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ABSTRACT Leukemia is one of the most terminal types of blood cancer, and many people suffer from
it every year. White blood cells (WBCs) have a significant association with leukemia diagnosis. Research
studies reported that leukemia brings changes in WBC count and morphology. WBC accurate segmentation
enables to detect morphology and WBC count which consequently helps in the diagnosis and prognosis of
leukemia. Manual WBC assessment methods are tedious, subjective, and less accurate. To overcome these
problems, we propose a multi-scale information fusion network (MIF-Net) for WBC segmentation. MIF-Net
is a shallow architecture with internal and external spatial information fusion mechanisms. In WBC images,
the cytoplasm is with low contrast compared to the background, whereas nuclei shape can be complex with an
indistinctive boundary for some cases, therefore accurate segmentation becomes challenging. Spatial features
in the initial layers of the network include fine boundary information and MIF-Net splits and propagates
this boundary information on multi-scale for external information fusion. Multi-scale information fusion
in our network helps in preserving boundary information and contributes to segmentation performance
improvement. MIF-Net also uses internal information fusion after intervals for feature empowerment
in different stages of the network. We evaluated our network for four publicly available datasets and
achieved state-of-the-art segmentation performance. In addition, the proposed architecture exhibits superior
computational efficiency by using only 2.67 million trainable parameters.

INDEX TERMS Deep learning, computer-assisted diagnosis, leukemia diagnosis, WBC count, WBC
segmentation.

I. INTRODUCTION

Blood is mainly composed of white blood cells (WBCs),
red blood cells (RBCs), and platelets. WBCs in blood play
a key role in fighting against infections, and detection of
different diseases [1]. WBC count is also considered an
important biomarker for the clinical diagnosis of many
diseases. Leukemia is one of the fatal types of blood cancer
and it occurs due to the replication of diseased WBCs.
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According to a study, every year approximately 300,000 new
patients are diagnosed with leukemia [2]. Initially, leukemia
suspected patients are advised for a complete blood test which
includes WBC count. Moreover, the morphology of WBCs
is also analyzed for confirmation of leukemia screening [3].
WBC count and morphology assessment are carried out
manually which is tedious, time-consuming, error-prone, and
subjective procedure. Hence, manual procedures are required
to be replaced or assisted with artificial intelligence-based
automated systems. Advances in computer-assisted diagnosis
have a potential impact on the diagnostic industry [4].
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Specifically, deep learning has played a vital role in various
disease detection systems [5]. Computer-assisted diagnosis is
the need of modern diagnostic systems. Leukemia diagnosis
is significantly associated with WBC. Patients with leukemia
exhibit changes in WBC count and morphology. Traditional
diagnosis is based on manual assessment and analysis
of WBCs. There is an improvement gap for accurate
and early detection of leukemia which can be best filled
with deep learning-based automatic and robust diagnosis
frameworks. WBCs are normally classified into five main
types; eosinophils, neutrophils, lymphocytes, basophils, and
monocytes [4]. WBC segmentation is challenging because
the cytoplasm is in low contrast with the background
while the nucleus for some cases has an indistinctive
boundary with a complex shape. Most of the existing WBC
segmentation methods do not consider cytoplasm and nucleus
joint segmentation. Moreover, some of the methods perform
joint segmentation but their segmentation performance is
not up to the mark. Lastly, many existing networks do
not have a good computational efficiency therefore they
require a large number of trainable parameters. In WBC
segmentation, along with problems from the medical point of
view, we have also discussed the challenges from a computer
vision point of view in discussion section. To address
these problems, we develop WBC segmentation network
capable of performing joint segmentation for cytoplasm and
nucleus with good computational efficiency. We used multi-
scale information fusion for preserving and propagation
of objects boundary information. We also used image
information fusion for an improved feature extraction and
enhanced learning. Information fusion from different stages
of network helps in thorough learning of image features and
results in accurate predictions. We improved segmentation
performance using novel techniques without compromising
the computational efficiency. We evaluated our architecture
on four publicly available datasets and exhibited state-of-the-
art segmentation performance. In Figure 1, sample images
with their corresponding ground-truth images are shown.
Leukemia brings changes to WBC count, and morphology [6]
whereas morphological detection is mainly based on accurate
boundary predictions for desired classes. In addition, there
are a few statistical analyses based on the area of cytoplasm
and nuclei which consequently aid in leukemia diagnosis.

Our main contribution to this study can be summarized as

follows.

« We developed a novel network, namely multi-scale
information fusion network (MIF-Net), for joint seg-
mentation of cytoplasm and nucleus to highlight
WBC morphology and count for aiding the leukemia
diagnosis. MIF-Net possesses a shallow architecture
with internal information fusion after intervals that
improve the segmentation performance through feature
empowerment.

o MIF-Net splits low-level multi-scale fine boundary
information from the initial layer and propagates to
deep stages of the network for external information
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FIGURE 1. Example WBC images of datasets (row1) with ground-truth
images (row2). (a) Dataset-1 (b) Dataset 2 (c) Dataset 3.

fusion. It helps in accurate boundary predictions for

both cytoplasm and nucleus. Proposed architecture is

evaluated on four WBC publicly available datasets

and achieved state-of-the-art segmentation performance.

MIF-Net uses only 2.67 million trainable parameters,

which confirms its promising computational efficiency.
The remaining paper is organized as follows. Previous study
related to WBC segmentation is discussed in Section II. Pro-
posed method is explained in Section III. The experimental
results along with implementation details are provided in
Section IV. In the end, conclusion of this study is presented
in Section V.

Il. RELATED WORKS

WBC analysis is the topic of vast interest among medical
experts because of its clinical significance in the diagnosis
of many critical diseases. WBC segmentation methods can
be mainly divided into two categories; WBC segmentation
based on handcrafted-features and WBC segmentation based
on deep-features.

A. WBC SEGMENTATION BASED ON
HANDCRAFTED-FEATURES

Handcrafted-feature-based methods are generally based on
conventional image processing schemes. In one of the
methods, a color-band-thresholding scheme was employed
for WBC segmentation, counting, and analysis [7]. This
study concluded that color space components enable the
computer-aided system to achieve the highest segmentation
performance [7]. In addition, it also refers that nuclei-
based detection exhibits better performance than cytoplasm-
based detection for counting purposes [7]. However, the
proposed assessment is limited to the same resolution and
magnification factor, and tunning of a constant multiplier is
required for other resolution and magnification factors [7].
Another study used hue, saturation, and value (HSV)
components to improve the counting results in blood
smear images [8]. According to this study [8], HSV
components help in improving the accuracies using area
features and eccentricity. Presented work eliminates the
need for unnecessary preprocessing and provides a simple
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and fast method for blood smear images analysis [8]. This
method is evaluated using a few images [8]. Similarly,
another method proposed adaptive histogram thresholding
for leukocyte localization [9]. At first, nuclei is extracted
followed by background removal using combination of
image components and adaptive histogram thresholding.
Later, the complete cell is extracted to obtain the cytoplasm
region through subtraction operation [9]. This method is
evaluated on a single dataset [9]. In [10], a clustering-based
prediction method is proposed for decimating infected cells
with non-infected cells. This method refers to a hybrid
clustering approach in which a rough k-mean clustering is
combined with rough soft covering clusters [10]. Method
proposed in this study is capable of handling uncertainties by
applying soft covering rough approximations [10]. Proposed
method requires preprocessing and its processing time is
expected to increase while working with multiple color
images [10]. Subsequently, geometry and sparsity constraints
are used to perform segmentation for nuclei and cytoplasm in
leukocytes [11]. In this approach, accurate cell detection is
achieved with the help of a fitting technique and effective
information is preserved for better results [11]. This method
was evaluated on datasets with single cell-based leukocyte
images [11]. In another method, WBC assessment and
segmentation are carried out by undergoing entropy-based
procedures [12]. To improve the segmentation performance,
a bi-level threshold is used in this approach [12]. Moreover,
experiments are performed on a single famous leukocytes
dataset for evaluation of their method [12]. In a study, the
nucleus and cytoplasm of WBC are segmented using image
texture and color-based enhancements [13]. In this method,
cytoplasm highlighting, and elimination of undesired infor-
mation are attained using enhancements and discrete wavelet
transform [13]. This method requires contrast stretching as
preprocessing to produce desired results [13]. In another
method, leukocytes segmentation is performed using
K-means clustering [14]. Initially, RGB image is converted
and fed to K-mean clustering for extraction of nuclei. Finally,
nuclei and background differences are taken from the main
image to find cytoplasm [14]. Proposed method is evaluated
on a single dataset [14].

B. WBC SEGMENTATION BASED ON DEEP-FEATURES

Deep learning has brought the conventional diagnostic
industry to the verge of fast, automatic, and intelligent
diagnostics. Deep learning-based segmentation approaches
are famous because of their robustness and high segmenta-
tion performance. Deep-features-based methods are widely
used in many computer-assisted diagnosis applications [4].
This study [4] refers to CNN-based algorithms that use
transfer learning for WBC segmentation. However, this
transfer learning-based approach had performance limita-
tions especially for small cells [4]. In this study [15] some
famous encoder-decoder-based segmentation architectures
are employed for the segmentation of WBC. Proposed
method employs VGG16 as an encoder and its features are
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used to improve the segmentation performance [15]. This
method is evaluated on a single dataset for segmentation [15].
In this study, convolutional neural network (CNN) based on
an encoder-decoder structure was used for WBC segmen-
tation [16]. Multi-scale features were fed to the encoder
whereas at the decoder-end, features were attained with the
help of a context-aware feature map decoder to reconstruct
the segmentation mask for predictions [16]. The proposed
architecture is based on famous U-Net architecture [16].
Similarly, WBC multi-scale features were extracted with
the help of a context-aware encoder in CNN [17]. A
residual architecture performed features refinement and
predictions were made with segmentation mask genera-
tion [17]. The network in the proposed method is based on
famous U-Net architecture with the addition of a feature
refinement module [17]. Subsequently in another method,
initial segmentation is performed using an unsupervised
technique [1]. In the first part, the foreground region of the
image is extracted using K-means clustering. In the second
part, support vector machine (SVM) is trained using the
first part segmentation as labels. Finally, SVM provides
the pixel-wise classification for further improvement in
performance [1]. However, this method was tested on two
datasets with no small-sized cells [1]. In a study, leukemia
is diagnosed by initially performing segmentation and finally
classifying the diseased and non-diseased cells [18]. In this
method, fuzzy C means algorithm is combined with active
contour output using a hybrid mutual information model for
segmentation [18]. This framework needs preprocessing for
predictions [18]. Subsequently, WBC segmentation is per-
formed using multi-spectral imaging techniques [19]. SVM
is directly applied on each pixel for pixel-wise segmentation
whereas feature selection was conducted through sequential
minimal optimization [19]. Feature vector is formed using the
intensity of each pixel [19]. Similarly in [20], an algorithm
for the recognition of five main types of WBCs is presented.
Cytoplasm and nucleus segmentation is performed by using
the snake algorithm and gram-Schmidt orthogonalization.
After feature extraction, SVM and artificial neural network
are employed for classification [20]. The proposed method
has a limitation of generating multiple contours in case
of multiple, separate, and apart nuclei regions in the same
cell [20].

ill. PROPOSED METHOD

A. PROPOSED METHOD OVERVIEW

The count and morphology of WBC are considered key
biomarkers for the diagnosis of leukemia. Therefore,
we develop a novel architecture for the segmentation of
cytoplasm and nucleus in WBC microscopic images. The
low contrast of cytoplasm and indistinctive boundary of
nucleus for few images can make the WBC segmentation
challenging. We develop a multi-scale information fusion-
based architecture to deal with these challenges. Extracted
features in initial layers of any network carry potential
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FIGURE 2. Overview of proposed multi-scale information fusion-based
cytoplasm and nuclei segmentation network in white blood cells (WBCs)
images for aiding the leukemia diagnosis.

low-level spatial information. Overview of the proposed
framework is shown in Figure 2. WBC images are provided to
spatial information splitter as input. This spatial information
includes fine boundary information which is splitted in multi-
scale using spatial information splitter. Fine boundary infor-
mation is propagated to the advance layers of the network
for information fusion. In the external information fusion
section, boundary information is fused with downsampled
spatial information. External information fusion significantly
helps in boundary predictions for the cytoplasm and nucleus.
Moreover, splitter also transfers spatial information for
internal fusion. Internal information fusion ensures feature
empowerment across the network. Internal fused information
is periodically downsampled and finally after a few layers of
operations it is also fused with external information fusion.
In the end, prediction masks are generated in accordance with
fused features. Our network provides segmented cytoplasm
and nucleus along with WBC count as output which can aid
in the diagnosis and prognosis of leukemia.

B. CYTOPLASM AND NUCLEUS SEGMENTATION USING
MIF-NET

WBC microscopic images are usually different in shape, stain
condition, and size which makes their segmentation challeng-
ing. We developed a multi-scale information fusion-based
network that is capable of delivering better segmentation
performance even in challenging conditions. The network
architecture of proposed MIF-Net is shown in Figure 3.
Spatial information of input image is extracted using image
input layer. This spatial information is splitted through spatial
information splitter which is based on a convolution layer.
Spatial information splitter splits the spatial information in
three different scales using strided convolution layers. These
multi-scale image features significantly help in segmentation
performance improvement. U-Net [21] and SegNet [22] are
famous encoder-decoder-based segmentation architectures.
In encoder-decoder structures, pooling layers and un-pooling
layers are used for downsampling and upsampling of spatial
information, respectively. Pooling and un-pooling layers
cause information loss along with their normal operation [23].
This information loss is more crucial at the decoder-end
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because after decoding prediction masks are generated.
To cater this problem, MIF-Net uses a shallow architecture
and we employ transpose convolution in place of un-pooling
layers. Similarly, we use strided convolution in place of
pooling layers for multi-scale information downsampling,
and propagation. Both transpose and strided convolution
layers are learnable layers and help the network in optimum
learning. In addition, MIF-Net presents a unique internal
and external information fusion concept. Initial layers of the
network possess fine boundary information of the objects and
we propagated this boundary information in the boundary
information propagation (BIP) section. BIP uses strided con-
volution for multi-scale propagation of spatial information.
Three strided convolution layers with the corresponding
stride (S-1/S-2/S-3) took part in multi-scale information
dissemination and later this information is fused with spatial
information in external information fusion blocks. As shown
in Figure 3, we used two categories of fusions; External
information fusion (EIF) and internal information fusion
(IIF). In EIF, all three skip connections are originated from
the encoder’s first layer (splitter), bypassing the remaining
encoder layers and passing through BIP, which are terminated
in the decoder. Therefore, all the fusions in decoder getting
external inputs from the encoder are named EIF. In the
proposed architecture, three EIFs are employed for multi-
scale external information fusion. In all IIF, skip connections
are originated from the encoder’s preceding convolution layer
and are terminated in the subsequent convolution layer of
encoder. Hence, all the fusions in encoder getting internal
input from encoder are named IIF. In the proposed network,
four IIF are employed for spatial feature empowerment
after intervals. Three EIF blocks, namely EIF-1, EIF-2, and
EIF-3 are used for external information fusion between
boundary information and downsampled spatial information.
Generally, all network layers cause some feature degradation
along with their normal operation. MIF-Net developed an
internal information fusion scheme to compensate for this
feature degradation problem. MIF-Net design contains four
IIF blocks; namely IIF-1, IIF-2, IIF-3 and IIF-4 which are
employed for feature empowerment. S-1 shows the strided
convolution with stride 1 and it takes the input from splitter
and provides the output to EIF-3. Similarly, S-2 refers to
strided convolution with stride 2 and it also takes the input
from splitter, reduces the feature map size with a factor of 2
(half), and its output is fed to EIF-2 for information fusion.
S-4 shows the strided convolution with stride 4. S-4 also takes
input from splitter; reduces the feature map size with a factor
of 4 (quarter) and its output is fused at EIF-1.

In Figure 4, we presented both external and internal fusion
process interpretation for a detailed explanation. As shown in
Figure 4, S_conv_i refers to the strided convolution which
is itself the part of BIP. Features being input to S_conv_i
(BIP) are originated from spatial information splitter. Two
convolution layers conv i and conv j provides spatial features
of I,and I, respectively. The addition symbol given at the
left side of Figure 4 represents IIF and both spatial features,
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FIGURE 3. MIF-Net architecture. (IIF: internal information fusion; EIF: External information fusion; BIP: Boundary information propagation; S:
Stride; Conv: Convolution layer; Max-pool: Max-pooling layer; ReLU: Rectified linear unit layer; Transpose Conv: Transpose convolution layer;
BN: Batch normalization layer; PCL: Pixel classification layer; Strided Conv: Strided convolution layer; S-1: Stride-1; S-2: Stride-2; S-4: Stride-4).

1,and I, are fused producing internally fused feature IF,, at
the output.

IFy, =1+ 1Ip (D

Transpose convolution (7T _conv_j) upsamples the internally
fused feature and provides IF’,, at the output. Splitted spatial
boundary information is fed to strided convolution (S_conv_i)
for information propagation in designated scale and it
provides spatial boundary information (SB,) at its output.
This SB, and IF’,, are fused and provides external fused
spatial boundary information (EF ) as given in mathematical
expression below

EF, =IF',, + SB, 2)

This external fused boundary information is further processed
through batch normalization (BN_i) and rectified linear
unit (ReLU) and changes in spatial information is represented
with A. The final output is fed to the next external information
fusion block.

AEF, = A(IF'y, + SBy) 3)

Loss function in any deep learning-based convolutional
neural network guides the network for optimal learning.
In the proposed architecture binary cross-entropy loss is
employed to lead the training process. MIF-Net layer level
configurational detail is presented in Table 1.

C. MIF-NET ARCHITECTURE COMPARATIVE DETAILS

MIF-Net architecture is developed from scratch, and it is not
based on any other network. The initial layers of the network
contain low-level spatial information. This low-level spatial
information from the initial layer is splitted into four paths for
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FIGURE 4. Schematic diagram of the MIF-Net showing internal and
external spatial information fusion. Whereas, symbol at the left side and
right side of the diagram represents IIF and EIF, respectively.

external and internal information fusions. Splitter is based on
a convolution layer followed by BN and ReLU layers. The
splitting of spatial information is shown in Figure 5. Three
strided convolution layers with strides 1, 2, and 3 change
the features to multi-scale according to their stride values.
Feature map size at splitter (Conv1_1) is 300 x 300 x 64 and
after strided-conv (S-2) feature map size becomes 150 x 150 x
64 because of stride value of 2. Similarly, after strided-conv
(S-4) feature map size is downsampled to 75 x 75 x 128 with
increased channels. Lastly, strided-conv (S-1) retains the
feature map size (300 x 300 x 32) with decreased number
of channels and applies the convolution operation for the last
external information fusion. All this multi-scale information
from strided convolution layers subsequently undergoes EIF.
In MIF-Net, IIF ensures feature empowerment after intervals
whereas EIF helps in improved boundary predictions for
cytoplasm and nucleus.

Multi-scale information fusion is being widely used in
different deep learning-based applications [45],[46]. In [45],
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TABLE 1. MIF-net configurational description.

TABLE 2. MIF-NET key Differences with SENet[45] and FPN-based
method [46].

Output
No. of No. of (W xHx Q) Models MIF-Net SENet FPN-based
Layer Name Number of max channels 256 2048 512
filters parameters -
Number of downsampling 3 5 5
operations
Convl_1+ReLU1 1 64 1792 300%300x64 Maximum stride value used 4 2 2
Number of convolution layers
BN Convl_1 - 128 30030064 in each stage (excluding 2 3 4
Convl 2+ReLUl 2 64 36,928 300x300%64 upconvolution and first stage)
_ 128 300x300%64 Fusion points 7 1 3
BN Conv 2 Multi-scale architecture base Developed Based on FPN+ResNe
Conv2_1+ReLU2_1 128 73856 150x150%128 from scratch  ResNet-101 t
BN Conv2 2 - 256 150x150%128 Spatial information splitting VES NO NO
- - from the initial layer
Conv2 2+ReLU2 2 128 147,584 150150128 Region- Region-
BN_Conv2_2 - 256 150x150x128 Architecture type Segmentation prposal-based p 2:1 (;ZZI'
detection .
tect
Conv3_I+ReLU3_1 256 295,168 75x75%256 TRV detection
- B Number of parameters 2.6TM :
BN_Conv3_1 - 512 75%75%256 (ResNet-101)
Conv3_2+ReLU3_2 256 590,080 T5x75%256
BN_Conv3_2 - 512 T5x75%256 . .
is employed for multi-scale feature maps to be converted
Conv4_I+ReLU4_1 256 590,080 38x38x256 into object proposals. FPN is used with the backbone
BN_Conv4_1 - 512 38x38x256 of ResNet. MIF-Net is an entirely different architecture
Convd 2+ReLU4 2 256 590,080 38x38x256 compared with [45] and [46], some of the major differences
BN_Convé 2 } 512 38x38%256 are highlighted in Table 2: In MIF—N.et, a maximum of
75x75x 128 256 channels are used which results in a small number
XT75x% .
S_Conv_1 128 8320 of parameters requirement. Subsequently, only three down-
T_convI+ReLU-1t 128 295,040 75x75%128 sampling operations are performed in MIF-Net to keep the
BN_It - 256 75%x75%128 final feature map size sufficiently large for avoiding minor
S Conv 2 64 4160 150%150%64 information loss. Unlike [45], [46], the proposed method uses
- a total of 7 fusion operations including EIF and IIF. In the
T_conv2+ReLU-2t 64 32,832 150x150x64 L . e .
proposed method, spatial information is splitted from the
BN_2t ) 128 15015064 initial layer. Multi-scale information in MIF-Net is attained
S_Conv_3 32 2080 300x300%32 using strided convolution with different stride values. MIF-
T conv3+ReLU-3t 1 3224 300x300%32 Net architecture is a computationally efficient architecture,
BN 3t . 64 300%300%32 and it requires only 2.67 million trainable parameters.
Conv5+ReLUS 3 99 300x300%3
BN Convs 6 300X30053 IV. DATASET DESCRIPTION AND TRAINING
- X X
- A. DESCRIPTION OF EXPERIMENTAL SETUP AND
Total number of parameters: 2,679,593 DATABASES

Input Image Splitter

Strided Conv Strided Conv Strided Conv
(S-1) (S-2) (S-4)

FIGURE 5. Spatial information splitting diagram. (Strided Conv: Strided
convolution layer; S-1: Stride-1; S-2: Stride-2; S-4: Stride-4)

a scale estimation network (SENet) with head detection
network is presented for person localization. SENet employs
ResNet-101 as the backbone to address the problem of
vanishing gradient. Similarly, in [46] multi-scale object
proposal method followed by multi-class object classification
is proposed. In this method, a feature pyramid network (FPN)
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We performed experiments on four publicly available datasets
to evaluate the proposed framework. Jianxi Tecom Science
corporation of China provided Dataset-1 [1]. Dataset-1
has 300 images with 120 x 120 dimensions. It contains
48 monocytes, 176 neutrophils, 1 basophil, 22 eosinophils,
and 53 lymphocytes. Similarly, Dataset 2 [1] has a total
of 100 images with 300 x 300 dimensions. It contains 18
monocytes, 30 neutrophils 3 basophils, 12 eosinophils, and
37 lymphocytes. Dataset 3 [20] consists of 242 images with
712 x 568 dimensions. It has 48 monocytes, 50 neutrophils,
53 basophils, 39 eosinophils, and 52 lymphocytes. Dataset 2,
and 3 employed a standard staining condition whereas
Dataset-1 used a rapid staining condition. Sample images for
all four datasets are already shown in Figure 1. Dataset 4
(BCISC) [49] has a total of 268 sub-images with size 256 x
256 pixels and its collection is supported by third people’s
hospital of Fujian province.
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MIF-Net is developed, trained, and evaluated using MAT-
LAB R2020a. We performed experiments using a computer
having Intel®Core™i7 3770 with 28 GB of RAM, 3.5 GHz
CPU, and NVIDIA GeForce GTX 1070 GPU.

B. MIF-NET TRAINING

Neural networks require extensive annotated data for the
optimal training of the network. Annotated medical images
data is usually insufficient for training. Therefore, we perform
augmentation of training data to artificially create the training
database. In augmentation, we logically perform different
morphological, geometric, and arithmetic operations. In our
data preparation, we used vertical and horizontal flipping
along with different translation and cropping schemes for data
augmentation. We used the original image size for Dataset
2 experiments whereas Dataset-1 and dataset 3 were resized
to 300 x 300 and 712 x 568, respectively. Same data splitting
criteria are followed as given in [16]. Hence, 70% of images
are randomly selected for training while 30% of images are
randomly selected as testing whereas 10% of the training split
is used for validation to avoid overfitting. We trained our
network from scratch; we did not use any pre-trained network
or weights migration for our model training. Adaptive
moment estimation (Adam) is employed as an optimizer to
optimize the adaptive learning process [24]. Adam optimizer
is famous for its fast convergence with limited memory
requirements using a first-order gradient [24]. Class labels
identifiers based on corresponding ground-truth images are
assigned before starting the training process. An initial
learning rate of 0.001, L2 regularization of 0.0005, and a
square gradient decay factor of 0.95 were set as initial training
hyperparameters. Overall optimization is attained using
Adam optimizer. Validation is used to ensure that network is
not overfitted with training data. A stopping criterion based
on validation accuracy with a stopping threshold value of
20 is adopted. If the validation accuracy does not increase
for 20 consecutive iterations training stops and network with
optimized hyperparameters is saved. with threshold value
of 20 is set to stop and save the network with optimized
hyperparameters. avoid the overfitting The training loss and
accuracy plots are shown in Figure 6(a), 6(b), and 6(c)
represents that the training accuracy is approaching to
approximately 100% with decaying loss for all datasets.
Similarly, validation accuracy and loss plots shown in
Figure 6(d)-(f) represent that our model is not overfitted with
training data.

C. EVALUATION METRICS

We evaluated the proposed network on four publicly available
datasets and compared our results with existing state-of-the-
art results. We presented both visual and numeric results
for comparative evaluations. We performed segmentation for
cytoplasm and nucleus for Dataset-1 and 2 whereas Dataset
3 has only cytoplasm annotations (for basophils) therefore
we performed segmentation for cytoplasm only. Evaluation
metrics used for MIF-Net includes precision (PRE) [25],
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misclassification error (ME) [26], the dice -coefficient
(DI) [27], mean intersection over union (mloU) [28], false-
positive rate (FPR) [29], and false-negative rate (FNR) [11].
Mathematical expressions of evaluation measures are shown
in equations (4)-(9).

Precision = |Wf NPy | )
|Pr|
2 P
DI = M (5)
|Wr | + | Pr|
mioU = L (W0 Pyl | [Wr O] ©6)
2\ W, UPy| * |Wy U P
ME=1_|WbﬂPb|+|WfﬂPf| -
[Wr | + Wl
FPR = M 8)
[ Wp|
P
FNR = M 9)
A

Wy represent the desired region whereas W), represents the
undesired region, in WBC ground-truth image. Likewise,
Py refers to desired predicted segmentation result whereas
Pprefers to undesired predicted segmentation results. Same
evaluations are also presented in terms of true positive (TP),
false-positive (FP), and false-negative (FN) using different
colors for visual interpretation of qualitative results. A higher
DI and mloU refers to a better segmentation performance
likewise, a lower ME, FPR, FNR score also represents a better
segmentation performance.

V. EXPERIMENTAL RESULTS
We present both numeric and visual results of MIF-Net
evaluation for a comprehensive assessment.

A. MIF-NET SEGMENTATION RESULTS ON DATASET-1
Experiments were performed on Dataset-1 for the joint
segmentation of cytoplasm and nucleus. Dataset-1 possesses
a rapid stain condition; consequently, the contrast of cyto-
plasm with background is low which makes the segmentation
challenging. As shown in Figure 8, nucleus boundary
is indistinctive in a few cases, hence accurate boundary
prediction becomes intriguing for such WBC nucleus. Multi-
scale information fusion mechanism in MIF-Net helps
the network in preserving boundary information. Despite
challenges, MIF-Net manages to exhibit state-of-the-art
segmentation performance using its effective design. Dataset-
1 good segmentation results are shown in Figure 7 whereas
some poor segmentation images are provided in Figure 8.
poor segmentation results are because of staining conditions,
contrast limitation, and indistinctive boundary of objects.
Dataset-1 numerical results comparison with state-of-the-
art methods for cytoplasm and nucleus is presented in
Table 3 and 4, respectively. Numerical results also confirm the
superior segmentation performance of the proposed network.
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FIGURE 6. MIF-Net training accuracy and loss curves for (a) Dataset-1, (b) Dataset 2, and (c) Dataset
3. Validation accuracy and loss curves with MIF-Net for (d) Dataset-1 and (e) Dataset 2, and

(f) Dataset 3.

()

(b)

(©)

FIGURE 7. Good WBC segmentation visual results for cytoplasm and
nuclei on Dataset-1. (a) Original image, (b) ground-truth image, and

(c) segmented images obtained using MIF-Net. (TP pixels for cytoplasm
and nucleus segmentation are denoted by yellow and blue color,
respectively. Moreover, FP pixels are represented by green and FN pixels

are represented by red).

B. MIF-NET SEGMENTATION RESULTS ON DATASET 2
Experiments were performed to evaluate the proposed
method on Dataset 2 for the joint segmentation of cytoplasm
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(a) (b)

FIGURE 8. Poor WBC segmentation visual results for cytoplasm and
nuclei on Dataset-1. (a) Original image, (b) ground-truth image, and

(c) segmented images obtained using MIF-Net. (TP pixels for cytoplasm
and nuclei segmentation are denoted by yellow and blue color,
respectively. Moreover, FP pixels are represented by green and FN pixels

are represented by red).

and nucleus. Dataset 2 images also have low contrast between
cytoplasm and background. It makes the learning process
challenging for the network. However, MIF-Net still manages
outperforming results using its information fusion-based
advance design. Visual results for good segmentation and
poor segmentation of cytoplasm and nucleus are shown in
Figures 9 and 10, respectively. Poor segmentation results are
because of indistinctive boundaries in the cells. In the second

VOLUME 10, 2022



IEEE Access

N. Akram et al.: Exploiting Multiscale Information Fusion Capabilities for Aiding Leukemia Diagnosis

TABLE 3. Comparison of numerical results with state-of-the-art methods

for cytoplasm segmentation using MIF-net on dataset-1. ”- “ refers to

results unreported (unit: %).
Methods PRC DC mloU ME FNR FPR
Zheng et al. [43] 86.53 92.5 - 52 0.03 7.8
Zhou et al. [29] 88.71 90.34 - 6.3 5.4 6.9
U-Net [21] 97.43 97.32 - 1.59 2.7 1.18
Chen et al. [16] 98.03 97.37 - 1.58 323 096
MIF-Net (proposed) 98.98 98.93 9791  0.66 1.05 0.52

TABLE 4. Comparison of numerical results with state-of-the-art methods
for nucleus segmentation using MIF-net on dataset-1.

results unreported (unit: %).

o

"

refers to

(c)

FIGURE 10. Poor WBC segmentation visual results for cytoplasm and
nuclei on Dataset 2. (a) Original image, (b) ground-truth image, and

Methods PRC_DC mloU ME FNR FPR (c) segmented images obtained using MIF-Net. (TP pixels for cytoplasm
Sarrafzadeh et al.[14] - 7088 - - - - and nucleus segmentation are denoted by yellow and blue color,
Vincent et al.[42] - 4833 - - - respectively. Moreover, FP pixels are represented by green and FN pixels
Vogado et al. [39] - 8768 - - - are represented by red).

Makem et al.[40] 91.01 90.79 - 2.7 - - . . . ot tha

Banik et al[41] 8763 91.0 ) TABLE 6. Comparison of numerical results with state-of-the-art methods

for nucleus segmentation using MIF-net on dataset 2. “- “ refers to result

MIF-Net (proposed) 93.81 95.84 92.18 0.997 1.76 0.85

unreported (unit: %).

& Methods PRC DC mloU ME FNR FPR
Sarrafzadeh et al.[14] - 9212 - - - -
Vincent et al.[42] - 9049 - - - -
. Vogado et al. [39] - 9322 - - - -
- Makem et al.[40] 97.37 97.06 - 0.62 - -
Banik et al.[41] 91.75 94.0 - - - -
MIF-Net (proposed) 99.27 97.53 95.66 0.511 3.62 0.063

(a) (b)

(c) @

FIGURE 9. Good WBC segmentation visual results for cytoplasm and

nuclei on Dataset 2. (a) Original image, (b) ground-truth image, and L

(c) segmented images obtained using MIF-Net. (TP pixels for cytoplasm

and nucleus segmentation are denoted by yellow and blue color, o
respectively. Moreover, FP pixels are represented by green and FN pixels

are represented by red).

TABLE 5. Comparison of numerical results with state-of-the-art methods

©

for cytoplasm segmentation using MIF-net on dataset 2. - “ refers to (a) (b)
results unreported (unit: %).
FIGURE 11. Good WBC segmentation visual results for cytoplasm on
Dataset 3. (a) Original image, (b) ground-truth image, and (c) segmented
Methods PRC DC mloU ME FNR FPR images obtained using MIF-Net. (TP, FP, and FN pixels for cytoplasm are
Zheng et al. [43] 53.61 66.93 - 2536 042 326 represented by blue, green, and red color, respectively).
Zhou et al. [29] 73.94 76.05 - 13.25 103 13.6
U-Net [21] 92.76 94.98 - 232 24 215 ] ) . )
Chen et al. [16] 942 96.18 - 117 1.6 1.8 small-sized cells and some images are containing multiple
MIF-Net (proposed) 99.51 98.38 9682 0.711 2.69 0.15 cells in the same image. MIF-Net still delivers outper-

row of Figure 10, poor segmentation results can be attributed
to granules in the nucleus.

Numerical results comparison with state-of-the-art meth-
ods is also presented in Tables 5 and 6 for cytoplasm and
nucleus, respectively. MIF-Net exhibits better segmentation
performance compared with other methods.

C. MIF-NET SEGMENTATION RESULTS ON DATASET 3
Proposed architecture is further evaluated on Dataset 3 to
check its effectiveness. Dataset 3 contains images with

VOLUME 10, 2022

forming segmentation results for pixel-wise predictions.
Good and poor segmentation visual results are shown in
Figures 11 and 12, respectively. Poor segmentation results are
because of small-sized WBCs available in the dataset.

Subsequently, numerical results comparison with state-
of-the-art segmentation methods is given in Table 7. This
comparison also validates the effectiveness of MIF-Net for
WBC segmentation.

D. MIF-NET SEGMENTATION RESULTS ON DATASET 4
MIF-Net is further evaluated on Dataset 4 to confirm the
effectiveness of the proposed method. This dataset has a
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FIGURE 12. Poor WBC segmentation visual results for cytoplasm on
Dataset 3. (a) Original image, (b) ground-truth image, and (c) segmented
images obtained using MIF-Net. (TP, FP, and FN pixels for cytoplasm are
represented by blue, green, and red color, respectively).

TABLE 7. Comparison of numerical results with state-of-the-art methods
for cytoplasm segmentation using MIF-net on dataset 3. “- “ refers to
results unreported (unit: %).

Methods PRC DC mloU ME FNR FPR
Tareef et al. [13] - 88.7 - - - -
Manasi et al. [12] 95.51 90.49 86.44 - - -
U-Net [21] 91.09 94.04 91.18 - - -
SegNet [22] 91.59 9430 91.20 - - -
VGG-UNet [15] 91.56 94.40 91.51

MIF-Net (proposed) 93.83 952 91.16 0.08 2.87 0.06

TABLE 8. Comparison of numerical results with state-of-the-art methods
for cytoplasm segmentation using MIF-net on dataset 4. - “ refers to
results unreported (unit: %).

Methods PRC DC mloU ME FNR FPR
Watershed [47] 97.40 83.18 8226 5.0 26.1 0.4
FCN [48] 94.75 9582 9520 137 289 1.07
U-Net [21] 93.0 95.08 9442 1.66 24 1.47

LeukocyteMask (Aug-ET) 98.94 97.83 96.47 1.10 3.54 0.19
[49]

MIF-Net (proposed) 98.45 97.95 96.41 0.006 0.19  0.03

few cases having multiple cells in the same image. Some
of the cells are quite close to each other. Qualitative results
presented in Figure 13 confirm that the proposed method
exhibit good segmentation performance. More specifically,
in Figure 13 (rows 4 and 5), some cells in the same image
are quite close to each other, nonetheless, MIF-Net provides
good segmentation for such challenging cases as well.

Quantitative results comparison with state-of-the-art meth-
ods is presented in Table 8. Quantitative results in
Table 8 includes multiple close cells cases as shown in
Figure 13 (rows 4 and 5). It also confirms the outperforming
segmentation accuracies of the proposed method requiring
only 2.6 million trainable parameters.

E. DISCUSSION
This study proposes a comprehensive framework for joint
segmentation of cytoplasm and nucleus from WBC images.
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FIGURE 13. WBC segmentation visual results for cytoplasm on Dataset 4.
(a) Original image, (b) ground-truth image, and (c) segmented images
obtained using MIF-Net. (TP, FP, and FN pixels for cytoplasm are
represented by blue, green, and red color, respectively).

It is evident from clinical literature that leukemia brings
changes in morphology and count of WBCs. Accurate seg-
mentation of WBC leads to exhibiting accurate morphology
and provides the exact area of the nucleus and cytoplasm.
Therefore, the proposed method can aid in the diagnosis
and prognosis of leukemia and other related diseases. WBCs
are different in shape, size, and morphology which makes
the segmentation task challenging. MIF-Net still manages
to exhibit good performance by transferring fine boundary
information, and multi-scale information fusion using its
effective architecture. To confirm it we perform cross-
dataset evaluation between multiclass datasets; Dataset-1 and
Dataset 2. Results of cross-dataset segmentation evaluation
for Dataset-1 and 2 are provided in Tables 9 and 10,
respectively. Dataset-1 is evaluated using a trained network
with Dataset 2 whereas Dataset 2 evaluation is carried out
using a trained network with Dataset-1. The main reasons for
underperformance, in cross-dataset evaluation, are possibly
the stain and RBCs difference. Dataset-1 uses a rapid staining
condition whereas Dataset 2 has a standard staining process.
Moreover, Dataset 2 has several adjacent solid-shaped RBCs
which influence the network predictions while cross-dataset
evaluation. Despite dealing with major changes, MIF-Net still
manages to provide a better cross-dataset performance which
confirms the generalizability of the proposed method.
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TABLE 9. Segmentation results of dataset-1 trained on dataset 2 using
MIF-net for cross-dataset evaluation. (unit: %).

Methods
MIF-Net (Cytoplasm)
MIF-Net (Nucleus)

PRC DC mloU ME FNR FPR
90.18 92.89 87.50 478 3.50 5.28
92.01 89.11 83.01 3.81 594 241

TABLE 10. Segmentation results of dataset 2 trained ondataset-1 using
MIF-net for cross-dataset evaluation. (unit: %).

Methods
MIF-Net (Cytoplasm)
MIF-Net (Nucleus)

PRC DC mloU ME FNR FPR
85.53 91.89 8534 374 194 443
85.46 91.69 8529 1.89 045 2.10

TABLE 11. Ablation studies for comparison of numerical results using
MiF-net (proposed) and MIF-Net (pooling) for cytoplasm segmentation
(unit: %).

Dataset Method PRC DC mloU ME FNR FPR
Dataset-1 MIF-Net (pooling) 98.14 97.83 9581 1.44 236 0.99
MIF-Net (Proposed) 98.98 98.93 9791 0.66 1.05 0.52
Dataset 2 MIF-Net (pooling) 98.95 97.47 95.13 1.01 3.87 0.26
MIF-Net (Proposed) 99.51 98.38 96.82 0.711 2.69 0.15
Datasct 3 MIF-Net (pooling) 90.66 94.39 89.81 0.11 1.08 0.11

MIF-Net (Proposed) 93.83 95.20 91.16 0.08 2.87 0.06

TABLE 12. Ablation studies for comparison of numerical results using
MIF-net (proposed) and MIF-net (pooling) for nucleus segmentation
(unit: %).

Dataset Method PRC DC mloU ME FNR FPR
Dataset-1 MIF-Net (pooling) 90.62 91.56 85.51 2.22 5.23 1.72

MIF-Net (Proposed) 93.81 95.84 92.18 0.997 1.76 0.85
Datasct 2 MIF-Net (pooling) 97.51 96.58 94.69 0.60 3.30 0.22

MIF-Net (Proposed) 99.27 97.53 95.66 0.511 3.62  0.063

1) ABLATION STUDY

In CNN’s, pooling layers are traditionally employed for
downsampling purposes. However, many studies reported
that pooling layers also cause information loss and features
degradation [23]. Therefore, we replaced pooling layers with
strided convolutional layers to minimize spatial information
loss and thereby to achieve enhanced performance. As pre-
sented in Table 1, convolution layers are using a maximum of
256 channels, therefore, the number of trainable parameters
required by each convolution layer is not much high, and
the proposed network is able to outperform using only
2.67 million parameters. In the trade-off between segmen-
tation performance and trainable parameters, we preferred
segmentation performance as the total number of trainable
parameters was not too high. A large stride is preferred for
better performance in CNNs [44], MIF-Net also uses large
stride values for multi-scale features propagation as presented
in Figure 3. Ablation studies are presented to compare
the segmentation results of the proposed MIF-Net using
strided convolution (proposed) with MIF-Net using pooling
layers. Segmentation performance difference for cytoplasm
and nucleus is presented in Tables 11 and 12, respectively.
Ablation studies confirm that the replacement of pooling
layers with strided convolution layers is useful to achieve
better segmentation performance.
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2) MIF-NET TECHNICAL CONTRIBUTION

MIF-Net is developed for the joint segmentation of cytoplasm
and nuclei from WBCs microscopic images. Initial layers
of a CNN contain valuable fine boundary information of
the objects. As shown in Figure 3, we split this boundary
information in multi-scale using strided convolution layers
with different strides. BIP in MIF-Net employs strided-
convolution in place of pooling layers to increase the
learnability of BIP. It is evident from the ablation study
presented in Tables 11 and 12, that the replacement of pooling
layers with strided convolution enables the network to
achieve significant performance differences. This multi-scale
information is fused at different stages of the network for
improved boundary predictions. Subsequently, we employed
IIF after intervals for reducing the spatial loss and thereby
ensuring the features empowerment. Information fusions
used in our architecture are based on residual connectivity.
To the best of our knowledge, this is the first residual
connectivity-based architecture using both internal and exter-
nal fusions simultaneously for WBCs joint segmentation.
The proposed method exhibited outperforming results with
a promising computational efficiency.

3) CHALLENGES IN WBC SEGMENTATION

In WBCs segmentation, along with problems from medical
point of view, there are number of issues and complexities
from the computer vision perspective as well. Some of the
challenges associated with WBCs segmentation are exhibited
in Figure 14. WBCs can have equal or even smaller sizes
compared to adjacent erythrocytes which can make its
segmentation challenging (row 2, Figure 14). In some cases,
the nucleus indistinctive boundary and irregular shape can
also become a problem for accurate segmentation (row 35,
Figure 14). Similarly, cytoplasmic boundary predictions are
also challenging in the case of several adjacent RBCs with
cell (row 4, Figure 14). Some of the images have adjacent
cut-cells which can also mislead the network for false
prediction (row 3, Figure 14). In our case, cut-cells could
not hit the accuracy of the network for WBC segmentation
or count. In the last row of Figure 14, a sample WBC
image with nucleated RBC (NRBC) from Dataset 2 is shown.
Since NRBC also has a nucleus therefore its segmentation
becomes challenging. As evident from Figure 14 (row 6), the
proposed method managed to deliver promising segmentation
performance even with NRBCs. Quantitative results for
Dataset 2 in Tables 5 and 6 are computed with inclusion
of NRBC. However, NRBC cases are rare in all four
datasets of this study. Therefore, we intend to work on
WBC segmentation with the majority of NRBC cases in
the future. Many images have WBCs adjacent to RBCs and
interestingly it also could not mislead the proposed network
(row 4, Figure 14). Likewise, some images have multiple
cells in a single image nevertheless MIF-Net provides a
high segmentation performance with accurate WBCs count
(row 1, Figure 14). However, the segmentation-based method
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FIGURE 14. Sample images referring to challenges in WBC segmentation.
(a) Original image, (b) ground-truth image, and (c) segmented images
obtained using MIF-Net. (TP pixels for cytoplasm and nucleus
segmentation are denoted by yellow and blue color, respectively.
Moreover, FP pixels are represented by green and FN pixels are
represented by red).

is likely to have a limitation of considering adjacent cells as
a single cell for WBC count. To confirm this, we intend to
work on WBCs segmentation for adjacent cells cases in the
future.

4) LEUKEMIA DIAGNOSIS

Leukemia is one of the critical and common types of blood
cancer that occurs due to the replication of anomalous WBCs.
Acute myelogenous leukemia (AML), acute lymphoblastic
leukemia (ALL), and chronic lymphocytic leukemia (CLL)
are categorized as the common types of leukemia [31].
WBC count is attributed as one of the core biomarkers for
the clinical diagnosis of leukemia [32]. Medical specialists
normally perform manual assessments for checking the size,
shape, position, and nuclear-cytoplasmic-ratio (NCR) of
WBCs for leukemia diagnosis. Manual assessment is time-
consuming, less accurate, and tedious. Therefore, we pro-
posed a framework that can assist the leukemia diagnosis
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by providing automatic WBC segmentation and count. AML
can be detected by identifying the large size and irregular
shape nucleus [6] [33]. Likewise, another study states that
size and shape assessment of cytoplasm and nucleus aids in
categorizing the ALL and AML [31]. Smudged cells also
play a key role in the detection of CLL. Subsequently, MIF-
Net is proposed to exhibit all these anomalies associated with
morphology and count through the WBC segmentation and
computational assessment.

5) DIAGNOSIS OF COVID-19 AND OTHER INFECTIOUS
DISEASES

WBC count and morphology have a vital role in the clinical
diagnosis of many diseases like coronavirus disease 2019
(COVID-19), blood cancer, and other infections. COVID-19
has been declared a pandemic by the world health organiza-
tion in 2019 because of its high transmissibility and fatality
rate. It is evident from many studies, COVID-19 also brings
significant changes in WBC’s count and morphology [34].
These changes and anomalies associated with COVID-19
also vary with disease progression and intensity. COVID-
19 patients are observed to have pyknosis which refers to
shrinkage of the nucleus [35]. Similarly, some patients exhibit
karyorrhexis in which some area of cytoplasm is covered by
nuclear membrane because of its rupturing [35]. Reactive
lymphocytes having larger cytoplasm is also commonly
reported in COVID-19 patients [35], [36]. Many studies
also testified to distorted neutrophils and smudged cells in
COVID-19 patients [37]. Likewise, pseudo-pelger-Huet is
also a common anomaly associated with COVID-19 [38].
Detection for all these anomalies is based on the segmentation
performance of the nucleus and cytoplasm. Generally, WBC
counting and morphological analysis are carried out manually
which is an inaccurate and time-consuming process [7].
Therefore, proposed automatic WBC segmentation-based
method can be used to aid the existing COVID-19 detection
systems.

6) NCR

NCR is the ratio between the nucleus and cytoplasm area in
a WBC. NCR is a key measure that provides computational
analysis of WBC to assess maturity, malignancy, and
morphology for the diagnosis of leukemia and other related
diseases [38]. NCR is also associated with cell maturity
since the nucleus area decreases with the course of cell
maturity [38]. Similarly, leukemia patients exhibit some
anomalies which change the shape and area of the cytoplasm.
Therefore, pixel-wise predictions provide an accurate area
for nucleus and cytoplasm which directly helps in precise
NCR computations. In Figure 15, a sample segmented
image from Dataset-1 is taken for calculating NCR. Math-
ematical calculation of NCR for the same image is given
in Equation (10).

R, 1945
NCR=—"=_—"2=0.571 (10)
R. 3403
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FIGURE 15. NCR computation for sample image of Dataset-1 using
MIF-Net. (a) Input image. (b) Ground-truth image. (c) Segmented output
image (Area of cytoplasm and nucleus is represented with Rc and Ry,
respectively).

Along with many merits, MIF-Net has a few limitations
as well. Since all four datasets of this study are having
rare WBCs cases with NRBCs, therefore, we could evaluate
only some sample NRBC cases. We intend to work on the
segmentation of WBCs images with several NRBCs cases in
the future.

VI. CONCLUSION
Leukemia is a fatal disease, its traditional diagnosis is based
on manual assessments, which is a subjective, error-prone,
and tedious process. To fill this gap, we developed MIF-
Net for joint segmentation of cytoplasm and nucleus in
WBC images. Leukemia brings changes in the count and
morphology of WBC. MIF-Net is a shallow architecture
that applies internal and external fusion to provide accurate
WBC count and morphological predictions. Initial layers of
CNN carry fine boundary information and MIF-Net fuses
this boundary information with spatial features for enhanc-
ing the segmentation performance. MIF-Net is evaluated
on four publicly available datasets and outperformed the
existing state-of-the-art methods with superior computational
efficiency. The proposed method can steadfastly assist the
health experts and contribute to reducing the burden of the
diagnostic sector.

In the future, we will work on segmentaion of adjacent
cells. In addition, we will also consider other types of cancers
for computer-assisted diagnosis.
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