fewer
nodes, and the affected range will be smaller, which cannot
optimize connectivity. All single-node evaluation strategies
may face this problem in critical node group evaluation. Even
if a method performs optimally in a single-node evaluation
strategy, it will face this problem. The effect of the critical
node group evaluation may be the same as this paper, but it
will not exceed. In addition, these figures show that within a
certain number of control nodes, and an increasing number
of pinned nodes, the minimum nonzero eigenvalue remains
unchanged or increases accordingly. This result shows that
the more control nodes there are, the more connected the
network. However, it is unrealistic to control a large number
of control nodes. Therefore, the number of nodes cannot be
deduced when selecting a pinning node, which increases the
cost and control difficulty.

D. EVALUATION OF CRITICAL NODE GROUPS UNDER
DIFFERENT COUPLING METHODS
The impact of different coupling methods on evaluating crit-
ical node groups in the cyber-physical power system is now
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FIGURE 4. Comparison chart of the minimum nonzero eigenvalue trend based on the number of pinned
nodes from 2 to 8 using different strategies on the ‘‘30-32 scale-free’’ cyber-physical power system.

FIGURE 5. Comparison chart of the minimum nonzero eigenvalue trend based on the number of pinned
nodes from 2 to 10 using different strategies on the ‘‘118-120 scale-free’’ cyber-physical power system.

described. First, we list the cases when the coupling mode is
‘‘multiple-to-multiple’’, as shown in Tables 18 and 19.

These tables show that compared with the ‘‘one-to-one’’
coupling connection of critical node groups, the ‘‘multiple-
to-multiple’’ coupling method is more effective in both large-
and small-scale cyber-physical power systems. This result
indicates that using the ‘‘multiple-to-multiple’’ coupling con-
nection can improve network connectivity.

E. VARIATION TREND OF MINIMUM NON-ZERO
EIGENVALUE WITH THE NUMBER OF PINNED NODES
For an adjacency matrix T of a power network or communi-
cation network, its characteristic equation is |T − λE| = 0,
where λ is all eigenvalues of T and E is the identity matrix of
the same dimension as T . The minimum nonzero eigenvalue
λ1 of the modified Laplacian matrix LN−l of the power
network or communication network can be expressed as:

λ1 = min {λ||LN−l − λE |= 0, λ 6= 0} (26)

Considering L = Din − T , where Din is the diagonal
matrix composed of the in-degrees of all nodes of the power
grid or communication network) and LN−l = L(H ) + θ of
definition 2 into Eqn. (26), the following can be deduced:

λ1 = min{λ||L(H )+ θ − λE |= 0, λ 6= 0}

= min
{
λ||Din′ − T ′ + θ − λE |= 0, λ 6= 0

}
(27)

where D′in and T ′ are the parts that remain after deleting
the corresponding rows and columns of the Din and T node
groups (i.e., deleting the rows and columns corresponding

FIGURE 6. Process of changing the minimum nonzero eigenvalue with
the change in the number of pinned nodes (IEEE-30 and 32 scale-free
‘‘multiple-to-multiple’’).

to the controlled nodes of the power grid or communication
network).

This section considers a small-scale cyber-physical power
system with ‘‘multiple-to-multiple’’ coupling connections.
We use Algorithm 1 to determine the critical node groups
of the power grid and communication network. Then, these
groups are combined and introduced into Eqn. (27) to cal-
culate the minimum nonzero eigenvalue. Fig. 6 shows how
the minimum nonzero eigenvalue changes with the number
of pinned nodes.

Fig. 6 shows that as the number of pinned nodes increases,
the minimum nonzero eigenvalue gradually increases or
remains unchanged. Themore pinned nodes there are, the less
efficient the change in the minimum nonzero eigenvalue. The
more nodes there are, the better the network’s connectivity;
the connectivity may also eventually stabilize. The minimum
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TABLE 19. Critical node groups in the cyber-physical power system (IEEE–118 and 120 scale-free ‘‘multiple-to-multiple’’ connection).

nonzero eigenvalue remains unchanged because a single
power grid and a single communication network have the
same minimum nonzero eigenvalues for a given number of
pinned nodes. This result differs from other numbers of
pinned nodes with the same network connectivity. For this
given number of pinned nodes, selecting a groupwith the least
number of pinned nodes under the same nonzero eigenvalue
reduces the control cost and difficulty. When the minimum
nonzero eigenvalue of the cyber-physical power system is
-0.0261, three groups of nodes use the same group of nodes as
the optimal pinning control node group because the number
of restraining nodes in the power grid and the communication
network is 7, 8, and 9, which all have the same nonzero eigen-
values. This result means that the same group of nodes will
be used as the optimal number of nodes. When the minimum
nonzero eigenvalue is -0.0214, there will be four groups using
the same node group.When theminimum nonzero eigenvalue
is -0.02, there will be two groups using the same optimal node
group. When the minimum nonzero eigenvalue is 0.0036,
there will be six groups using the same node group. When the
minimum nonzero eigenvalue is 0.0045, there will be seven
groups using the same node group. Each of these nonzero
eigenvalues is similar to the previous group; therefore, their
changes can be ignored.

IV. CONCLUSION
We propose an algorithm based on pinning control the-
ory to evaluate critical node groups in a directed weighted
cyber-physical power system. This algorithm uses the small-
est nonzero eigenvalue of the modified Laplace matrix
as the evaluation index with the help of matrix analy-
sis theory. After many simulations, the conclusions are as
follows:

1) Computational complexity is markedly reduced
through the two screening processes in the algorithm
proposed in this paper. The critical node groups in the
directed weighted cyber-physical power system can
be more accurately determined compared with other
essential node evaluation strategies.

2) The active and standby dispatch center nodes do not
directly couple with the power grid of the two com-
munication networks. Although there is a cost when
adding two nodes as the active and standby dispatch
centers, better results are achieved. The node group
composed of all nodes of the power grid is more impor-
tant than the node group consisting of all the nodes
of the communication network large- and small-scale
cyber-physical power systems.

3) As the number of control nodes increases, the con-
nectivity of the cyber-physical power system improves
until it tends to stabilize. Compared with the ‘‘one-
to-one’’ coupling connection method, the ‘‘multiple-
to-multiple’’ coupling connection method can result in
better connectivity of the cyber-physical power system
under a node group with the same number of nodes.

In future work, we plan to use more methods to reduce
computational complexity in a larger-scale directed weighted
cyber-physical power system.
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