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ABSTRACT In this paper, a new bio-inspired metaheuristic algorithm called Zebra Optimization Algo-
rithm (ZOA) is developed; its fundamental inspiration is the behavior of zebras in nature. ZOA simulates
the foraging behavior of zebras and their defense strategy against predators’ attacks. The ZOA steps are
described and then mathematically modeled. ZOA performance in optimization is evaluated on sixty-eight
benchmark functions, including unimodal, high-dimensional multimodal, fixed-dimensional multimodal,
CEC2015, and CEC2017. The results obtained from ZOA are compared with the performance of nine well-
known algorithms. The simulation results show that ZOA can solve optimization problems by creating a
suitable balance between exploration and exploitation and has a superior performance compared to nine
competitor algorithms. ZOA’s ability to solve real-world problems has been tested on four engineering
design problems, namely, tension/compression spring, welded beam, speed reducer, and pressure vessel.
The optimization results show that ZOA is an effective optimizer in determining the values of the design

variables of these problems compared to the nine competitor algorithms.

INDEX TERMS Bio-inspired, exploitation, exploration, engineering design, optimization, zebra.

I. INTRODUCTION
The optimization problem is a problem that has more than one
feasible solution, and optimization is the process of achieving
the best solution among all the available solutions to this
problem. Each optimization problem is determined by its
decision variables, constraints, and objective function [1].
Various analytical methods have been proposed to solve opti-
mization problems, including gradient-based methods and
numerical calculations. Methods such as gradient-based are
limited to solving simple derivative functions, and when the
condition of continuity and derivability of functions does not
exist, the gradient method is unusable. On the other hand,
the accuracy of numerical calculation methods depends on
choosing the appropriate initial solution despite their wide
application in solving optimization problems. In such meth-
ods, improper selection of initial solutions leads to the opti-
mal local solution [2].

In an optimization problem, it is not only important to find
a solution, but also the cost of achieving the solution and
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its efficiency. Global optimization problems in real applied
optimization problems have high dimensions and complex-
ity because they involve many multiple decision variables
and many complex nonlinear relationships. The complex and
non-convex nature of the problems and their unknown search
space in real-world applications make analytical methods
almost unusable [3]. The weakness of analytical mathemati-
cal methods in solving optimization problems has led to the
creation of a special type of intelligent search algorithms
called meta-heuristic algorithms. Meta-heuristic algorithms
are stochastic methods that, inspired by nature and its mech-
anisms, try to send their initial population to the global opti-
mum and provide appropriate solutions close to the global
optimum in a reasonable time [3]. Because these solutions
may not be the same as the global optima of optimization
problems, the solutions obtained from metaheuristic algo-
rithms are called quasi-optimal [4].

Metaheuristic algorithms based on the two concepts of
exploration and exploitation are able to find appropriate solu-
tions to optimization problems. The concept of exploration
represents the ability of the algorithm to globally search the
search space to scan it to identify the optimal area accurately.
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The concept of exploitation represents the ability of the algo-
rithm to locally search the search space to converge to better
solutions [5]. Optimization algorithms must strike a suitable
balance between exploration and exploitation to perform well
in achieving the appropriate solution [6].

In designing metaheuristic algorithms, simulations of
evolution-based processes in nature, physical phenom-
ena, biological sciences, animal behavior, and other living
organisms have been used. Hence, in a general category,
metaheuristic algorithms fall into three groups: swarm-based,
evolutionary-based, and physics-based methods.

Simulation of swarming processes in the behavior of
animals, aquatic animals, birds, and other living things has
been an inspiration in the development of swarm-based meth-
ods. The most famous algorithms in this group are Ant
Colony Algorithm (ACO) [7], Particle Swarm Optimization
(PSO) [8], and Artificial Bee Colony (ABC) [9]. The natural
behavior of the swarm of ants in discovering the short-
est path between the nest and the food has been the main
inspiration in ACO design. PSO is inspired by the swarm
behavior and movement of birds or fish seeking food in
nature. ABC has been introduced by imitating the intelligent
behavior of a bee colony in search of food. The strategy
of living organisms when hunting and trapping prey has
been the main idea of various metaheuristic algorithms such
as Grey Wolf Optimizer (GWO) [10], Spotted Hyena Opti-
mizer (SHO) [11], Whale Optimization Algorithm (WOA)
[12], Chameleon Swarm Algorithm (CSA) [13], and Marine
Predator Algorithm (MPA) [2]. The use of foraging and
nutritional behavior modeling led to the design of metaheuris-
tic algorithms such as Tunicate Swarm Algorithm (TSA)
[14], Raccoon Optimization Algorithm (ROA) [15], and Salp
Swarm Algorithm (SSA) [16].

Simulation of biological evolutionary concepts and natural
selection theory led to the design of evolution-based
algorithms. Genetic Algorithm (GA) [17] and Differen-
tial Evolution (DE) [18] can be named the most popular
evolution-based methods. In designing GA and DE, random
operators including selection, crossover, and mutation have
been used according to the concepts of natural selection and
the reproductive process. Other evolutionary-base methods
can be referred to as Genetic programming (GP), Cultural
algorithm (CA) [19], Evolution strategy (ES).

Mathematical modeling of physical laws and phenomena
has been effective in the development of physics-based meth-
ods. Among the most popular physics-based optimization
approaches are Simulated Annealing (SA) [20], Gravitational
Search Algorithm (GSA) [21], and Big Bang-Big Crunch
Algorithm (BB-BC) [22]. The physical phenomenon of metal
melting and their cooling process have been the origin of
SA design. Gravitational law and Newtonian laws of motion
have been the main idea in GSA design. Big Bang and
Big Crunch theories are employed as two concepts of the
evolution of the universe in the design of BB-BC. Other
physics-based metaheuristics can be referred to Water Cycle
Algorithm (WCA) [23], Nuclear Reaction Optimization

49446

TABLE 1. Recently published metaheuristic algorithms.

Algorithm year
Aquila Optimizer (AO) [28] 2021
Chameleon Swarm Algorithm (CSA) [13] 2021
African Vultures Optimization Algorithm (AVOA) [29] 2021
Artificial Gorilla Troops Optimizer (GTO) [30] 2021
Horse Herd Optimization (HHO) [31] 2021
Quantum-based Avian Navigation Optimizer Algorithm 2001
(QANA) [32]
Wild Horse Optimizer (WHO) [33] 2021
Golden Eagle Optimizer (GEO) [34] 2021
Artificial lizard Search Optimization (ALSO) [35] 2021
Artificial Hummingbird Algorithm (AHA) [36] 2022
Reptile Search Algorithm (RSA) [37] 2022
Diversity-maintained = Multi-trial Vector  Differential 022
Evolution (DMDE) [38]
Ebola Optimization Search Algorithm [39] 2022
Orca Predation Algorithm (OPA) [40] 2022
Honey Badger Algorithm (HBA) [41] 2022
Trees Social Relations Optimization Algorithm (TSR) [42] 2022
Predator-Prey Optimization (PPO) [43] 2022
Starling Murmuration Optimizer (SMO) [44] 2022
Gaze Cues Learning-based Grey Wolf Optimizer (GGWO)2022
[45]
Dwarf Mongoose Optimization Algorithm (DMO) [46] 2022

(NRO) [24], Ray Optimization (RO) algorithm [25], Central
Force Optimization (CFO) algorithm [26], Galaxy Based
Search Algorithm (GbSA) [27].

Numerous metaheuristic algorithms have been published
in recent years, some of which are listed in Table 1.

In the study of optimization algorithms, the main research
question is that despite the numerous metaheuristic algo-
rithms designed, what is the need to develop newer opti-
mization algorithms? The answer to this question based on
the No Free Lunch (NFL) theorem [47] is that the optimal
performance of an algorithm in optimizing a set of objec-
tive problems and functions does not guarantee the optimal
performance of that algorithm in solving other optimization
problems. The NFL states that any algorithm can never be
declared the best optimizer for all optimization issues. Hence,
the NFL encourages researchers to design new metaheuristic
algorithms to be able to solve optimization problems more
effectively by providing better solutions. The NFL motivated
the authors of this paper to develop a new metaheuristic algo-
rithm that is highly efficient in achieving optimal solutions to
optimization problems.

Zebras are herbivores whose main diet consists of various
grasses and plant materials such as leaves and sprouts. The
zebra is a social animal that always lives in a herd to protect

VOLUME 10, 2022



E. Trojovska et al.: ZOA: New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm IEEEACCGSS

Input information of optimization problem.

!

Set parameters of N and T.

[

Create initial population.

y

Evaluate objective function based initial population.

Update PZ: pioneer zebra.

!

Phase 1: Calculate X]*"""! using (3).

v

Phase 1: Update X; using (4).

'

Phase 2: Ps = rand.

Yes

No

| 1
¥ ¥

Phase 2: Calculate X[**""*? using S; mode in (5). Phase 2: Calculate X;'*"""? using mode S, in (5).

v v

Phase 2: Update X; using (6).

Yes

Save the best solution found so far.

:

NO i=1

~
Il
~
+
=

Yes

Print the best candidate solution.

VOLUME 10, 2022 49447

FIGURE 1. Flowchart of ZOA.
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TABLE 2. Parameter values for the competitor algorithms.

Algorithm Parameter Value
QANA number of flocks k=10
K’ 9
K” 50
MPA
Constant number P=05

R is a vector of uniform random
Random vector
numbers from [0, 1].

Fish aggregatin,
. ggresanng FADs=0.2
devices (FADs)
Binary vector U=0orl
TSA
Pmin and Pmax 1,4
random numbers lie in the interval
1, €2, C3
[0,1].
WOA
Convergence ) .
a: Linear reduction from 2 to 0.
parameter (a)
ris a random vector
in[0,1].
lis a random number
in[-1,1].
GWO
Convergence
a: Linear reduction from 2 to 0.
parameter (a)
TLBO
Tr: teaching factor Tr=round [(1 + rand)]
rand is a random number between
random number
[0,1].
GSA
Alpha, Go, Rnorm,
20, 100,2,1
Rpower
PSO
Topology Fully connected
Cognitive and social
(c1, ) =(2,2)
constant
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
GA
Type Real coded
Selection Roulette wheel (Proportionate)
Whole arithmetic (Probability =
Crossover 0.8,
a € [-0.5,1.5])
Mutation Gaussian (Probability = 0.05)

itself from predators. Although the animal’s first instinctive
move is to escape the predator, it sometimes confuses or
frightens the predator by gathering together to form a defen-
sive structure.
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Based on the best knowledge of the literature, simulation
of zebra’s social behavior in nature has not been employed
in the design of any optimization algorithm. In this paper,
a new optimizer based on simulation of foraging behavior
and defensive strategy of zebras is developed to address this
research gap.

This paper’s novelty and scientific contribution are to
design a new metaheuristic algorithm called Zebra Optimiza-
tion Algorithm (ZOA). ZOA’s fundamental inspiration is to
model the social behavior of herds of zebras in the wild. The
ZOA steps are stated, its mathematical modeling is presented.
ZOA performance has been tested on sixty-eight bench-
mark functions of a variety of unimodal, high-dimensional
multimodal, fixed-dimensional multimodal, CEC2015, and
CEC2017. The optimization results obtained from ZOA are
compared with nine well-known algorithms. The claim of
this study is that based on the mathematical simulation of
zebras’ life, a new and powerful metaheuristic algorithm can
be designed for optimization applications. The results of opti-
mization and experiments on objective functions, comparison
of ZOA performance with several well-known metaheuristic
algorithms, and various analyzes confirm that ZOA is highly
efficient in optimization applications.

In the following, the paper is organized so that the proposed
algorithm is introduced in Section 2. Simulation studies and
analysis of the proposed algorithm are presented in Section 3.
The efficiency of the proposed algorithm in solving engineer-
ing design problems is evaluated in Section 4. Conclusions
and several suggestions for future studies are provided in
Section 5.

Il. ZEBRA OPTIMIZATION ALGORITHM
In this section, the proposed nature-inspired Zebra Optimiza-

tion Algorithm (ZOA) is introduced and its mathematical
modeling is presented.

A. INSPIRATION

Zebras are equine animals and come from eastern and
southern Africa. This animal is famous for its black-and-
white striped coat on its body. These stripes are usually
located vertically on the neck and body, and they are effective
in hiding zebras from predators as well as an inhibitory
agent against biting flies. Specifications and descriptions of
their conditions are as follows: They have a body length of
210-300 cm with a tail long 38—75 cm, 110-160 cm shoulder
height, and weigh 175-450 kg [48]. The zebra is a heavy
animal whose long and slender legs help the animal run at
high speeds if necessary. Like wild equines, zebras have only
one toe on each foot, a long neck, and a head that makes it
easy to feed on the grass on the ground [49]. Among the social
life behavior of zebras in nature, the two types of behavior
are the most important: foraging and defense strategy against
predators.

In the foraging process, a pioneer zebra opens the way for
other zebras to move to the forage. Therefore, other zebras in
the herd move in the plains under the guidance of this pioneer
zebra [50].
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TABLE 3. Optimization results of ZOA and competitor algorithms on unimodal test function.

Z0A QANA TSA MPA WOA GWO GSA TLBO GA PSO
Fl Ave| 6.61E-124 |4.77E-75| 7.83E-38 | 3.32E-21 | 2.21E-09 | 1.11E-58 | 2.06E-17 8.46E-60 | 13.439108 | 1.80E-05
std | 2.45E-108 [1.41E-74| 7.11E-21 | 4.68E-21 | 7.51E-25 | 5.22E-74 | 1.15E-32 5.02E-76 4.84E-15 | 6.54E-21
Fy Ave| 3.00E-64 [3.84E-40( 8.61E-39| 1.59E-12 | 0.554393 | 1.31E-34 | 2.41E-08 7.28E-35 2.516591 | 0.3462165
std | 1.32E-54 |[1.25E-39| 6.01E-41 | 1.44E-12 | 1.76E-16 | 1.94E-50 | 5.26E-24 6.79E-50 2.27E-15 | 7.56E-17
Fs Ave| 3.24E-90 [9.05E-51| 1.17E-21 | 0.087696 | 1.79E-08 | 7.52E-15 | 283.53406 | 2.79E-15 | 1559.9497 | 598.33438
std | 1.68E-88 |[3.54E-50| 6.80E-21 | 0.146566 | 1.05E-23 | 5.73E-30 | 1.23E-13 2.69E-31 6.71E-13 | 7.22E-13
Fs Ave| 1.86E-58 |2.56E-31| 1.35E-23 | 2.64E-08 | 2.94E-05 1.28E-14 | 3.30E-09 9.56E-15 2.125613 | 4.022851
std | 3.69E-46 |[5.17E-31| 1.17E-22| 9.39E-09 | 1.23E-20 | 1.07E-29 | 2.07E-24 2.15E-30 2.27E-15 | 2.02E-16
Fs Ave| 25.1737 | 26.8601 [29.294423| 46.739735 | 42.403351 | 27.263611 | 36.648554 | 148.65325 | 315.08371 | 51.016387
std | 1.84E-15 |[3.68E-15|4.83E-03 | 0.4282285 | 2.58E-14 0 3.14E-14 1.94E-14 2.13E-13 1.61E-14
Fe Ave 0 0.6468 | 7.21E-21 | 0.40397 1.63E-09 | 0.6519345 0 0.4501525 | 14.76825 | 20.55375
std 0 0.2726 | 1.14E-25| 0.194271 | 4.69E-25 | 6.30E-17 0 4.28E-16 3.23E-15 | 7.67E-04
F, Ave| 1.91E-05 |[2.51E-04|3.78E-04 | 0.001827 [ 0.0208075 [ 0.000812 | 0.020909 | 0.0017255 | 5.77E-03 | 0.115101
std | 2.71E-21 |5.12E-20( 5.17E-05 | 0.001015 | 1.57E-18 | 7.38E-20 | 2.76E-18 3.94E-19 7.87E-19 | 4.41E-17
Wins of ZOA in 7 functions 7
Ties of ZOA in 7 functions 0
Losses of ZOA in 7 functions 0
TABLE 4. Optimization results of ZOA and competitor algorithms on high dimensional multimodal test function.
ZOA QANA TSA MPA WOA GWO GSA TLBO GA PSO
v Ave|-6618.5746( -5281.28 [-5826.4439| -3648.0757 | -1688.9379 | -5973.394 |-2891.8085(-7519.7399 [-8307.1804|-7012.2856
’ std| 6.34E-01 | 563.2137 | 42.1225 | 823.49641 | 727.09444 | 474.52651 | 268.31687 | 521.28208 | 845.71475 | 635.00917
Fo Ave 0 0 5.79E-03 | 142.22566 | 4.2641165 | 8.65E-15 | 16.511513]10.402228 | 63.347571 | 57.91722
std 0 0 1.48E-03 | 26.707086 | 4.43E-15 | 5.73E-30 | 3.23E-15 | 5.64E-15 | 2.58E-14 | 6.45E-15
Fio Ave| 8.88E-16 | 4.44E-15 | 9.95E-14 | 9.84E-12 | 0.3342395 | 1.73E-14 | 3.62E-09 | 0.2798355 | 3.270127 | 2.186919
std | 7.94E-16 | 2.16E-14 | 4.58E-12 | 6.22E-12 2.02E-12 | 2.79E-14 | 3.75E-08 | 2.60E-14 | 5.24E-11 | 8.06E-12
Fu Ave 0 0 1.02E-07 0 0.1206835 | 0.0037555 | 3.7935625 | 0.617323 | 1.248653 | 0.046893
std 0 0 7.57TE-07 0 9.13E-17 | 1.28E-18 | 2.82E-15 | 2.02E-16 | 8.57E-16 | 3.15E-18
- Ave| 2.87E-05 | 0.016112 | 0.037352 | 0.0863765 | 1.767521 | 0.037758 | 0.036743 |0.0206045 | 0.047705 | 0.487809
. std | 2.60E-08 | 0.007672 | 1.57E-02 | 0.005278 8.26E-02 | 4.41E-07 | 6.30E-07 | 7.87E-06 | 4.72E-07 | 1.89E-06
Ave| 0.0199 1.253473 |3.0018625 | 0.4974515 | 0.350784 |0.5849445| 0.00203 |0.3342395]1.2266275| 0.516026
Fo std | 4.87E-16 | 0.460513 | 1.59E-12 | 0.196098 | 3.30E-12 | 2.52E-15 | 4.33E-14 | 2.14E-14 | 3.28E-14 | 5.04E-15
Wins of ZOA in 6 functions 3
Ties of ZOA in 6 functions
Losses of ZOA in 6 functions 1

The zebras’ first strategy against predators is to escape in
a zigzag motion pattern. However, sometimes by gathering,
they try to confuse or frighten the predator [48].

Mathematical modeling of these two types of intelligent
zebra behavior is the fundamental inspiration for the pro-
posed ZOA design.

B. MATHEMATICAL MODELLING
In this subsection, mathematical simulations of zebra’s natu-
ral behaviors are presented to model ZOA.

1) INITIALIZATION

ZOA is a population-based optimizer that zebras are members
of its population. From a mathematical point of view, each
zebra is a candidate solution to the problem and the plain
in which the zebras are in the search space for the problem.

VOLUME 10, 2022

The position of each zebra in the search space determines
the values for the decision variables. Thus, each zebra as a
member of the ZOA can be modeled using a vector, while the
elements of this vector represent the values of the problem
variables. The population of zebras can be mathematically
modeled using a matrix. The initial position of the zebras in
the search space is randomly assigned. The ZOA population
matrix is specified in (1).

X X1,1 X1j r XLm
X=X =1 X1 Xij Xi,m ’
XN Inwm XN, 1 NG XN L N
(D
49449
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TABLE 5. Optimization results of ZOA and competitor algorithms on fixed dimensional multimodal test function.

ZOA QANA TSA MPA WOA GWO GSA TLBO GA PSO
- Ave| 0.9980 0.9980 1.9923 0.9980 0.9980 3.7408 3.5913 22721 0.9986 2.1735
std | 9.26E-18 | 5.62E-17 | 2.69E-07 | 4.34E-16 | 9.58E-16 | 6.55E-15 | 8.06E-16 | 2.02E-16 | 1.59E-15 | 8.06E-16
Fis Ave| 0.00030 | 0.00040 | 0.000406 | 0.003045 |0.0049735 | 0.0063945 | 0.002436 |0.0033495 | 5.48E-02 |0.0543025
std | 5.64E-16 | 6.91E-15 | 9.15E-14 | 4.16E-15 | 3.54E-14 | 1.18E-14 | 2.95E-14 | 1.24E-15 | 7.19E-15 | 3.94E-14
o Ave| -1.0316 -1.0316 -1.0316 -1.0316 | -1.0316 | -1.0316 | -1.0316 | -1.0316 -1.0316 -1.0316
std | 1.44E-16 | 4.68E-16 |5.6514E-16|4.4652E-16|9.9301E-16|3.9720E-16|5.9580E-16|1.4398E-15| 7.9441E-16 |3.4755E-16
F”Ave 0.3978 0.3978 0.3991 0.3979 0.4047 0.3978 0.3978 0.3978 0.4369 0.7854
std | 6.11E-18 | 1.51E-16 |2.1596E-16|9.1235E-15|2.4825E-14 |8.6888E-16|9.9301E-16|7.4476E-16| 4.9650E-14 |4.9650E-15
- Ave 3 3 3 3 3.0000 3 3.0009 43592 3
std | 2.97E-18 | 4.75E-16 | 2.72E-15 | 2.01E-15 | 5.84E-15 | 2.14E-15 | 7.12E-16 | 1.63E-15 | 6.11E-16 | 3.77E-15
Fi Ave| -3.8627 | -3.8627 -3.8066 -3.8627 | -3.8627 | -3.8621 | -3.8627 | -3.8609 | -3.85434 | -3.8627
std | 4.63E-16 | 5.07E-15 | 2.69E-15 | 4.33E-15 | 3.26E-15 | 2.53E-15 | 8.51E-15 | 7.50E-15 | 1.01E-13 | 9.12E-15
- Ave| -3.322 | -3.31011 [ -3.287394 | -3.287889 | -3.209976 | -3.219777 | -3.009204 | -3.169386 | -2.795661 | -3.229281
std | 6.70E-17 | 3-66E-15 | 563E-15 | 1.13E-11 | 7.86E-16 | 2.16E-15 | 2.16E-14 | 1.77E-15 | 3.93E-11 | 2.95E-12
. Ave| -10.1532 | -10.1532 | -5.447079 | -10.1532 | -7.327584 | -9.548748 | -5.097114 | -9.082854 | -4.26096 | -5.335209
std | 2.39E-17 | 1.06E-15 | 5.41E-13 | 2.51E-11 | 2.36E-11 | 6.49E-15 | 2.95E-14 | 8.45E-15 | 1.57E-12 | 1.47E-13
- Ave| -10.4029 | -10.4029 | -5.011875 | -10.4029 | -8.728335 |-10.298475( -8.933661 | -9.938511 | -5.066226 | -7.555977
std | 1.05E-16 | 3.42E-15 | 8.38E-14 | 2.79E-11 | 6.68E-15 | 1.97E-15 | 1.63E-12 | 1.51E-14 | 6.23E-15 | 7.51E-15
s Ave| -10.5364 | -10.5360 |-10.257687 |-10.431036] -9.900297 [-10.028898 | -8.815455 | -9.197595 | -6.496479 | -6.103152
std | 7.18E-16 | 1.36E-15 | 7.57E-12 | 3.95E-11 | 9.04E-15 | 4.52E-15 | 7.08E-14 | 6.13E-15 | 3.83E-15 | 2.75E-15
Wins of ZOA in 10 functions 3
Ties of ZOA in 10 functions 7, But based on the “std” index, the ZOA approach is superior.
Losses of ZOA in 10 functions 0

where X is the zebra population, X; is the ith zebra, x; ; is the
value for the jth problem variable proposed by the ith zebra,
N is the number of population members (zebras), and m is the
number of decision variables.

Each zebra represents a candidate solution to the opti-
mization problem. Therefore, the objective function can be
evaluated based on the proposed values of each zebra for
the problem variables. The values obtained for the objective
function are specified as a vector using (2).

Fy F(X1)
F=|F = | FXp) ) )
L0 PV FXN) Jyy

where F is the vector of objective function values, and F; is
the objective function value obtained for the ith zebra. Com-
paring the values obtained for the objective function effec-
tively analyzes the quality of their corresponding candidate
solutions and identifies the best candidate solution for the
given problem. In minimization problems, the zebra with the
least value of objective function is the best candidate solution.
In contrast, in maximization problems, the zebra with the
highest value of the objective function is the best candidate
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solution. Since in each iteration, the positions of the zebras
and consequently the values of the objective function are
updated, the best candidate solution must also be identified
in each iteration.

Two natural behaviors of zebras in the wild have been used
to update ZOA members. These two types of behavior include

(i) foraging and

(ii) defense strategies against predators.

Therefore, in each iteration, members of the ZOA popula-
tion are updated in two different phases.

2) PHASE 1: FORAGING BEHAVIOR

In the first phase, population members are updated based
on simulations of zebra behavior when searching for forage.
The main diet of zebras is mainly grasses and sedges, but
if their favorite foods are scarce, they may also eat buds,
fruits, bark, roots, and leaves. Depending on the quality and
availability of vegetation, zebras may spend 60—80 percent
of their time eating [51]. Among the zebras, there is a
zebra called the plains zebra, which is a pioneer grazer,
by devouring the canopy of upper and less nutritious grass,
provides conditions for other species that need shorter and
more nutritious grasses below [50]. In ZOA, the best member
of the population is considered as the pioneer zebra and
leads other population members towards its position in the

VOLUME 10, 2022
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FIGURE 2. Boxplot of performance of ZOA and competitor algorithms in solving test functions.
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FIGURE 2. (Continued.) Boxplot of performance of ZOA and competitor algorithms in solving test functions.

“

search space. Therefore, updating the position of zebras in

the foraging phase can be mathematically modeled using (3)

and (4).

is the new status of the ith zebra based on

new,P1

new, Pl
first phase, x; j

X:

where

1

is its

new,P1

is its jth dimension value, F;

1

3

Xij+r- (PZJ -1 -x,;j)

new,P1
xi,j
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FIGURE 3. Convergence curves of ZOA and competitor algorithms.

objective function value, PZ is the pioneer zebra which is the
best member, PZ; is its jth dimension, r is a random number
in interval [0, 1], I = round (1 + rand), where rand is a
random number in the interval [0, 1]. Thus, I € {1, 2} and
if parameter / = 2, then there are much more changes in
population movement.
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3) PHASE 2: DEFENSE STRATEGIES AGAINST PREDATORS

In the second phase, simulations of the zebra’s defense strat-
egy against predator attacks are employed to update the posi-
tion of population members of ZOA in the search space.
The main predators of zebras are lions; however, they are
threatened by cheetahs, leopards, wild dogs, brown hyenas,
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TABLE 6. p-values obtained from Wilcoxon rank sum test.

Compared Algorithms

ZOA vs. QANA 0.015625
ZOA vs. MPA 0.015625
ZOA vs. TSA 0.015625
ZOA vs. WOA 0.015625
ZOA vs. GWO 0.015625
Z0A vs. TLBO 0.015625
ZOA vs. GSA 0.03125
ZOA vs. PSO 0.015625
ZOA vs. GA 0.015625
TABLE 7. Friedman test results.

Compared

Algorithms Unimodal

Avg. Rank Overall Rank

ZOA 2.2857143 1
QANA 2.5714286 3

MPA 5.7142857 6

TSA 2.4285714 2
WOA 6.5714286 8
GWO 4.4285714 4
TLBO 4.8571429 5

GSA 6 7

PSO 8.7142857 9

GA 8.8571429 10

Functions type

0.03261
0.04625
0.03125
0.03125
0.03125
0.03125
0.03125
0.03125
0.03125

Functions type
High-Multimodal

Avg. Rank
1.1666667
3.8333333

6

5

6.5
3.6666667
4.1666667
5.3333333

6

6.5

0.00423601
0.01953125
0.00390625
0.0078125
0.01171875
0.005859375
0.01953125
0.00390625
0.001953125

Unimodal High-Multimodal Fixed-Multimodal

Fixed-Multimodal

Overall Avg. Rank Overall

1 1.5 1

3 3.6 2
7 3.9 3
5 4.9 6
8 4.8 5
2 5.2 8
4 5 7
6 42 4
7 5.5 9
8 7.4 10

and spotted hyenas [48]. Crocodiles are another predator
of zebras when they approach water [52]. Zebras’ defense

49456

strategy varies depending on the predator. The zebra’s defen-
sive strategy against lion attacks is to escape in a zigzag
pattern and random sideways turning movements [53]. Zebras
are more aggressive against attacks by smaller predators, such
as hyenas and dogs, which confuse and frighten the hunter
by gathering [48]. In the ZOA design, it is assumed that
one of the following two conditions occurs with the same
probability:

(i) the lion attacks the zebra, and thus, the zebra chooses
an escape strategy;

(ii) other predators attack the zebra, and the zebra will
choose the offensive strategy.

In the first strategy, when the zebras are attacked by lions,
the zebras escape from the lion’s attack in the vicinity of the
situation in which they are located. Therefore, mathemati-
cally, this strategy can be modeled using the mode S in (5).
In the second strategy, when other predators attack one of
the zebras, the other zebras in the herd move towards the
attacked zebra and try to frighten and confuse the predator
by creating a defensive structure. This strategy of zebras is
mathematically modeled using the mode S5 in (5). In updating
the position of zebras, the new position is accepted for a zebra
if it has a better value for the objective function in that new
position. This update condition is modeled using (6).

Si:ixij+R-Q2r—1)
new, P2 t
X = (1= ?) - Xij, Py, <0.5; (5)
S ixij+r-(AZ =1 -x;j), else,
X_new,PZ’ F_new,P2 F;;
Xi=1" P ©)
X; else,

VOLUME 10, 2022
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TABLE 8. Scalability analysis of the ZOA.

Dimension (m)

Objective Function

10 30 50 100 500 1000
Fi 2E-101 6.6E-124 4.25E-94 6.01E-95 6.24E-87 2.14E-88
F» 8.79E-55 3E-64 1.68E-51 7.13E-50 3.65E-43 6.75E-44
F; 8.47E-87 3.24E-90 1.47E-58 1.55E-45 9.92E-29 9.45E-20
F4 1.35E-49 1.86E-58 1.43E-45 4.22E-43 3.05E-42 1.67E-41
Fs 7.93447 25.1737 48.23722 98.04907 0.081543 0.136514
F¢ 0 0 0 0 0 0
F, 9.83E-05 1.91E-05 0.000132 0.000136 8.33E-05 0.000121
Fyg -2514.63 -6618.57 -8190.56 -12588.6 5186.986 6860.817
Fo 1.398534 0 0 0 0 0
Fio 8.88E-16 8.88E-16 2.31E-15 2.13E-15 1.58E-15 1.09E-15
Fn 0.009226 0 0 0 0 0
Fi 1.06E-10 2.87E-05 0.002484 0.024505 0.020946 0.039158
Fi3 8.79E-09 0.019902 1.862478 8.255436 0.133711 0.091979
where X" is the new status of the ith zebra based on Algorithm. 1: Pseudo-Code of Proposed ZOA

1

second phase, ijW’PZ is its jth dimension value, F;' ew.P2 4
its objective function value, 7 is the iteration contour, T is
the maximum number of iterations, R is the constant number
equal to 0.01, Py is the probability of choosing one of two
strategies that are randomly generated in the interval [0, 1],
AZ is the status of attacked zebra, and AZ; is its jth dimension

value.

C. REPETITIONS PROCESS, FLOWCHART, AND
PSEUDO-CODE OF ZOA

Each ZOA iteration is completed by updating the population
members based on the first and second phases. The process
of updating the algorithm population continues based on (3)
to (6) until the end of the full implementation of the algorithm.
The best candidate solution is updated and saved during
successive iterations. Once fully implemented, ZOA makes
the best candidate solution available as the optimal solution to
the given problem. The ZOA steps are presented as flowcharts
in Figure 1 and its pseudocode in Algorithm 1.

D. COMPUTATIONAL COMPLEXITY

In this subsection, the computational complexity of ZOA is
investigated. ZOA initialization preparation is equal to O(N -
m) where N is the number of zebras and m is the number of
problem variables. ZOA includes the number of T iterations,
so that in each iteration, each population member is updated
in two phases and its objective function is evaluated. The
computational complexity of this update process is equal to
OQ2 - N -m-T). Thus, the total computational complexity of
ZOAisequalto ON -m- (1 4+2-T)).

IIl. SIMULATION STUDIES AND DISCUSSION
In this section, the efficiency of the proposed algorithm
in optimizing and providing optimal solutions is evaluated.

VOLUME 10, 2022

Start ZOA.

1. Input: The optimization problem information.

2. Set the number of iterations (7') and the number of zebras’
population (V).

3. Initialization of the position of zebras and evaluation of the
objective function.

Fort=1:T
Update pioneer zebra (PZ).
Fori=1:N

Phase 1: Foraging behavior

Calculate new status of the ith zebra using (3).

Update the ith zebra using (4).

10. Phase 2: Defense strategies against predators

11. If Ps < 0.5, Ps =rand

12. Strategy 1: against lion (exploitation phase)

13. Calculate new status of the ith zebra using mode S in (5).
14. else

15. Strategy 2: against other predator (exploration phase)

16. Calculate new status of the ith zebra using mode S3 in (5).
17. endif

18. Update the ith zebra using (6).

19. endfori=1:N

20. Save best candidate solution so far.

21. endforr=1:T

22. Output: The best solution obtained by ZOA for given
optimization problem.

End ZOA.

A Ak

Sixty-eight benchmark functions have been employed to
test the performance of the proposed algorithm. These
functions include unimodal, high-dimensional multimodal,
fixed-dimensional multimodal, CEC2015, and CEC2017.
The ability of the proposed algorithm is compared with
the performance of the nine famous metaheuristics GWO,
TLBO, GA, MPA, PSO, QANA, TSA, WOA, and GSA.
Table 2 shows the values of the control parameters of
these algorithms. The proposed algorithm and each of the
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TABLE 9. Sensitivity analysis of the ZOA for the number of population members.

Objective Function

Number of Population Members

20 30 50 100
Fy 1.43E-89 6.6E-124 1.4E-175 3.7E-215
F 3.42E-46 3E-64 1.49E-89 4.6E-115
Fs3 1.93E-63 3.24E-90 4.8E-114 1.2E-134
F,4 4.79E-41 1.86E-58 8.25E-78 5.6E-98
Fs 26.1358 25.1737 25.1036 25.0647
Fs 0 0 0 0
F; 1.49E-05 1.91E-05 9.54E-06 5.67E-06
Fs -6259.86 -6618.57 -6667.26 -6788.74
Fy 0 0 0 0
Fio 8.88E-16 8.88E-16 8.88E-16 8.88E-16
Fu 0 0 0 0
Fip 5.77E-05 2.87E-05 2.1E-06 1.63E-06
Fi3 0.024599 0.019902 0.012295 0.01219
Fiq 0.998004 0.998 0.998 0.998
Fis 0.000307 0.0003 0.0003 0.0003
Fi6 -1.03163 -1.03163 -1.03163 -1.03163
Fiz 0.397887 0.3978 0.3978 0.3978
Fis 3 3 3 3
Fio -3.86278 -3.86278 -3.86278 -3.86278
Fao -3.322 -3.322 -3.322 -3.322
Fa -10.1532 -10.1532 -10.1532 -10.1532
Fa -10.4029 -10.4029 -10.4029 -10.4029
Fas3 -10.5364 -10.5364 -10.5364 -10.5364
TABLE 10. Sensitivity analysis of the ZOA for the maximum number of iterations.
A . Maximum Number of Iterations

Objective Function 100 500 300 1000
F, 1.81E-29 6.6E-99 1.4E-122 6.6E-124
F 8.01E-16 7.27E-47 4.7E-59 3E-64
F; 2.04E-15 6.29E-61 3.87E-74 3.24E-90
F,4 1.09E-14 3.1E-43 5.69E-57 1.86E-58
Fs 28.3168 27.0292 26.2471 25.1737
Fs 0 0 0 0
F; 0.000512 2.43E-05 2.16E-05 1.91E-05
Fs -5948.32 -6231.85 -6548.67 -6618.57
Fy 0 0 0 0
Fio 4.44E-15 8.88E-16 8.88E-16 8.88E-16
Fu 0 0 0 0
Fip 0.065762 0.000826 8.48E-05 2.87E-05
Fi3 1.227694 0.38808 0.03474 0.019902
Fiq 0.998004 0.998004 0.998 0.998
Fis 0.000308 0.000308 0.000308 0.0003
Fi6 -1.03163 -1.03163 -1.03163 -1.03163
Fiz 0.3978 0.3978 0.3978 0.3978
Fis 3 3 3 3
Fio -3.8627 -3.86278 -3.86278 -3.86278
Fao -3.32179 -3.322 -3.322 -3.322
Fa -10.1532 -10.1532 -10.1532 -10.1532
Fa -10.4029 -10.4029 -10.4029 -10.4029
Fa3 -10.5364 -10.5364 -10.5364 -10.5364
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FIGURE 5. Sensitivity analysis of the ZOA for the number of population members.

mentioned algorithms are employed in twenty independent
implementations, while each execution contains 1000 repeti-
tions. The experiments are done in the Matlab R2020a version
in the environment of Microsoft Windows 10 with 64 bits on
the Core i-7 processor with 2.40 GHz and 6 GB memory. The
optimization results obtained for the benchmark functions
have been reported using two indicators: the average of the
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optimal solutions obtained (avg) and the standard deviation
of these solutions (std).

A. EVALUATION OF UNIMODAL BENCHMARK

The unimodal functions F1 to F7 are a good set to evaluate the
exploitability of optimization algorithms because they have
only one main solution without having any local solutions.
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FIGURE 6. Sensitivity analysis of the ZOA for the maximum number of iterations.

Table 3 shows the results of optimizing the functions F1
to F7. The optimization results show that ZOA with high
exploitation power has provided the global optimal in F6
solution. ZOA is the first best optimizer compared to the
competitor algorithms in optimizing F1, F2, F3, F4, F5, and
F7. The simulation results show that ZOA has a superior
performance in optimizing the unimodal functions F1 to F7
against nine competitor algorithms.
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B. EVALUATION OF HIGH-DIMENSIONAL

MULTIMODAL BENCHMARK

The high-dimensional multimodal functions F8 to F13 are a
good set to evaluate the exploration power of optimization
algorithms because in addition to the main optimal solution,
they also have several local solutions in the search space.
Table 4 presents the optimization results of functions F8 to
F13 using the proposed ZOA and nine competitor algorithms.
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TABLE 11. Evaluation results of CEC2015 test functions.

Z0OA QANA MPA TSA

WOA

GWO TLBO GSA GA PSO

CEC1

Ave|2.13E+05[2.14E+05|2.02E+06 | 4.37E+05 | 1.47E+06 | 6.06E+05 | 7.65E+06 | 1.50E+06 | 1.50E+06 | 3.20E+07

std |2.36E+05[2.67E+05(2.08E+06 |4.73E+05 | 2.63E+06 | 5.02E+05 | 3.07E+06 | 1.21E+06 | 1.21E+06 | 8.37E+06

Ave|1.04E+04[1.05E+04] 5.65E+06 | 9.41E+03 | 1.97E+04 | 1.43E+04 | 7.33E+08 | 6.70E+06 | 6.70E+06 | 4.58 E+04

CEC2

std [6.92E+0317.78 E+03|6.03E+06 | 1.08E+04 | 1.46E+04 | 1.03E+04 | 2.33E+08 | 1.34E+08 | 1.34E+08 | 1.09E+04

CEC3

Ave|3.20E+02(3.22E+02|3.20E+02 | 3.20E+02 | 3.20E+02 | 3.20E+02 | 3.20E+02 | 3.20E+02 | 3.20E+02 | 3.20E+02

std | 5.21E-02 |5.74E-02| 7.08E-02 | 8.61E-02 | 9.14E-02 | 3.19E-02 | 7.53E-02 | 1.16E-03

1.16E-03 | 1.11E-05

Ave|4.10E+02 [4.13E+02[4.16E+02 | 4.08E+02 | 4.26E+02 | 4.18E+02 | 4.42E+02 | 4.40E+02 | 4.19E+02 | 4.39E+02

CEC4

std |1.62E+01(1.87E+01[1.03E+01|3.96E+00 | 1.17E+01 | 1.03E+01 | 7.72E+00 | 5.6 1E+01 | 5.6 1E+01 | 7.25E+00

Ave|8.31E+02(8.33E+02(9.20E+02 | 8.65E+02 | 1.33E+03 | 1.09E+03 | 1.76E+03 | 9.81E+02 | 9.81E+02 | 1.75E+03

CECS5

std |[5.12E+01(6.13E+01|1.78E+02 | 2.16E+02 | 3.45E+02 | 2.8 1 E+02 | 2.30E+02 | 2.06E+02 | 2.06E+02 | 2.79E+02

Ave|1.18E+03[1.19E+03|2.26E+04 | 1.86E+03 | 7.35E+03 | 3.82E+03 | 2.30E+04 | 4.05E+03 | 4.05E+03 | 3.91E+06

CEC6

std |2.37E+02[2.74E+02(2.45E+04 | 1.93E+03 | 3.82E+03 | 2.44E+03 | 2.41E+04 | 1.05E+04 | 1.05E+04 | 2.70E+06

CEC7

Ave|7.02E+02[7.06E+02| 7.02E+02 | 7.02E+02 | 7.02E+02 | 7.02E+02 | 7.06E+02 | 7.02E+02 | 7.02E+02 | 7.08E+02

std | 2.90E-02 |3.22E-02| 7.07E-01 | 7.75E-01 | 1.10E+00 | 9.40E-01 | 9.07E-01 | 5.50E-01 | 5.50E-01 | 1.32E+00

Ave|1.40E+03|1.40E+03|3.49E+03 | 3.43E+03 | 9.93E+03 | 2.58E+03 | 6.73E+03 | 1.47E+03 | 1.47E+03 | 6.07E+05

CEC8

std |1.12E+03[1.33E+03[2.04E+03 | 2.77E+03 | 8.74E+03 | 1.61E+03 | 3.36E+03 | 2.34E+03 | 2.34E+03 | 4.81E+05

CEC9

Ave|1.00E+03[1.00E+03| 1.00E+03 | 1.00E+03 | 1.00E+03 | 1.00E+03 | 1.00E+03 | 1.00E+03 | 1.00E+03 | 1.00E+03

std | 4.82E-03 |5.35E-03| 1.28E-01 | 7.23E-02 | 2.20E-01 | 5.29E-02 | 9.79E-01 | 1.51E+01 | 1.51E+01 | 5.33E+00

Ave|2.06E+03 [2.07E+03(4.00E+03 | 3.27E+03 | 8.39E+03 | 2.62E+03 | 9.91E+03 | 1.23E+03 | 1.23E+03 | 3.42E+05

CEC10

std | 1.98E-01 (2.25E-01(2.82E+03 | 1.84E+03 | 1.12E+04 | 1.78E+03 | 8.83E+03 | 2.51E+04 | 2.51E+04 | 1.74E+05

Ave|1.27E+03[1.28 E+03| 1.40E+03 | 1.35E+03 | 1.37E+03 | 1.39E+03 | 1.35E+03 | 1.35E+03 | 1.35E+03 | 1.41E+03

CECl11

std | 1.60E+00{1.91E+00|5.81E+01 | 1.12E+02 | 8.97E+01 | 5.42E+01 | 1.11E+02 | 1.41E+01 | 1.41E+01 | 7.73E+01

Ave|1.30E+03(1.31E+03|1.30E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.31E+03 | 1.30E+03 | 1.30E+03 | 1.31E+03

CEC12

std | 8.22E-02 |19.47E-02] 6.69E-01 | 6.94E-01 | 9.14E-01 | 8.07E-01 | 1.54E+00 | 7.50E+00 | 7.50E+00 | 2.05E+00

Ave|1.30E+03]1.31E+03|1.30E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.35E+03

CEC13 std | 8.91E-04 |1.04E-03| 1.92E-03 | 5.44E-03

1.04E-03 | 2.43E-03 | 3.78E-03 | 6.43E-03 | 6.43E-03 |4.70E+01

Ave|6.18E+0316.21E+03|7.29E+03 | 7.10E+03 | 7.60E+03 | 7.34E+03 | 7.51E+03 | 6.22E+03 | 6.22E+03 | 9.30E+03

CEC14

std |1.23E+02(1.40E+02[2.45E+03 | 3.12E+03 | .29E+03 | 2.47E+03 | 1.52E+03 | 2.12E+03 | 2.12E+03 | 4.04E+02

CEC15

Ave|1.60E+03[1.61E+03|1.61E+03 | 1.60E+03 | 1.61E+03 | 1.60E+03 | 1.62E+03 | 1.60E+03 | 1.60E+03 | 1.64E+03

std | 1.35E+00{1.59E+00|4.94E+00 | 2.66E+07 | 1.13E+01 | 1.80E+02 | 3.64E+00 | 5.69E+01 | 5.69E+01 | 1.12E+01

Wins of ZOA in 15 functions

8

Ties of ZOA in 15 functions

5, But based on the “std” index, the ZOA approach is superior

Losses of ZOA in 15 functions

2

ZOA with high exploration power has been able to provide the
global optimum for functions F9 and F11 after identifying the
optimal area. ZOA is the first best optimizer for functions F10
and F12. In optimization of F§, ZOA is the fourth optimizer
after GA, TLBO, and PSO. In optimization of F13, ZOA is
the second-best optimizer after GSA. The simulation results
show the acceptable exploration power of ZOA in accu-
rately scanning the search space and passing local optimal
areas.

C. EVALUATION OF FIXED- DIMENSIONAL

MULTIMODAL BENCHMARK

The fixed-dimensional multimodal functions F14 to F23
challenge the exploration ability of optimization algorithms
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e

FIGURE 7. Schematic view of tension/compression spring problem.

to find the optimal region in low-dimensional problems.
Table 5 releases the implementation results of the pro-
posed ZOA and nine competitor algorithms in solving func-
tions F14 to F23. ZOA is the first best optimization for
F15 and F20 functions. In addition, the simulation results
show that in solving the functions F14, F16, F17, F18,
F19, F21, F22, and F23, although ZOA is similar in avg
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TABLE 12. Evaluation results of CEC2017 test functions.

ZOA QANA MPA TSA WOA GWO TLBO GSA GA PSO
i Ave | 6.54E+02 | 2.47E+03 | 2.38E+05 4.47E+04 2.12E+05 1.57E+05 6.16E+04 3.30E+06 7.75E+05 8.05E+07
std | 7.19+02 | 2.43E+03 | 2.28E+07 4.83E+06 2.18E+07 2.73E+07 5.12E+06 8.47E+07 3.17E+07 3.52E+06
o Ave | 2.00E+02 | 2.02E+02 | 3.23E+04 9.51E+03 5.75E+05 1.07E+03 1.53E+04 4.68E+03 7.43E+07 6.91E+06
std | 5.16E+00 | 5.07E+02 | 4.29E+06 1.18E+05 6.13E+07 1.56E+05 1.13E+05 1.19E+04 2.43E+09 3.14E+05
C3 Ave | 3.00E+02 | 3.10E+02 | 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02 3.30E+02
std 1.61E-03 2.64E-02 3.86E-03 8.71E-03 7.18E-03 9.24E-03 3.29E-03 1.21E-02 7.63E-03 7.18E-01
c4 Ave | 4.00E+02 | 4.04E+02 | 4.21E+02 4.19E+02 4.26E+02 4.36E+02 4.28E+02 4.49E+02 4.52E+02 5.62E+02
std | 1.56E+01 8.70E-01 1.81E+02 3.06E+01 1.13E+02 1.27E+02 1.13E+02 7.35E+02 7.82E+02 4.88E+03
Cs Ave | 5.09E+02 | 5.11E+02 [ 9.23E+02 8.75E+02 9.30E+02 1.43E+04 1.19E+04 1.85E+03 1.86E+03 1.64E+04
std | 9.34E+01 | 4.04E+00 | 1.95E+03 2.26E+03 1.88E+03 3.55E+04 2.91E+03 2.89E+03 2.40E+03 3.46E+02
6 Ave | 6.31E+02 | 6.50E+02 | 1.39E+04 1.96E+03 2.36E+03 7.45E+03 3.92E+04 3.01E+05 2.40E+04 1.09E+06
std | 6.49E+02 1.65E-04 1.25E+05 1.03E+04 2.55E+05 3.92E+04 2.54E+04 2.80E+07 2.51E+05 2.62E+06
7 Ave | 7.12E+02 | 7.21E+02 | 7.12E+02 7.12E+02 7.12E+02 7.12E+02 7.12E+03 7.18E+02 7.16E+02 7.65E+02
std | 4.73E-03 6.31E+00 | 6.86E-02 7.85E-02 7.17E-02 1.20E+01 9.50E-02 1.42E+01 9.17E-02 3.47E+00
cs Ave | 8.07E+02 8.10E+02 | 1.96E+03 3.53E+03 3.59E+04 9.03E+03 2.68E+04 6.17E+04 6.83E+03 1.70E+03
std | 7.96E+02 | 3.21E+00 | 1.08E+04 2.87E+04 2.14E+04 8.84E+05 1.71E+04 4.91E+08 3.46E+04 3.14E+03
9 Ave | 9.12E+02 | 9.15E+02 | 1.10E+03 1.10E+03 1.10E+04 1.10E+03 1.10E+03 1.10E+04 1.10E+03 1.12E+03
std 1.14E-03 2.50E-02 1.53E-02 7.33E-02 1.38E-02 2.30E-01 5.39E-03 5.43E+01 9.89E-02 0.00E+01
cIo Ave | 1.37E+03 1.42E+03 | 2.10E+03 3.37E+03 4.10E+04 8.49E+04 2.72E+03 3.52E+04 9.01E+04 3.14E+03
std | 1.74E+02 | 2.88E+02 | 2.83E+04 1.94E+04 2.92E+04 1.22E+05 1.88E+04 1.84E+06 8.93E+04 3.67E+02
cil Ave | 1.10E+03 1.11E+03 1.48E+03 1.45E+03 1.50E+04 1.47E+03 1.49E+03 1.51E+03 1.45E+03 2.79E+03
std | 1.39+01 | 5.52E+00 | 2.52E+02 1.22E+03 5.91E+02 8.07E+02 5.52E+02 7.83E+02 1.21E+03 3.33E+03
ci2 Ave | 1.40E+03 1.03E+04 | 1.40E+03 1.40E+03 1.40E+03 1.40E+03 1.40E+05 1.41E+06 1.41E+03 1.68E+04
std 1.14E-03 1.08E+04 | 7.99E-02 6.04E-02 6.79E-02 9.24E-02 8.17E-02 2.15E+01 1.64E+01 5.23E+01
ci3 Ave | 1.40E+02 8.02E+03 1.40E+02 1.40E+03 1.40E+06 1.40E+04 1.40E+03 1.45E+02 1.40E+04 3.06E+04
std 2.38E-06 7.39E+03 2.86E-05 5.54E-04 1.02E-05 1.14E-04 2.53E-05 4.80E+02 3.88E-04 2.12E+04
Cl4 Ave | 1.41E+03 1.46E+03 | 4.35E+04 1.40E+03 7.39E+03 7.70E+04 7.44E+04 9.40E+03 7.61E+03 6.50E+03
std | 6.45E+04 | 3.58E+01 1.83E+04 3.22E+04 2.55E+04 1.39E+04 2.57E+04 4.14E+03 1.62E+04 1.87E+02
Cls Ave | 1.51E+03 1.59E+03 1.70E+03 1.70E+03 1.71E+04 1.71E+06 1.70E+03 1.74E+06 1.72E+06 2.39E+06
std | 3.85E+01 | 5.28E+01 | 3.86E+01 2.76E+02 4.04E+01 1.23E+02 1.90E+02 1.22E+01 3.74E+01 2.49E+05
Cl6 Ave | 1.60E+03 1.65E+03 | 3.28E+05 5.37E+05 3.02E+06 2.47E+05 7.06E+05 4.20E+06 8.65E+05 4.51E+05
std | 3.60E-01 5.60E+01 | 3.18E+09 5.73E+08 3.08E+09 3.63E+09 6.02E+09 9.37E+09 4.07E+09 1.38E+04
c17 Ave | 1.72E+03 1.73E+03 | 4.13E+04 8.41E+04 6.65E+06 2.97E+04 2.43E+05 5.58E+03 8.33E+06 2.83E+04
std | 3.09E+00 1.99E+01 | 5.19E+04 2.08E+04 7.03E+05 2.46E+04 2.03E+03 2.09E+03 3.33E+07 8.61E+04
Ci8 Ave | 4.20E+02 1.25E+04 | 4.20E+02 4.20E+02 4.20E+02 4.20E+02 4.20E+03 4.20E+03 4.20E+02 2.43E+03
std 3.20E-05 1.25E+04 | 4.76E-04 9.61E-04 8.08E-04 8.14E-04 4.19E-04 2.11E-07 8.53E-04 2.02E+03
Cl9 Ave | 1.91E+01 1.95E+03 | 5.11E+03 1.09E+01 5.16E+02 5.26E+02 5.18E+03 5.39E+03 5.42E+02 1.41E+03
std | 2.92E+00 | 5.18E+01 | 2.71E+02 4.90E-01 2.03E+02 2.17E+02 2.03E+02 8.25E+02 8.72E+02 2.26E+03
20 Ave | 8.01E+02 | 2.02E+03 | 8.13E+03 7.65E+02 8.20E+02 2.33E+03 2.09E+03 2.75E+03 2.76E+04 1.40E+04
std | 1.49+01 | 2.45E+01 | 2.85E+01 3.16E+01 2.78E+00 4.45E+02 3.81E+01 3.79E+01 3.30E+02 7.74E+03
Co21 Ave | 2.20E+03 | 2.31E+03 | 2.29E+03 2.86E+03 3.26E+04 8.35E+04 4.82E+04 4.91E+06 3.30E+04 2.19E+04
std | 4.55E-13 2.31E+01 | 2.15E+04 2.93E+03 3.45E+05 4.82E+03 3.44E+04 3.70E+07 3.41E+04 3.77E+03
2 Ave | 8.01E+02 | 2.30E+03 | 8.02E+02 8.02E+02 8.02E+03 8.02E+02 8.02E+03 8.08E+02 8.06E+03 8.49E+03
std | 2.76E-01 2.02E+01 7.76E-01 8.75E-01 8.07E-01 2.10E+01 8.40E-01 2.32E+00 8.07E-02 1.75E+03
3 Ave | 2.60E+03 | 2.62E+03 | 2.86E+03 4.43E+04 4.49E+04 8.93E+04 3.58E+03 7.07E+04 7.73E+03 4.30E+04
std | 1.20E+00 | 6.08E+00 | 2.98E+04 3.77E+04 3.04E+04 9.74E+04 2.61E+04 5.81E+06 4.36E+04 6.24E+03
C24 Ave | 2.50E+03 | 2.74E+03 | 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04 5.07E+04
std | 0.00E+00 | 7.59E+00 | 2.43E-02 7.23E-03 2.28E-02 3.20E-02 6.29E-03 6.33E+01 8.79E-02 4.13E+01
C25 Ave | 2.90E+03 | 2.93E+03 [ 3.00E+04 4.27E+04 5.00E+04 9.39E+04 3.62E+04 4.42E+06 8.91E+04 4.81E+03
std | 1.23E+00 | 2.18E+01 | 3.73E+04 2.84E+04 3.82E+04 2.12E+05 2.78E+04 2.74E+06 6.83E+04 2.80E+03
26 Ave | 1.90E+03 | 2.97E+03 | 2.38E+04 2.35E+05 2.40E+04 2.37E+04 2.39E+04 2.41E+04 2.35E+04 1.13E+04
std | 6.43E-13 1.82E+02 | 3.42E+02 2.12E+03 6.81E+02 9.97E+02 6.42E+02 8.73E+02 2.11E+03 5.62E+02
C27 Ave | 3.09E+03 | 3.09E+03 | 2.30E+04 2.30E+04 2.30E+04 2.30E+04 2.30E+04 2.31E+04 2.31E+04 5.11E+03
std 1.02E-01 2.46E+00 | 8.89E-02 7.94E-02 7.69E-02 8.14E-02 9.07E-02 3.05E+00 3.54E+01 1.11E+02
C28 | Ave | 3.10E+03 | 3.30E+03 | 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.30E+04 5.35E+04 5.30E+04 4.60E+04
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TABLE 12. (Continued.) Evaluation results of CEC2017 test functions.

std 4.,55E-13 1.47E+02 3.76E-05 6.44E-04 3.92E-05 2.04E+04 3.43E-05 4.70E+02 4.78E-04 6.84E+00
C29 Ave | 3.16E+03 3.17E+03 5.25E+04 8.10E+04 8.29E+03 8.60E+03 8.34E+04 8.30E+04 8.51E+03 5.63E+03
std 1.27E+01 2.72E+01 2.73E+04 4.12E+04 3.45E+04 2.29E+05 3.47E+05 5.04E+03 2.52E+04 1.32E+01
30 Ave | 4.28E+03 2.97E+05 2.60E+04 2.60E+04 2.61E+04 2.61E+04 2.60E+04 2.64E+04 2.62E+04 6.05E+05
std 4.58E+02 5.05E+05 4.76E+01 3.66E-04 5.94E+01 2.13E+02 2.80E-03 2.12E+02 4.64E+01 2.97E+04
Wins of ZOA in 30 functions 27
Ties of ZOA in 30 functions 0
Losses of ZOA in 30 functions 3
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FIGURE 10. Convergence analysis of the ZOA for the welded beam design

FIGURE 8. Convergence analysis of the ZOA for the tension/compression optimization problem
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criterion to some competitor algorithms, but has better std a4 1
. . . . . . . ol
criterion. Therefore, ZOA is a more effective optimizer in 2 2r .
solving these objective functions. The simulation results
show that ZOA has a superior performance in solving fixed- 10° 10 10° 10°
dimensional multimodal functions compared to nine com- Iteration
petitor algorithms. FIGURE 12. Convergence analysis of the ZOA for the speed reducer

The performance of ZOA and nine competitor algorithms design optimization problem.

in optimizing functions F1 to F23 as boxplot is presented

in Figure 2. In addition, Figure 3 plots the convergence D. STATISTICAL ANALYSIS

curves of ZOA and competing algorithms to achieve a In this subsection, a statistical analysis is presented to deter-
solution. mine whether the superiority of ZOA over nine competitor
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TABLE 13. Comparison results for the tension/compression spring design problem.

Algorithm Optimum Variables Optimum Cost
d D P

Z0OA 0.0520983 0.366644 10.7299 0.012668010

QANA 0.051926 0.362432 10.961632 0.012701236

TSA 0.051655 0.3471885 12.216455 0.0128007

MPA 0.05068 0.3449564 12.194225 0.0128051

WOA 0.0505 0.3135181 15.15 0.0133245

GWO 0.0505 0.3191156 14.368492 0.0129451

TLBO 0.051288 0.3381268 12.849917 0.0128368

GSA 0.0505 0.3204851 14.370957 0.0130026

PSO 0.050601 0.3132121 14.14 0.0131666

GA 0.050753 0.319515 15.392 0.012904

TABLE 14. Statistical results for the tension/compression spring design problem.
Algorithm Best Mean Worst SD Median
ZOA 0.012668010 0.012681274 0.012710289 0.000023 0.012681792
QANA 0.012701236 0.012723624 0.012748010 0.000056 0.012716240
TSA 0.0128007 0.012810947 0.012842337 2.73E-05 0.012814166
MPA 0.0128051 0.012824087 0.012847965 4.14E-05 0.012826683
WOA 0.0133245 0.014965353 0.018041132 0.00229472 0.013324506
GWO 0.0129451 0.014609016 0.018018134 0.00163822 0.014161449
TLBO 0.0128368 0.012968033 0.013128432 7.88E-05 0.012973111
GSA 0.0130026 0.01357326 0.014353848 0.00028987 0.013501567
PSO 0.0131666 0.014176617 0.016413937 0.00209373 0.013132389
GA 0.012904 0.013200571 0.015366372 0.00037875 0.013081663
TABLE 15. Comparison results for the welded beam design problem.
Algorithm Optimum Variables Optimum Cost
h / t b

ZOA 0.205739 3.470261 9.036623 0.205740 1.7249160
QANA 0.205730 3.470489 9.036624 0.205730 1.7249556
TSA 0.205666 3.4765834 9.0403169 0.2059139 1.7265238
MPA 0.205781 3.4771407 9.0414825 0.2063321 1.7278585
WOA 0.19751 3.3167185 10.005 0.2014957 1.8213052
GWO 0.205714 3.4738391 9.0454515 0.2058119 1.7263347
TLBO 0.204797 3.5380591 9.0087921 0.21013 1.7600526
GSA 0.147172 5.4934894 10.005 0.2178339 2.1739444
PSO 0.164253 4.0345573 10.005 0.2237588 1.874908
GA 0.20659 3.63769 10.005 0.203351 1.837168

algorithms is statistically significant. Wilcoxon rank sum test
[54] is a statistical test that is used to compare two data sam-
ples with the aim of detecting significant differences between
them. In this test, a p-value is the criterion for determining
the superiority of one algorithm over another algorithm. The
Wilcoxon rank sum test is implemented on the optimization
results of ZOA and nine competitor algorithms and the results
are presented in Table 6. What can be deduced from the
results of statistical analysis is that ZOA has a significant
superiority over the corresponding competitor algorithm in
cases where the p-value is less than 5%.

49464

The Friedman test [S5] is used to analyze the superiority of
ZOA based on ranking its performance in achieving solutions
to optimization problems. The results of the Friedman test
on the performance of optimization algorithms in handling
the functions F1 to F23 are presented in Table 7. What is
evident from the simulation results is that ZOA offers superior
performance compared to competitor algorithms.

E. POPULATION DIVERSITY ANALYSIS
Population diversity plays an important role in increasing the
global search capability of optimization algorithms in order
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TABLE 16. Statistical results for the welded beam design problem.

Algorithm Best Mean Worst SD Median

ZOA 1.7249160 1.725326 1.725402 0.000010 1.725206

QANA 1.7249556 1.725412 1.725561 0.000127 1.752468

TSA 1.7265238 1.72669 1.72693 0.00029 1.72665

MPA 1.7278585 1.72799 1.72843 0.00116 1.72795

WOA 1.8213052 2.23143 3.04976 0.32469 2.24579

GWO 1.7263347 1.73054 1.74252 0.00487 1.72828

TLBO 1.7600526 1.81857 1.87434 0.02756 1.82104

GSA 2.1739444 2.54551 3.00516 0.25599 2.49636

PSO 1.874908 2.1203 2.32129 0.03484 2.0981

GA 1.837168 1.36421 2.03626 0.13955 1.93672

TABLE 17. Comparison results for the speed reducer design problem.
Algorithm Optimum Variables Optimum Cost
b m P 11 12 d1 dz
ZOA 3.50112 0.7 17 7.3423 7.80116 3.35194 5.28818 2998.5189
QANA 3.50012 0.7 17 7.90557 7.80004 3.35219 5.2867 3002.2645
TSA 3.519098 07 17 73 7.8 3.3680264 5.3151837 3013.5435
MPA 3.524223 0.7 17  7.380933 7.815726 3.3746362 5.3132018 3016.2944
WOA 3.517519 07 17 83 7.8 3.3691741 5.3131486 3020.7918
GWO 3.526045 0.7 17 7.392843 7.816034 3.3748634 5.3132109 3017.9426
TLBO 3.526299 07 17 73 7.8 3.4783251 5.3156591 3045.7158
GSA 3.618 07 17 83 7.8 3.3865063 5.3156701 3066.3756
PSO 3.527804 0.7 17 835 7.8 3.379012 5.3141616 3082.8988
GA 3.537725 0.7 17 837 7.8 3.3838049 5.3151626 3044.147
TABLE 18. Statistical results for the speed reducer design problem.

Algorithm Best Mean Worst SD Median

ZOA 2998.5189 2999.212 3002.614 1.36421 2999.018

QANA 3002.2645 3004.1640 3005.0318 1.42368 3003.4691

TSA 3013.54 3014.64 3018.91 1.94159 3014.18

MPA 3016.29 3020.87 3023.8 5.86713 3019.54

WOA 3020.79 3120.78 3227.23 80.0363 3120.78

GWO 3017.94 3043.99 3076.26 13.0837 3042.17

TLBO 3045.72 3081.25 3120.3 18.1646 3080.94

GSA 3066.38 3186.19 3380.69 93.0355 3172.54

PSO 3082.9 3202.46 3329.76 17.2042 3214.18

GA 3044.15 3311.81 3637.56 57.3086 3305.1

to prevent optimization algorithms from getting stuck in local
optimal solutions. In this subsection, population diversity
analysis on the performance of ZOA in the optimization
process is presented. In order to analyze the ZOA’s popu-
lation diversity while achieving the solution, the /. index is
employed, which is calculated according to (7) and (8) [56].

m N 2
Zj=1 Zi=1 (Xi,j - cj) ’
1 N
_ Xii
N Zizl L

where ¢;,j = 1,2,...,m, are the centroids, and I¢ is the
index of the spreading of population members.

(N

Ic

G =

®)
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The population diversity analysis in optimizing objective
functions F1 to F23 is shown in Figure 4. For each objective
function, ZOA’s convergence curve and its population diver-
sity are presented. Simulation results and Figure 4 show that
ZOA has a high population diversity in the optimizing process
of most objective functions.

F. SCALABILITY ANALYSIS

In this subsection, the scalability analysis of ZOA in the
optimization process is presented. In this analysis, ZOA is
implemented on functions F1 to F13 for different dimensions
of 10, 30, 50, 100, 500, and 1000. The simulation results are
presented in Table 8. What emerges from the review of the
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TABLE 19. Comparison results for the pressure vessel design problem.

Algorithm Optimum Variables Optimum Cost
T T R L
ZOA 0.7781084 0.3859585 40.31504 199.9663 5887.2057
QANA 0.7781687 0.384649 40.319619 200.000000 5912.6436
TSA 0.83079 0.41641 42.7726 169.43 6051.81
MPA 0.77942 0.38485 40.348 199.75 5892.31
WOA 0.77935 0.38488 40.3411 200.1 5894.33
GWO 0.84614 0.41877 43.8382 156.46 6014.52
TLBO 0.81799 0.41814 41.7703 183.664 6140.44
GSA 1.08634 0.95009 49.3699 169.572 11556.1
PSO 0.75274 0.39974 40.4727 198.102 5893.27
GA 1.100073 0.907032 44.47863 179.7487 6553.298
TABLE 20. Statistical results for the pressure vessel design problem.
Algorithm Best Mean Worst SD Median
ZOA 5887.2057 5890.1084 5892.2106 1.1621 5889.0846
QANA 5912.6436 5916.5174 5919.0619 1.9814 5914.5891
TSA 6051.81 6055.65 6074.29 2.89445 6053.25
MPA 5892.31 5894.47 5897.57 13.917 5893.6
WOA 5894.33 6534.77 7398.29 534.386 6419.32
GWO 6014.52 6480.54 7254.54 327.171 6400.68
TLBO 6140.44 6329.92 6515.61 126.672 6321.48
GSA 11556.1 23354 33242.9 5793.52 24022
PSO 5893.27 6267.14 7009.25 496.376 6115.75
GA 6553.298 6647.31 8009.44 657.852 7589.8
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FIGURE 13. Schematic view of pressure vessel design problem.
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results is that the ZOA, while increasing the dimensions of the
problem, still maintains its efficiency and provides acceptable
solutions.

G. SENSITIVITY ANALYSIS
ZOA is able to solve optimization problems in an iteration-
based process and based on scanning the search space by
its population members. As a result, changes in the num-
ber of zebras’ population (N) and the maximum number of
iterations (7) affect ZOA performance. In this subsection,
a sensitivity analysis on ZOA performance with respect to the
parameters N and T are presented.

To sensitivity analyze to parameter N, the proposed ZOA
has been employed for zebras’ populations of sizes 20, 30,
50, and 100 in the optimization of F1 to F23. The results of
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Iteration

FIGURE 14. Convergence analysis of the ZOA for the pressure vessel
design optimization problem.

sensitivity analysis to parameter N are presented in Table 9.
ZOA convergence curves under the influence of parameter N
changes are shown in Figure 5. What can be deduced from the
simulation results is that increasing the value of N improves
the algorithm’s exploration power in identifying the optimal
area and thus ZOA provides better solutions.

In order to sensitivity analyze to parameter T, the pro-
posed ZOA has been employed for the maximum number
of iterations of 100, 500, 800, and 1000 in the optimization
of F1 to F23. The behavior of the ZOA convergence curves
under the sensitivity analysis to the T parameter is shown
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TABLE 21. Unimodal objective functions.

Objective Function Range Dim Fonin
m

F(X)=)x [~100,100] 30 0
i=1
m m

F(X) = Z x| + 1_[ il [-10,10] 30 0
i=1 i=1
m i 2

Fa(X) = z (Z xi> [~100, 100] 30 0
i=1 j=1

F,(X) =max{lx;]}, 1<i<m [-100, 100] 30 0
m-1 2

Fo(X) = Z [100(xi41 — x2)° + (x; - 1?)] [-30,30] 30 0
i=1
m

Fo(X) = Z ([x; + 0.5])2 [=100, 100] 30 0
i=

F;(X)

m
= Z ixt+r, [-1.28,1.28] 30 0
i=1

where r is a random real number in the range 0 to 1

in Figure 6. The simulation results of this analysis are
reported in Table 10. What is evident from the results of ZOA
sensitivity analysis to the 7' parameter is that increasing the
value of T gives the algorithm more opportunity to converge
towards better solutions based on the exploitation power.

H. EVALUATION OF CEC 2015 BENCHMARK

The ability of ZOA and nine competitor algorithms to opti-
mize CECl1 to CECI1S5 functions of the CEC2015 benchmark
test has been evaluated. The simulation results are presented
in Table 11. Analysis and comparison of the results show
that ZOA has performed better than the nine competitor
algorithms in optimizing CEC1, CEC3, CEC5, CEC6, CEC7,
CEC8, CEC9, CEC10, CEC11, CEC12, CEC13, CEC14, and
CECI15. TSA has performed better in optimizing CEC2 and
CEC4, while ZOA is the second optimizer to solve these func-
tions. Analysis of the CEC2015 optimization results shows
the superior performance of ZOA over the nine compared
algorithms in most cases.

I. EVALUATION OF CEC 2017 BENCHMARK

The performance of ZOA and nine competitor algorithms
have been tested on the optimization of benchmark func-
tions C1 to C30. The optimization results of CEC2017 test
functions are presented in Table 12. What can be deduced
from the simulation results is that ZOA has provided the
optimal solution for C1, C2, C3, C4, C5, C6, C7, C8, C9,
C10, C11, C12, C13, C15, C16, C17, C18, C21, C22, C23,
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C24,C25,C26,C27,C28,C29, and C30. TSA is the first-best
optimizer to solve C14, C19, and C20 while ZOA is the
second-best optimizer in these functions. Based on the anal-
ysis of CEC2017 simulation results, it is clear that ZOA
is superiority optimizer over nine competitor algorithms for
optimization in most cases.

IV. ZOA APPLICATION FOR ENGINEERING

DESIGN PROBLEMS

In this section, the ability of the proposed algorithm to solve
real-world problems is tested on four engineering design chal-
lenges including tension/compression spring, welded beam,
speed reducer, and pressure vessel design problem.

A. TENSION/COMPRESSION SPRING DESING
OPTIMIZATION PROBLEM

Tension/compression spring design is a minimization prob-
lem, in which the main goal in this design is to reduce
the tension/compression spring weight. Figure 7 shows the
schematic of the tension/compression spring design prob-
lem. The values obtained for the design variables in the
tension/compression spring design problem are presented in
Table 13. The simulation results show that ZOA provides the
optimal solution for this engineering design with the values
of the decision variables equal to (0.0520983, 0.366644,
10.7299), and the value of the corresponding objective func-
tion is equal to 0.012668010. The statistical results of the
performance of the proposed ZOA and nine competitor
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TABLE 22. High-dimensional multimodal objective functions.

Objective Function Range Dim Finin
m
Fg(X) = Z —x; sin(y/|%;]) [-500,500] 30 -12569
i=1
m
Fo(X) = Z [ x? — 10 cos(2mx;) + 10] [-5.12,5.12] 30 0
i=1
1 m 1 m
Fio(X) = —20exp| —0.2 —Z x? | —exp (—Z cos(ani)) +20+e [—32,32] 30 0
m i=1 m i=1
Py (X) = — zm 2 ﬂm <XL> +1 [-600,600] 30 0
=— xf — cos|— —600,
" 4000 Luj=y ! =1 Wi
Fi,(X) = = {10sin(my;) + X2, (v; — D?[1 + 10 sin?(my; )] + (v — D2 +
;11 u(xl-, 10,100,4), where
—50,50 30 0
1 k(x; — ayr, Xi>a; [ ]
yvi=1+ LT’ u(x;, a,i,n) = 0, —a< x; <aq
k(=xi—a",  x<-aq
Fi3(X) = 0.1{sin?(3mxy) + XM, (x; — D?[1 + sin?Brx; + D] + (x, — D?[1 +
sin?(2mx,,)1} + X%, u(x;, 5,100,4), where
k(x; — )™, x; > a [-50,50] 30 0
u(x;,a,i,n) = 0, —a< x; <a
k(=x; —a)™, x; < —a.

algorithms are presented in Table 14. These results show
that ZOA with outstanding values in statistical indicators
performs better than competitor algorithms. The convergence
curve of the proposed ZOA while achieving the solution
to the tension/compression spring design problem is shown
in Figure 8.

B. WELDED BEAM DESING OPTIMIZATION PROBLEM
This engineering design is a minimization problem whose
main challenge is to reduce the fabrication cost of the welded
beam. Figure 9 shows the schematic of the welded beam
design problem. The simulation results obtained from the
ZOA and nine competitor algorithms in solving the welded
beam design problem are presented in Table 15. The analysis
of the results of this table shows that the proposed ZOA has
presented a better performance in optimizing this design with
the values of decision variables equal to (0.205739, 3.470261,
9.036623, 0.205740), and the value of the corresponding
objective function equal to 1.724916. Statistical results for the
welded beam design problem obtained from the mentioned
algorithms are presented in Table 16. It can be concluded
from this table that the proposed ZOA has provided a more
efficient performance in optimizing this problem. The con-
vergence curve behavior of ZOA in optimizing the welded
beam design problem is shown in Figure 10.
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C. SPEED REDUCER DESING OPTIMIZATION PROBLEM
The design of the speed reducer is one of the minimization
problems because the primary goal of this problem is to
find its structure so that this speed reducer has the minimum
weight. Figure 11 shows the schematic of the speed reducer
design problem. The values obtained for decision variables in
speed reducer design are reported in Table 17. The proposed
ZOA provides the optimal solution with the values of the
decision variables equal to (3.50112, 0.7, 17,7.3423,7.80116,
3.35194, 5.28818), and the value of the corresponding objec-
tive function is equal to 2998.5189. The statistical results
obtained from the performance of ZOA and nine competitor
algorithms on the speed reducer design problem are presented
in Table 18. According to this table, the ZOA is superior
to competing algorithms with a better position in statistical
indicators. The convergence curve of the proposed ZOA in
achieving the solution to the speed reducer design problem is
shown in Figure 12.

D. PRESSURE VESSEL DESING OPTIMIZATION PROBLEM

This engineering design is a minimization problem whose
objective function is to reduce the total cost of material,
forming, and welding of a cylindrical vessel. Figure 13 shows
the schematic of the pressure vessel design problem. The
proposed values for the decision variables in the design of
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TABLE 23. Fixed-dimensional multimodal objective functions.

Objective Function Range Dim Fonin
-1
1 25 1
Fia(X) = <% + z —6> [-65.53,65.53] 2 0.998
J=1j + Xk 1(x1 aii)
11 x1(b? + b; xz)
Fi:(X) = Z [-5,5] 4 0.00030
15(0) = [ b2+bx3+x4
2 4 L 6 2 4 55 2 -1.0316
Fie(X) = 4xf — 2.1 - x7 —+—§x1 + x1x, — 4x5 + 4x5 [-5,5] .
Foo(X) = 1 2,2 6 ’ 10(1-2 10 [-5, 10] X [0, 15] 2 0398
17(X) = Xz—mxl +Ex1— + s cosxy + > E
Fig(X) = [1+ (x; + x5 + 1)2(19 — 14x; + 3x% — 14x, + 6x,x, + 3x2)]
— 2 3
[30 + (2x; — 3x,)%(18 — 32x; + 12x2 + 48x, — 36x,x, + 27x3)] [=5,5]
4 3 5
Fio(X) = —Z. 1CiEXp(_Z» 1aij(xj - pij)") [0,1] 3 —3.86
= j=
4 6 2
Fao(X) = —Z. 1Ciexp(—z, laij(xj -py)) [0,1] 6 -3.22
= i=
5
Fyy(X) = —Z [(X —a) - (X —a)T +6¢,]" [0,10] 4 -101532
i=
7
Fpp(X) = —Z [(X —a) (X —a)" +6¢]™" [0,10] 4 -10.4029
i=1
10
F0 == [(X=a)- (X = a) + 6] [0, 10] 4 105364
i=1

the pressure vessel are presented in Table 19. The simulation
results show that ZOA provides the optimal solution to this
problem by giving the values of the decision variables equal to
(0.7781084, 0.3859585, 40.31504, 199.9663), and the value
of the corresponding objective function is equal to 5887.2057.
The statistical results of the proposed ZOA and nine com-
petitor algorithms are reported in Table 20. This table shows
the superiority of ZOA over competitor algorithms in having
better statistical indicators for optimizing the pressure vessel
design problem. The behavior of the ZOA’s convergence
curve when solving the problem of design of a pressure vessel
is shown in Figure 14.

V. CONCLUSION AND FUTURE WORKS
I In this paper, a new metaheuristic algorithm called Zebra

Optimization Algorithm (ZOA), which mimics the natural
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behaviors of zebras in the wild, was developed. These
types of behavior include foraging and defense strate-
gies against predators. The ZOA steps were stated, and
then its mathematical modeling was presented. ZOA per-
formance in solving optimization problems was evaluated
on sixty-eight benchmark functions, including types of
unimodal, high-dimensional multimodal, fixed-dimensional
multimodal, CEC2015, and CEC2017. The optimization
results showed that ZOA is able to provide optimal solutions
for objective functions by creating the appropriate balance
between exploitation and exploration. To evaluate the quality
of the ZOA, we compared its results with nine other known
algorithms, GWO, TLBO, GA, MPA, PSO, TSA, WOA, and
GSA. The simulation results show that ZOA performs better
in most cases and has better performance against nine com-
petitor algorithms by providing better solutions. ZOA’s ability
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TABLE 24. IEEE CEC-2015 benchmark test functions.

Functions Related basic functions Dim  Fmin
CEC1 Rotated Bent Cigar Function Bent Cigar Function 30 100
CEC2 Rotated Discus Function Discus Function 30 200
CEC3 Shifted and Rotated Weierstrass Function Weierstrass Function 30 300
CEC4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 30 400
CEC5 Rotated Katsuura Katsuura Function 30 500
CEC6 Shifted and Rotated HappyCat Function HappyCat Function 30 600
CEC7 Shifted and Rotated HGBat Function HGBat Function 30 700
CECS Shifted and Rot?ted Expanded Griewank’s plus Griewank’s Functiop 30 200
Rosenbrock’s Function Rosenbrock’s Function
CEC9 Shifted and Rotated Expanded Scaffer’s F6 Function Expanded Scaffer’s F6 Function 30 900
Schwefel’s Function
CEC10 Hybrid Function 1 (N = 3) Rastrigin’s Function 30 1000
High Conditioned Elliptic Function
Griewank’s Function
CECI1 Hybrid Function 2 (N = 4) Weierstrass Function 30 1100
Rosenbrock’s Function
Scaffer’s F6 Function
Katsuura Function
HappyCat Function
CEC12 Hybrid Function 3 (N = 5) Expanded ~ — ~Griewank’s PIUS 35 1200
Rosenbrock’s Function
Schwefel’s Function
Ackley’s Function
Rosenbrock’s Function
High Conditioned Elliptic Function
CEC13 Composition Function 1 (N = 5) Bent Cigar Function 30 1300
Discus Function
High Conditioned Elliptic Function
Schwefel’s Function
CEC14 Composition Function 2 (N = 3) Rastrigin’s Function 30 1400
High Conditioned Elliptic Function
HGBat Function
Rastrigin’s Function
CEC15 Composition Function 3 (N = 5) Schwefel’s Function 30 1500

Weierstrass Function
High Conditioned Elliptic Function

to optimize real-world problems was studied in four engi-
neering design problems. The optimization results showed
the high capability of ZOA to provide optimal solutions in
engineering design applications.

The authors make several suggestions for future studies,
such as developing binary and multi-objective versions of
ZOA. The application of ZOA in solving optimization prob-
lems in various sciences and other real-world problems is
another future perspective of this study.

APPENDIX A
See Tables 21-25.
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APPENDIX B

TENSION/COMPRESSION SPRING DESIGN PROBLEM
Consider X = [x1,x2,x3] = [d, D, P]

Minimize f (x) = (x3 +2) xzx%.
3

Subject 1 () =1 — 253
uovject 1o . X) = _
g §l 71785x% ~
452 — X1X2 1
g(x) = —2——
12566(x2x7)
140.45x,
p=1--—""" <
XZX3

-1<0
5108x2 T~
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TABLE 25. IEEE CEC-2017 benchmark test functions.

functions fmin
Cl Shifted and Rotated Bent Cigar Function 100
C2 Shifted and Rotated Sum of Different Power Function 200
C3 Shifted and Rotated Zakharov Function 300
C4 Shifted and Rotated Rosenbrock’s Function 400
C5 Shifted and Rotated Rastrigin’s Function 500
C6 Shifted and Rotated Expanded Scaffer’s Function 600
C7 Shifted and Rotated Lunacek Bi Rastrigin Function 700
C8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
C9 Shifted and Rotated Levy Function 900
C10 Shifted and Rotated Schwefel’s Function 1000
Cll1 Hybrid Function 1 (N = 3) 1100
Cl12 Hybrid Function 2 (N = 3) 1200
C13 Hybrid Function 3 (N = 3) 1300
Cl4 Hybrid Function 4 (N = 4) 1400
Cl15 Hybrid Function 5 (N = 4) 1500
Cl16 Hybrid Function 6 (N = 4) 1600
Cl17 Hybrid Function 6 (N = 5) 1700
C18 Hybrid Function 6 (N = 5) 1800
C19 Hybrid Function 6 (N = 5) 1900
C20 Hybrid Function 6 (N = 6) 2000
C21 Composition Function 1 (N = 3) 2100
C22 Composition Function 2 (N = 3) 2200
C23 Composition Function 3 (N = 4) 2300
C24 Composition Function 4 (N = 4) 2400
C25 Composition Function 5 (N = 5) 2500
C26 Composition Function 6 (N = 5) 2600
Cc27 Composition Function 7 (N = 6) 2700
C28 Composition Function § (N = 6) 2800
C29 Composition Function 9 (N = 3) 2900
C30 Composition Function 10 (N = 3) 3000

X1+ x
g1 () = % ~1<0. () = \/r' + 7)) % + (2,
With , 6000
0.05<x; <2,025<x;<13and2 <x3 < 15. V2 x1x0
, MR
APPENDIX C t=7

WELDED BEAM DESIGN PROBLEM

Consider X = [x1,xp,x3,x4] = [h, 1, ¢, D].

Minimize f (x) = 1.10471x12x2 + 0.04811x3x4(14.0 + x2).
Subject to :

g1 (x) =7 (x) — 13600 < 0,

g2 (x) = o (x) — 30000 < 0,
83 (x) =x1 —x4 <0,

ga(x) = 0.10471x7 + 0.0481 Lx3xg(14 + x3) — 5.0 < 0,

g5(x) =0.125 — x; <0,
g6(x) =48(x) —0.25 <0,
g7(x) = 6000 — p.(x) < 0.

where

VOLUME 10, 2022

X2
A4_6mm(M4~5),
2 2
X X1+ x3
R= =24 (115,
2 2
X X1+ x3
J=2 2|12 ,
[x1x2x/_|:12+< 5 ):”

504000
o) ="
X4X3
65856000
§(x) =

(30 . 106) x4x§ ’
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2,6
4.013 (30 - 10°%) y/ 32 )
196 28\ 4(12 - 109

Pe (x) =

With

0.1 <x1,x4 <2and 0.1 < xp,x3 < 10.
APPENDIX D
SPEED REDUCER DESIGN PROBLEM

Consider X = [xl,xz,xg,x4,x5, x6,x7] = [b, m, p,li, b,
d1,d2].

Minimize f (x) = 0.7854x,x3 (3.3333x32 + 14.9334x3 —
43.0934) = 1.508x (x3 + 33 ) +7.4777 (o3 +x3) +
0.7854(x4x2 + x5x7).

27
Subjectto : g1 (x) = —— —1=<0,
x1x2x3

397.5
) =—7F—-1<0,

X1X5X3

1.93x3
gx)=—7F-1=<0,

X2X3Xg

1.93x3

X2X3X5

1 745x4\?

g5 () = —— ( x“) +16.9 x 10° — 1 <0,

110xg X2X3

1 [(745x5\> .

g6(x) = — +157.5x 10— 1 < 0,

85x7 X2X3

X2X3

=——-1< 0’

87 (x) 20 <

5
gs (1) = 22 —1 <0,
X1

g (x) = —— —1<0,

12xp
1.5x¢ +1.9
glo(x) = ——— —1<0,
X4
1.1x7+ 1.9
gnx)=——-1<0.
X5
With

26 <x1<3.6,07<x2=<08,17<x3<28,73<x4 <

83,78 <x5<83,29<x5<3.9, and5 <x7 <5.5.

APPENDIX E

PRESSURE VESSEL DESIGN PROBLEM
Consider X = [x1, xp, x3,x4] = [T, Ty, R, L] .
Minimize f (x) = 0.6224x1x3x4 + 1.778x2x32 +
3.1661x7xg + 19.84x7x3.
Subject to : g1 (x) = —x1 +0.0193x3 <0,
g2 (x) = —xp + 0.00954x3 <0,
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4
g3 (x) = —mxdxg — gnx; + 1296000 < 0,
g4 (x) =x4 —240 <O0.

With

0 < x1,x <100 and 10 < x3, x4 < 200.
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