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ABSTRACT The modeling and simulation of fluid power systems are essential parts of the real-time
simulation of virtual prototypes of mobile working machines. In several cases in the dynamic simulation
of such fluid power systems, a longer simulation time is required. This makes the traditional mathematical
models inefficient for real-time simulations, particularly when simulating fluid power systems because of
the small volumes in stiff differential equations of pressure. To overcome this issue, a novel hybrid model
is proposed for stiff fluid power systems simulation. The main feature of the model is the utilization of a
recurrent neural network instead of stiff differential equations of pressure with small volume. At the same
time, the dynamics of the rest system are traditionally presentedwith algebraic and differential equations. The
testing results of the introduced hybrid model showed that the novel method can reduce the simulation time,
which makes the model suitable for real-time applications. Moreover, the accuracy of the model remains at
a fairly high level compared to traditional mathematical models.

INDEX TERMS Dynamic simulation, fluid power system, real-time simulation, recurrent neural network,
small volumes.

I. INTRODUCTION
Fluid power systems are widely used in the real-life model-
ing of various mobile machines such as logging harvesters,
cranes, excavators, and industrial robots. The recent trend in
modeling digital twins [1] and virtual prototypes [2]–[4] has
shown that mathematical modeling of fluid power systems
plays a vital role in the development of industrial simulators
of such mobile working machines. For this purpose, real-
time and faster than real-time techniques [5] are used to get
a fast response in the system. However, fluid power circuits
can contain singularities that directly affect the computational
speed of the whole system and make a real-time simulation
of the system impossible.

In general, there are two main problems in fluid power
circuits modeling and simulation. The first problem is related
to the pressure drop approaching zero. This phenomenon
is associated with difficulties in the use of the traditional
turbulent flow orifice equation because of the infinite value
of the flow rate derivative. To solve this problem, several
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combined orifice models were proposed by Ellman et al.
at the end of the 1990s [6], [7]. Another computationally
efficient solution was proposed by Aman et al. in 2008 [8] in
which the polynomial relation between flow rate and pressure
dropwas derived for cases when the pressure drop approaches
zero. The model was named the two-regime flow model in
which the third-order polynomial is used for describing the
laminar and transition flow areas, whereas the traditional
square root turbulent orifice equation of flow is used for the
turbulence regime.

Another problem in the dynamic simulation of fluid power
circuits can be associated with the numerical stiffness of
ordinary differential equations [9]. The numerical stiffness in
fluid power systems can be explained by the fact that such
circuits include volumes of different orders of magnitude.
This results in difficulties in the numerical integration of
ordinary differential equations, and classical explicit inte-
gration solvers are not able to generate a stable dynamic
response at a high integration time step, slowing down the
simulation by implementing significantly small time steps.
The numerical stiffness of the system can often be associated
with small volumes in a hydraulic circuit. The solution for
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the systems with small volumes should be derived by using
specific numerical solvers to avoid the problem of instability
in a dynamic model of a fluid power circuit [10].

The problem of small volumes and the resulting numeri-
cal stiffness of fluid power circuits arises in various scien-
tific papers, and as a result, special solvers are developed.
This problem was first mentioned in 1990 by Bowns and
Wang [11], who proposed an iterative technique to solve the
problem of numerical stiffness due to the small volumes in
hydraulic pipes. However, the technique was still computa-
tionally costly.

Another iterative technique was first presented by Aman
and Handroos [12]–[14]. This implicit solver was named the
pseudo-dynamic solver. This solver consists of two loops—
an outer (or main) loop and an inner (or pseudo) loop. The
main loop contains algebraic and differential equations of the
whole fluid power system, except for the pressure and flows
that are associated with the small volume. The integration of
such pressure occurs in the inner loop of the solver with an
artificially enlarged volume instead of the real small volume.
The idea of the inner loop is to receive the steady-state
response of the pressure by iterating such pressure with arti-
ficial volume until the convergence criterion is reached.

The advanced version of the pseudo-dynamic solver
(AdvPDS) was proposed by Malysheva et al. in 2020 [15].
The main difference of this approach from the original
pseudo-dynamic method is the implementation of adaptive
criterion of convergence. The criterion depend on the pressure
levels in the system, and it was experimentally proven that
with small levels of pressure, the smaller criterion have more
accurate results; and at the same time, the bigger criterion
can accelerate the computational speed of the fluid power
system. Ultimately, the method is a trade-off between accu-
racy and speed suitable for real-time or faster than real-
time applications. The method has also been improved by
Malysheva and Handroos [16], where it was investigated that
different integrators can also affect the computational speed
of AdvPDS.

One of the most reliable methods proven to be excellent
in simulating fluid power systems in theory and practice
is the method proposed by Kiani-Oshtorjani et al. [17]. This
method is based on the singular perturbation theory. The
main idea of this approach is to substitute stiff ordinary
differential equations with small volumes for algebraic equa-
tions modified for fluid power systems simulation in accor-
dance with this theory. The method was tested in simulating
multibody systems [18], and an accurate and fast response
of the system was achieved. However, the method has its
own drawbacks related to the accumulative error in certain
cases of use. To overcome the error, a special corrector factor
for the model should be used. To solve this problem and
allow the simulation without a corrector factor definition,
a novel method based on the combined singular perturbation
theory and Method of multiple scales (MMS) was proposed
by Kiani-Oshtorjani et al. [19]. This robust method allows
the elimination of the accumulative error and makes the

simulation faster and more accurate than the original method
based on the singular perturbation theory.

In several works [20]–[22], the components of fluid power
systems were introduced as neural networks with basic inputs
and outputs. This type of system modeling showed that the
use of neural networks in fluid power circuits modeling pro-
vides a fast response in the system that allows a simulation of
the system in real-time or faster than real-time applications.
In addition, predictive neural network models of various
dynamic systems with ordinary differential equations (ODE)
were studied in [23] and [24]. Both papers are based on
the studies of new methods for improving the performance
of neural networks based on simple ODEs and complex
nonlinear dynamic systems. Nevertheless, the most signifi-
cant results were shown by using recurrent neural networks
(RNN) [25]–[27] in the modeling and simulation of different
systems.

However, the systems based on neural networks are sim-
ulated as a black box, and the dynamics of the system are
totally neglected. Substituting a stiff differential equation
with small volumes with a computationally efficient and
accurate neural network can solve the problem of singularity
arising in the simulation of such stiff fluid power systems.
It means that only the stiff equation will be replaced with
the neural network and the system dynamics of the entire
system will be saved in the mathematical model. And at the
same time, the simulation is supposed to be faster due to the
absence of stiff differential equations in the areas with small
volumes.

The main purpose of this research paper is to introduce
a novel hybrid model for a fast simulation of fluid power
systems with small volumes using the RNN only for the
pressure continuity equation with small volume in calcula-
tions. Section II describes the fluid power systems under con-
sideration in the research. Section III provides information
about the RNN used in the development. Section IV describes
the development in detail, from the collected data and the
RNN training to the implementation of the neural network
in the fluid power circuits from Section II. Finally, sections V
andVI provide the results of the simulations, and a conclusion
is made about the model developed.

II. FLUID POWER CIRCUIT DESCRIPTION
This section describes the systems studied in the current
research. Overall, two fluid power circuits were investigated.
Both systems have one thing in common—the content of
one small volume inside. The first circuit is a simple fluid
power system with multiple orifices located in series. The
second fluid power circuit is a simple pressure-compensated
system with a 2-chamber hydraulic cylinder controlled by a
directional control valve.

The systems were modeled in accordance with the lumped
fluid theory, which assumes that a fluid power system can
be divided into sections with separate volumes where the
pressure can be distributed. A differential equation is formed
for each pressure in such a fluid power system where the
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derivative of pressure can be expressed with the general
formula:

ṗi =
Be
Vi

(Qi − Qi+1 −
dVi
dt

) (1)

where pi is the pressure in at ith section,Be is the effective bulk
modulus,Vi is the volume in the same section,Qi andQi+1 are
the inlet and outlet volumetric flows, and dVi

dt is the time rate
changes of volume Vi. The detailed description of the fluid
power circuits studied will be in the following subsections.

A. CIRCUIT 1: MULTIPLE ORIFICES
The first fluid power circuit is related to the system of three
identical orifices in series. The system contains the constant
pressure pump, which is assumed as an ideal pressure source
and tank for recovery of the fluid. Fig. 1 shows the schematic
representation of the circuit. The position of a small volume in
such a system is between the orifice number 2 and 3. The total
simplicity of this circuit allows the use of a large integrator
time step for the dynamic simulation of the circuit even with
a small volume inside, and it requires less computational time
than more complex fluid power systems.

Each pressure in the circuit can be represented by the
lumped fluid theory and a general formulation (1). Therefore,
pressures in this circuit are integrated from the following
formulations:

ṗ1 =
Be1
V1

(
Q1 − Q2

)
ṗ2 =

Be2
V2

(
Q2 − Q3

)
(2)

where V1 and V2 are pipe volumes in two pressure sections;
Q1, Q2, and Q3 are volume flows through orifices 1, 2,
and 3, respectively, and Be1 and Be2 are pressure-dependent
effective bulk modulus for pressures p1 and p2, respectively.
The effective bulk modulus in such a system can be derived
as follows:

Bei = a1Emax log
(
a2

pi
pmax

+ a3

)
(3)

where Emax is the maximum bulk modulus of the oil, pmax
is the maximum pressure in the system, pi denotes pressure
corresponding to the bulk modulus, and a1, a2, and a3 are the
empirical constants [28]. Volume flows in the circuit can be
calculated with the orifice equation as follows:

Qi = CdAi

√
2(pi−1 − pi)

ρ
(4)

where Cd denotes the discharge coefficient, Ai is the
cross-sectional area of orifice i (where i = 1, 2 or 3), ρ
is the density of the hydraulic fluid, and pi and pi−1 are
the outlet and inlet pressures, respectively. The system has
a total of 3 volumetric flow variables corresponding to each
orifice. The values of all parameters used in the modeling
and simulation of the multiple orifice fluid power circuit are
represented in Table 1.

TABLE 1. Circuit 1 parameters.

B. CIRCUIT 2: HYDRAULIC CYLINDER CONTROLLED BY A
DIRECTIONAL CONTROL VALVE
The second circuit under consideration is the system with a
more complex architecture and which is more practical and
applicable for real-time simulation. The circuit consists of a
two-chamber double-acting hydraulic cylinder with a mass
attached to the end of the horizontal cylinder’s rod. The mass
is not totally fixed, having 1 degree of freedom to slide in
a piston movement direction. The cylinder is controlled by
the 4/3-proportional directional control valve. The pressure
in the system is supported by the constant pressure pump,
which is assumed to be an ideal pressure source. A pressure
compensator is also used in the circuit between the pump
and the directional control valve. All the components in the
system are connected with the hydraulic pipes of different
volumes.

The circuit contains one extremely small pipe volume,
located between the pressure compensator and the directional
control valve. Fig. 2 depicts the whole circuit; the small
volume is denoted as Vv. All the parameters of this system are
presented in Table 2. The mathematical model of the circuit
is represented with differential and algebraic equations. The
system is controlled and activated by the voltage signal U ,
obtained from the following equation:

Üs = Kvω2
nU − 2ζωnU̇s − ω2

nUs (5)

where Kv is the valve gain,Us is the signal proportional to the
valve spool displacement, ζ is the valve damping ratio and
ωn is the natural angular frequency. The flow Qv through the
throttle of the pressure compensator is calculated according
to a semi-empirical approach, as in [27]:

Qv = K
√
ps − pv,

K̇ =
1
C3

(C5 − pv + pshuttle − (C1 + C2(ps − pv))K ) (6)

where K denotes the semi-empirical flow coefficient, C1,
C2, C3, and C5 denote empirical constants [29], ps and pv
are the constant pump pressure and the pressure in small
volume, respectively. The output pressure of the shuttle valve
between way A and B (Fig. 2) pshuttle is dependent on the
maximum value of pressures p1 and p2 and can be expressed
as pshuttle = max(p1, p2).
The volume flow rates Q1 and Q2 of the 4/3-proportional

directional control valve are calculated with the use
of the turbulent orifice model with a triangular groove
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FIGURE 1. Three-orifice fluid power circuit.

cross-section, as follows:

Q1 =



Cν(Us − Ud )
√
|pv − p1|sign(pv − p1),

Us ≥ Ud
Cν(Us − Ud )

√
|p1 − pt |sign(p1 − pt ),

Us ≤ −Ud
0,

otherwise

Q2 =



−Cν(Us − Ud )
√
|p2 − pt |sign(p2 − pt ),

Us ≥ Ud
−Cν(Us − Ud )

√
|pv − p2|sign(pv − p2),

Us ≤ −Ud
0,

otherwise

(7)

whereCν is the flow constant that accounts for cross-sectional
areas and the geometry of the valve orifices, Ud is the insen-
sitivity area for the applied signal, and p1, p2, pv, and pt are
the pressures in two cylinder chambers, the pressure in small
volume Vv, and the pressure in the tank, respectively.

Pressures in the system are integrated from the pressure
continuity equations in accordance with the lumped fluid
theory, as follows:

ṗ1 =
Be1
V1

(
Q1 − A1ẋ

)
ṗ2 =

Be2
V2

(
− Q2 + A2ẋ

)
ṗv =

Be3
Vv

(
Qv − Q3

)
(8)

where Vv is the small volume between the pressure compen-
sator and directional control valve, Qv is the volume flow
through the throttle of pressure compensator, ẋ is sliding
speed of the piston, A1 and A2 are cross-sectional areas of
chambers of the cylinder, V1 and V2 are volumes of the
pipelines and chamber in way A and way B, respectively. Be1,
Be2, and Be3 are effective bulk moduli for each pressure in

FIGURE 2. Hydraulic cylinder controlled by a directional control valve.

the system and are represented by (3). Volumes V1 and V2 are
calculated as follows:

V1 = A1x + Vdead
V2 = A2

(
Sc−x

)
+ Vdead (9)

where Sc is the full stroke of the cylinder, x is the
position of the piston, and Vdead is the dead volume,
which represents the volume of pipelines. The outlet flow
Q3 from (8) depends on the valve position, which can be
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determined as follows:

Q3 =


Q1, Us ≥ Ud
−Q2, Us ≤ −Ud
0, otherwise

(10)

The equation of motion for the system with a total force
acting on it can be represented by the following relation:

Ftot = p1A1 − p2A2 − Fµ = mẍ (11)

where Fµ denotes friction between the walls of the cylinder
and piston, m is the mass of the load attached to the end of
the rod, and ẍ is the acceleration of the piston. The friction
model used for the simulation is based on the LuGre friction
model [30]–[32]. This model can be introduced with the
following set of equations:

ż = ẋ −
|ẋ|
g(ẋ)

z

g(ẋ) =
1
σ0

(
Fc + (Fs − Fc)e

(−| ẋvs |)
2)

(12)

where Fµ is the total friction force; z is the non-measurable
internal state, Fc is the Coulomb friction force, ẋ is the sliding
velocity of the piston, vs is the sliding speed coefficient, Fs is
the static friction force, kv is the viscous friction coefficient,
and σ0 and σ1 are the flexibility and damping coefficients,
respectively.

III. RECURRENT NEURAL NETWORK ARCHITECTURE
DESCRIPTION
In this section, the features of the RNN selection are pre-
sented. In addition, the description of the selected RNN is
provided in detail. The most common RNN architectures
used in modeling dynamic systems are the nonlinear finite
impulse response (NFIR), the nonlinear autoregressive net-
work with exogenous inputs (NARX), and the nonlinear
autoregressive moving average network with exogenous
inputs (NARMAX). There are also more complex and
advanced architectures used in dynamic systems modeling,
which are Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) neural networks.

The NFIR architecture, described in [33], is the simplest
RNN architecture of all the architectures mentioned above.
The operating process of this network occurs through feed-
ing all values of past inputs to achieve the current output
value. The defining equation for the network is formulated
as follows:

y(t) = 9H (x(t − 1), . . . , x(t − d)) (13)

where y(t) is the RNN output vector at time t ,9H is mapping
performed by a multilayer feedforward network, d is the past
values of series x(t), and x(t) is the RNN input vector at time
t . The main advantage of the NFIR architecture is its stability
while all past inputs are fed to the network.

The NARX neural networks principle is related to the
utilization of the outputs of the network for feeding the input
with past states of the outputs and inputs while remembering
the state of the system at every step of the network operation.
The ordinary NARX RNN can be defined by the following
equation [34]:

y(t)=9H (x(t − 1), . . . , x(t − d), y(t − 1), . . . , y(t − d))

(14)

where y(t) is the RNN output vector at time t . The main
feature of the NARX RNN is an accurate approximation of
output values. However, in certain cases, it can be inherently
less stable due to operation in a closed loop using the past
values of the output.

Another architecture that can be presented as an advanced
NARX structure is NARMAX RNN. The main difference
with this RNN architecture is the ability to use error of
previous values in the loop. Thus, the defining equation for
NARMAX networks is the following [35]:

y(t) = 9H (y(t − 1), . . . , y(t − d),

x(t − 1), . . . , x(t − d),

e(t − 1), . . . , e(t − d)) (15)

where e(t − 1) is an RNN error vector at time t − 1.
In the NARMAX architecture, all elements defined by x
and e are sometimes called ‘‘controlled’’ and ’’uncontrolled’’
inputs [25]. This means that NARMAX is the most prevalent
architecture in cases with real-world data, including the sys-
tem error generated by noise. The structure also uses the error
as an input dataset, which makes the method more complex
than the above-mentioned NFIR and NARX.

In addition to the mentioned RNN architectures, more
complex architectures are used in dynamic systems model-
ing. These architectures are more suitable for training and
may easily store long-term dependencies. Such architectures,
which are LSTM and GRU neural networks, were studied
and compared [36]. Both architectures show significantly
good performance in case of complex dynamics persisting
in the system. In the case of LSTM networks, the accuracy
of predictions is at a high level, but selecting numerous
hyperparameters can affect the performance of the network.
GRU networks are similar to LSTM due to their functionality,
however, in several cases, it can be applied less time to train
the network.

The features of the selected RNN architecture for fluid
power system simulationwere also described in [25]. Accord-
ing to the author, the data obtained from the simulation model
of a similar fluid power system does not contain real system
noise, and the use of a large number of RNN parameters can
affect the simulation time and speed. At the same time, the
maximal accuracy of the system with the embedded RNN
is required. In such a case, the NARX RNN is the most
suitable architecture of neural network for fluid power system
simulation even in the case of the simulation of one stiff
differential equation since it is more accurate than NFIR due
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TABLE 2. Circuit 2 parameters.

to the use of output data as feedback. Ultimately, the NARX
architecture provides a trade-off between speed and accuracy
in simulating the final system, which is the main objective of
the research.

Fig. 3 illustrates the basic structure of the NARX network
used in the modeling of the system. The RNN consists of one
input layer with four input values, and one feedback value
that can be used only during the training of the network,
two hidden layers with 40 neurons, and one output layer
with one output activated with a linear function. Because the
system has to be modeled as a mathematical model of one
differential equation of pressure, the number of layers and
neurons were manually selected by trial and error during the
training process to ensure the accuracy of the network. The
sigmoid function σ (x) was selected as the activation function
for hidden layers of the network; the function is defined as
follows:

σ (x) =
1

1+ e−x
(16)

where x is the argument of the function σ (x) and e is the
Euler’s number.

IV. HYBRID MODEL DEVELOPMENT
The whole development of the hybrid model was divided
into two stages. The first stage of development included the
collection of the training data and training of the NARX
RNN. The second stage of the development is related to
the implementation of the neural network to the fluid power
systems from Section II. The modeling and simulation of the
systems were performed in MATLAB R2020a software in a
form of MATLAB code, and the formulation of the RNNwas
performed through the embedded MATLAB Deep Learning
Toolbox.

A. DATA COLLECTING AND TRAINING OF THE RNN
The data collected for the training was based on the simu-
lation results of the practical fluid power circuit 2 described
in Section II. The original system was simulated for 3,000
seconds with an integrator time step of 1.0 × 10

-5
s and an

input voltage that was supplied randomly in a range between
−10 and 10 Volts. The integrator time step was selected
empirically to ensure the correct response of the system in
the presence of small volume. The data set of 300 million
samples was created from several parameters of the system,
where each sample displayed the data of parameters obtained
at every time step of the simulation. The number of samples

was reduced to 3 million by saving each 100th sample to
reduce the computational load of the computer and provide
relatively fast training of the neural network. The input data
chosen for the training were data arrays of volumetric flows
Q3 and Qv, effective bulk modulus Be3 and the fixed small
volume Vv obtained from the simulation of the original sys-
tem mentioned above. Pressure in small volume pv was also
saved and utilized as the output data for the training of the
neural network. This data was chosen for training, validation,
and testing of the neural network. Since all the input data,
except the small volume, is variable, the neural network based
on such data will work with any system with similar variable
parameters. In case of changes of the small volume, new
training of the network might be required.

At the beginning of the training, the training data was
distributed for training, validation, and testing sets in the pro-
portion of 70/15/15 percent. The input and output data were
normalized in a range between -1 and 1 to achieve effective
training results. The NARX RNN was trained multiple times
in order to find the appropriate number of neurons in hidden
layers for the most accurate and effective simulation. The
Levenberg-Marquardt algorithm was utilized in the training
process as a main backpropagation-based training algorithm
due to its relatively fast training of the network and accurate
results [37]. The Early-Stopping technique was also utilized
in cases when the generalization stopped improving. The net-
work was trained a total of ten times, for a maximum of 1,000
epochs with a different number of neurons in each hidden
layer. The results of the training are displayed in Table 3. The
results show that the number of neurons affects the training
time of the neural network, and at the same time, the most
accurate validation performance was obtained at training
8 and 9 with 40 and 45 neurons in a hidden layer, respectively.
Based on the obtained data, the number of neurons in the
RNNwas selected to achieve the most accurate result, and the
most accurate network in terms of Mean-Square error (MSE)
was selected for the Hybrid model simulation.

The most accurate network (see Fig. 4a and 4b) contains
40 neurons in hidden layers. The validation performance of
the network was expressed in the form of MSE, equal to
0.000216 (normalized data). The training time of the selected
network was 3 hours and 33 minutes.

B. IMPLEMENTATION OF THE RNN IN THE HYBRID
MODEL
After the training, the most accurate and fastest network
was implemented in the MATLAB code of the traditional or
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FIGURE 3. Structure of the NARX RNN.

TABLE 3. Results of the training of the NARX RNN with normalized data.

reference mathematical model of both circuits described in
Section II. The network was added to the code in the form
of a MATLAB function as a substitute for the numerically
stiff equation with small volume. First, the traditional math-
ematical model was simulated to obtain the input dataset for
the hybrid system simulation. Such inputs are effective bulk
modulus Be3, volumetric flows Q3 and Qv, and volume Vv.
Note that the simulation of each hybrid system should be

performed after obtaining the inputs for the network, and
this means that the simulation of the traditional mathematical
model should be completed and input values should be saved.
After that, the hybrid system can be simulated an unlimited
number of times.

The simulation of the hybrid system includes the stage of
preprocessing the RNN before the main model simulation
with the use of the data obtained from the previous simula-
tion. The whole system is automatically simulated using the
pressure data obtained from the RNN preprocessing stage at
the corresponding simulation time step.

V. RESULTS AND DISCUSSION
This section presents the results of the simulation of the fluid
power circuits described in Section II. In the case of Circuit 1,
the simulation was performed with two variations of the inte-
grator time step to show the responses of the pressure of the
reference and hybrid systems at different simulation speeds.

Circuit 2 was simulated with a different input signal to ensure
the ability of the hybrid system with the RNN was accurate
and fast with any set of input signals. The results are presented
in the form of a comparison of plots related to the responses
of the traditional system modeling and the hybrid approach
of system modeling. The results obtained in the simulation
also provide an understanding of the advantages and features
of the hybrid method compared to the classical mathematical
modeling and simulation of fluid power circuits.

A. CIRCUIT 1: RESULTS
Circuit 1 was simulated for 50 seconds using the reference
and hybrid model. The first simulation of the circuit was
performed using the reference model at integrator time steps
of 1.0×10−4 s, and 1.0×10−3 s. Fig. 5 illustrates the response
of the pressure in small volume p2 for above-mentioned time
steps in the reference model. It is seen from the figure that
the responses of the reference model at different integrator
time steps are different, which is the effect of the small
volume described in [10], [11]. In this case, the response of
the pressure at the time step of 1.0× 10−4 is correct. In other
words, it is impossible to use the model at large time steps
due to its numerical instability.

The Table 4 represents the results of the simulation in the
form of the simulation time and Relative Root-Mean-Square
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FIGURE 4. Validation, train and test performance of the selected NARX
RNN. (a) Full performance between 1 and 1000 epochs. (b) A close look at
the performance plot between 800 and 1000 epochs.

Error (RRMSE), defined as follows:

RRMSE =

√
1
N

N∑
i=1

(xi − xmi )
2

N∑
i=1

(| xi |)

× 100 (17)

where N is the number of points, xi is the value of the
reference model at operating point and xmi is the value of any
comparable model (reference at different time steps or hybrid
model) at the same point. The RRMSE of the reference model
at the time step of 1.0×10−3 in comparisonwith the reference
model at the time step of 1.0×10−4 is 802.06%. A high error

FIGURE 5. Comparison of responses of the reference model at 1.0 × 10−4

and 1.0 × 10−3 integrator time steps.

percentage proves the numerical instability of the reference
system at time steps larger than 1.0× 10−4.

The hybrid model was simulated at a time step of
1.0 × 10−4. The simulation shows an accurate pressure
response with an RRMSE of 0.895% with respect to the
reference system (time step of 1.0×10−4), which is observed
from the plot in Fig. 6a. The simulation time of the hybrid
system is 23.56 s, which is shorter than the reference system
(24.63 s) even at the same simulation time step.

The plot for the next simulation of the hybrid model per-
formed at a time step of 1.0 × 10−3 s is depicted in Fig. 6b.
The plot shows the stable response of the hybrid model in
relation to the reference model at the integrator time step of
1.0× 10−4. The simulation time of the hybrid system is only
2.32 s which is 10 times shorter than the numerically stable
response of the reference system, which was obtained at the
1.0× 10−4 s integrator time step (24.63 s). The RRMSE for
the pressure response of the hybrid system at the time step of
1.0× 10−3 s is 7.333%.
According to the plots in Figures 6a and 6b, the only

difference between the responses of the hybrid system at
different time steps is the longer pressure rise time, which
indicates the stability of the hybrid model. In other words,
the difference between the responses of the hybrid model
at time steps of 1.0 × 10−4 and 1.0 × 10−3 is neglectable
compared to the reference model at the same time steps.
At the same time, responses of the hybrid model are close
to the reference at the time step of 1.0× 10−4. It means that
the hybrid model can be used without significant accuracy
losses at larger simulation time steps, whichmakes this model
a trade-off between accuracy and simulation speed.

B. CIRCUIT 2: RESULTS
Circuit 2 was simulated with a constant pressure supply
of 1.4 × 107 Pa and two different sets of input signals
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TABLE 4. Circuit 1 simulation results.

FIGURE 6. Circuit 1 pressure in small volume p2 response of the
reference model and hybrid model at time step: (a) both reference and
hybrid models: 1.0 × 10−4 seconds and (b) reference model: 1.0 × 10−4

seconds; hybrid model: 1.0 × 10−3 seconds.

(Fig. 7a and 7b) using both traditional (reference) and hybrid
models. First, the circuit was simulated for 50 seconds with
a randomly distributed input signal in a range between −10
and +10 volts (Fig. 7a). The numerical stiffness of the ref-
erence system with a small volume between the pressure
compensator and the directional control valve allowed the
maximal simulation time step of 1.0 × 10−5 s to obtain
a numerically stable response. The stiffness of the hybrid

FIGURE 7. Signal U for Circuit 2 simulations: (a) random input signal and
(b) repeatable input signal.

model was generally reduced by using the RNN instead of
the stiff differential equation related to the pressure in small
volume, which allowed an increase in the time step of the
simulation to 1.0× 10−4 s.
As the result, the simulation time for the real 50 seconds

was 501.47 seconds for the reference model. Compared to the
simulation time of the hybrid model (53.27 s), the reference
was almost ten times slower. However, the simulation time
difference between the twomodels is associated with the time
step difference at the same level of accuracy, which can be
observed among the simulation results in Table 5 (see Fig. 8).
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FIGURE 8. Circuit 2 responses of cylinder piston position xs and pressure pv at random input voltage comparing the reference
model and hybrid model with utilized RNN.

FIGURE 9. Circuit 2 responses of cylinder piston position xs and pressure pv at repeating input voltage comparing the reference
system and hybrid system with utilized RNN.

TABLE 5. Circuit 2 simulation results.

The responses of pressure pv related to small volume as
well as the cylinder piston position xs for the reference and
hybrid models with a random input signal are illustrated by
plots in Fig. 8. The accuracy of the model is well-observed
in the plot. The RRMSE for the reference model defined
in (17) and represented in the simulation results (Table 5) was
calculated for the hybrid system and equals 0.089% for the
cylinder piston position xs and 1.479% for pressure in small
volume pv.

The second simulation of Circuit 2 was performed within
10 seconds utilizing the reference and hybrid models. The
repeatable input signal in a range between −6 and +9 Volts
with a time period of 2.5 seconds was set for both systems.

The simulation time steps remained the same for the reference
and hybrid models, which were 1.0×10−5 s and 1.0×10−4 s,
respectively. The responses of cylinder piston position xs
and pressure in small volume pv are plotted in Fig. 9. The
plots clearly represent the accurate responses of the hybrid
model with respect to the reference with a resultant RRMSE
of 0.260% and 2.441% for cylinder piston position xs and
pressure pv, respectively.
The simulation times of the second simulation for the

reference and hybrid models are presented in Table 5. Hybrid
model simulation was performed for only 9.89 seconds, while
the simulation of the reference model required almost ten
times as much time (102.96 seconds).
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At the end of the simulation, it can be concluded that at
both the random and repeatable sets of input signals, the per-
formance of the hybrid model is stable and accurate despite
the RNN utilized instead of the stiff differential pressure
equation was trained on the random data obtained from the
3,000-second simulation. Moreover, the simulation time of
the hybrid system is significantly shorter than with the tradi-
tional mathematical model. And the conversion of the model,
for instance to C++ code, may allow simulating it in real-
time, or even faster than real-time applications.

VI. CONCLUSION
This paper proposes a novel hybrid method to solve a fun-
damental problem in the dynamic simulation of fluid power
circuits. The problem is associated with the existence of
stiff differential equations in the mathematical model of the
system in the presence of small volumes that restrict the
simulation speed for real-time applications. The method is
based on the use of the NARX recurrent neural network
in the model, which substitutes the stiff pressure continuity
equation. The dynamics of the remaining parts of the system
are preserved and modeled with conventional differential and
algebraic equations. The network was trained using data from
the practical fluid power circuit simulation in order to receive
an accurate response.

To demonstrate the features and advantages of the method,
the classical mathematical model and the hybrid method were
compared. The simple circuit of three orifices in series and the
practical circuit with a two-chamber cylinder controlled by a
directional control valve were modeled and simulated using
the two above-mentioned approaches. A simple circuit was
tested at different simulation time steps, whereas the practical
circuit was tested at random and repeating inputs. In both
case studies, the response of the hybrid method was several
times faster than the conventional reference model due to the
elimination of the numerical stiffness problem. At the same
time, the accuracy of the hybrid method is relatively high,
which allows a trade-off between accuracy and simulation
speed. Finally, the hybrid method performance allows us to
use it in real-time applications, and future research can be
associated with the testing and comparison of different time
series RNN architectures (e.g. LSTM, GRU architectures in
comparison with the NARX architecture) to find the most
efficient method for real-time simulation of fluid power cir-
cuits.
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