IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received February 28, 2022, accepted April 26, 2022, date of publication May 3, 2022, date of current version May 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3172492

Controllable Swarm Animation Using
Deep Reinforcement Learning With
a Rule-Based Action Generator

ZONG-SHENG WANG"'!, CHANG GEUN SONG !, JUNG LEE"“1,

JONG-HYUN KIM 2, AND SUN-JEONG KIM !

! Department of Convergence Software, Hallym University, Chuncheon 24252, South Korea

2School of Software Application, Kangnam University, Yongin 16979, South Korea

Corresponding author: Sun-Jeong Kim (sunkim@hallym.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science, and Technology, under Grant NRF-2020R1A2C101519513; in part by the Hallym
University Research Fund under Grant HRF-202108-002, and in part by the R&D Program for Forest Science Technology under Project
2021390A00-2123-0105 provided by the Korea Forest Service (Korea Forestry Promotion Institute).

ABSTRACT The swarm behavior in nature is a fascinating and complex phenomenon that has been studied
extensively for decades. Visually natural swarm animation can be produced by the state-of-the-art rule-
based method; however, it still suffers from the drawbacks of low control accuracy and instability in swarm
behavior quality when controlled by the user. This study proposes a deep reinforcement learning (DRL)
based approach to generate swarm animation that reacts to real-time user control with high quality. A rule-
based action generator (RAG) adapted to the actor-critic DRL method is presented to enhance DRL’s action
exploration strategy. Various practical dynamic reward functions are also designed for DRL to train agents
by rewarding swarm behaviors and penalizing misbehavior. The user controls the swarm by interacting with
the swarm’s leader agent, for example by directly changing its speed or orientation, or by specifying a path
consisting of waypoints. The second aim of this study is to improve the scalability of the trained policy. This
study introduces a new state observation quantity of DRL called the embedded features of swarm (EFS) for
allowing the trained policy scaling to a more extensive system than it has been trained on. In the experiments,
four different scenarios have been designed to evaluate the control accuracy and quality of the generated
swarm behavior by metrics and visualization. Additionally, the experiment has compared the performance
of the proposed dynamic reward functions with fixed reward functions. Experimental results show that the
proposed approach outperforms state-of-the-art methods in terms of swarm behavior quality and control
accuracy. Moreover, the proposed dynamic reward functions are more effective than the existing reward
functions.

INDEX TERMS Computer graphics, swarm animation, deep reinforcement learning, actor-critic, path
planning.

I. INTRODUCTION

Swarm behaviors, as commonly seen as a flock of birds,
a herd of land animals, a school of fish, or even human
crowds, are complex yet fascinating phenomena in nature
and society. To investigate the swarm phenomena involves
interdisciplinary subjects such as biology, sociology, psy-
chology, physics, and computer science. Generally, swarms
are composed of a large number of simple, individual, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei

homogeneous agents [1]. From a global perspective, swarms
performance seems to be collective and self-organized, but
their behaviors are stochastic from the perspective of indi-
viduals. Recently, numerous studies have been devoted to
modeling swarm behaviors [2] which provide contributions
to robotics [3], traffic simulation [4]-[6], network commu-
nication [7], navigation [8], [9], precision agriculture [10],
and other fields. The stochastic and convergence proper-
ties of swarm behaviors are also widely used in designing
meta-heuristic optimization algorithms [11]-[17] to solve
NP-hard problems [18]-[20].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

48472

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-0194-333X
https://orcid.org/0000-0003-0204-6160
https://orcid.org/0000-0003-0458-1474
https://orcid.org/0000-0003-1603-2675
https://orcid.org/0000-0002-8663-4578
https://orcid.org/0000-0003-0810-1458

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

IEEE Access

Advancements in the field of digital entertainment have
evolved significantly in recent years. Generating controllable
swarm animations [21]-[24], as a practical and challenging
topic, has been studied for years. Due to the limitations of the
computer systems, early digital contents had relatively been
rough and straightforward. As computer graphics technology
and hardware have advanced, visual effects have become
more realistic [25], [26], and game content has grown more
complicated. The study of swarm simulation has the potential
to provide high-quality content for digital entertainment and
social simulation. Therefore, modeling and simulating natu-
ral and social phenomena, such as swarm behaviors in animal
groups or human crowd behavior, is important.

This study focuses on generating controllable and visu-
ally realistic swarm animations. The bulk of state-of-the-art
studies [27]-[29] use rule-based methods. However, those
methods still suffer from the drawbacks of low control accu-
racy and instability in swarm behavior quality, when they
are controlled by the user in real time. Simultaneously,
a surge of interest in data-driven animations [30]-[34] has
been rekindled along with the development in deep learning
technology. Thus, this study proposes a deep reinforcement
learning (DRL) method which generates swarm animation
that reacts naturally to real-time user control. DRL is basi-
cally a trial-and-error technique that gains experience by
driving the agent to continuously interact with the environ-
ment. The challenge is that DRL requires extensive action
explorations and more episodes for training agents in swarms
since swarms are multi-agent systems with various interac-
tions. To address this issue, this study proposes a rule-based
action generator (RAG) to improve DRL’s action exploration
strategy. Another objective of this study is to scale the trained
policy to function on a more extensive system than the orig-
inal ones on which it has been trained. In simulations, the
user controls the swarm of trained agents by interacting with
the leader agent of the swarm. The experimental results show
that the proposed method outperforms several state-of-the-art
methods in terms of control accuracy and swarm behavior
quality.

The main contributions of this study include the follows:

e A novel rule-based action generator (RAG) is pro-
posed to improve the quality of generated swarm
behaviors by enhancing DRL’s action exploration
strategy.

e A new state observation quantity of DRL called the
embedded features of swarm (EFS), is introduced to
improve the scalability of the swarm created by the
trained policy.

o Several dynamic reward functions using quadratic or
exponential function properties are designed for DRL to
train agents by rewarding swarm behaviors and penaliz-
ing misbehaviors.

The rest of this paper has been organized in the following
way. Section 2 provides a review of the literature and rel-
evant work. A detailed description of the proposed method
is presented in Section 3. Section 4 is devoted to discussing

VOLUME 10, 2022

the experimental results. The conclusion and future works are
summarized in the last section.

Il. RELATED WORK

Many papers have been published on the swarming phe-
nomenon [35]-[40] in nature since the 1980s. Following the
pioneering works of Reynolds [41] and Vicsek et al. [42] in
the late 1980s and early 1990s, numerous studies have been
devoted to modeling swarm behaviors [2]. The majority of
studies can be categorized as rule-based methods [27]-[29],
[41]-[44] which prescribe a variety of physical [27], [29] or
kinematic rules [28] for positioning agents to preserve swarm
behaviors. Moreover, as artificial intelligence has advanced in
recent years, data-driven methods for swarm simulation have
been considered [32], [45]-[49].

A. RULE-BASED METHODS

Rule-based simulation methods are modeling approaches
that refer to using a set of rules indirectly specifying a
mathematical model [50], [51]. To model swarm behav-
iors, earlier studies [41], [42] have proposed rules that con-
strain the behavior of individuals in a swarm. Reynolds [41]
proposed that swarm behaviors follow three primitive
rules [41]: separation refers to the prevention of static
collisions between agents in the swarm; alignment speci-
fies velocity matching of agents to others in the swarm;
cohesion indicates the propensity of agents to gravitate
toward the swarm’s center of mass (COM). Later, the
collection of potential steering behaviors is expanded to
include goal-seeking, obstacle avoidance, direction-finding,
and fleeing [52]. Vicsek et al. [42] presented the idea of
self-propelled particles (SPP) in 1995 as a special case of
Reynolds’ model [41]. An SPP swarm is modeled by a set
of particles and the heading of each particle is updated using
a local rule taking the average of its own heading plus the
headings of its “‘neighbors”. The work of Tu et al. [53] sim-
ulated the underwater environment and realistically emulates
the appearance, movement, and behavior of fishes driven
by their state and intentions. Zaera et al. [54] attempted but
failed to create the Newtonian kinematics-based controller for
three-dimensional schooling behavior using inertia and drag.
Ward et al. [43] are more successful than Zaera et al. [54] by
proposing a fitness function dependent on each agent’s virtual
energy levels, as it was challenging to explicitly encode
entire swarm behaviors in the fitness function. Furthermore,
a tremendous amount of studies [55]-[62] have demonstrated
the efficiency of rule-based methods.

This work focuses on studies [21]-[24], [63]-[67] related
to creating swarm animations with these rule-based meth-
ods. Anderson et al. [68] investigated an iterative sampling
approach for generating group animations of predefined
formations. Nonetheless, the approach was considered to
be quite computationally expensive for real-time render-
ing, and they did not take into account managing obstacles
avoidance during certain phases. Xu et al. [69] proposed a
shape-constrained swarm animation system to enforce static

48473

IEEE Access

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

and deforming shape constraints on the spatial distribution of
a swarm. Klotsman et al. [70] provided a biologically moti-
vated technique for modeling and animating bird flocks in
flight with line formations, which produces plausible and
realistic-looking flock animations. Wang et al. [71] proposed
a flock morphing technique for creating special morphing
effects between two arbitrary 3D objects. Zheng et al. [72]
adopted geometric constraint idea for smooth formation ani-
mation of regulated crowds. Wolinski et al. [73] presented
a method to compute optimal parameters for rule-based or
physically based multi-agent simulation algorithms. As the
most recently rule-based methods for producing swarm
behaviors, Chen et al. [27] defined a distance-based rule to
sort agents by three separate sphere zones, and presented
a flock morphing method of flying insect swarms with
predefined shape constraints. On the basis of the work
of Chen et al, In this study, a rule-based action genera-
tor (RAG) was designed for deep reinforcement learning
(see Section II1-C3).

B. DATA-DRIVEN METHODS

Along with the development in deep learning technology,
data-driven algorithms have been introduced into computer
graphics for rendering [74]-[77], simulation [78]-[80], and
geometry processing [81]-[89]. In recent studies, there has
been a vast amount of renewed interest in data-driven anima-
tions [30]-[34]. Several studies have learned patterns from
domain-specific data (such as developed datasets or real-
world data) to simulate complex phenomena. Simultaneously,
deep reinforcement learning is becoming a trendy framework
for generating complex animations.

1) DEEP REINFORCEMENT LEARNING (DRL)

Reinforcement learning (RL) is an algorithm to solve a
Markov decision process (MDP), which is a mathematical
formulation on sequential decision-making problems. Deep
reinforcement learning (DRL) [90]-[94] offers a deep neural
networks-based mechanism for the agent to make behav-
ioral decisions by interacting with the environment in lack
of reference data. DRL was commonly used for robotics in
the early studies. Works from [95]-[98] have shown success
in controlling robots or agents with different morphology.
DRL methods have also been successfully applied to games
in a discrete virtual environment [99]-[101]. Recent studies
of producing animations by DRL focus on crowd simula-
tion [102] and character motion control [103].

This study is motivated by a recent work of Lee et al. [31],
which provided a deep reinforcement learning approach
with a fixed reward function for navigating crowds in var-
ious complex scenarios. Crowd simulation refers to a pro-
cess of simulating the movement of numerous characters or
agents [104]. The key capability of crowd simulation is agents
should reach goals without colliding with other agents or
obstacles. However, the work of Lee et al. suffered from
poor scalability and paid more attention to agents’ colli-
sion avoidances rather than gathering agents in formation.

48474

In this paper, several practical dynamic reward functions
instead of fixed reward functions were presented to enhance
gathering agents in formation. To improve scalability, the
embedded features of swarm (EFS) were introduced as a
state observation of DRL. Research into crowd simulations
has a long history. Macroscopic crowd simulation algo-
rithms [105], [106] animate crowds at the global level, aiming
to capture statistical quantities such as flows or densities.
In contrast, microscopic algorithms [107]-[109] model inter-
actions between individual pedestrians, with the emergence
of movement patterns at the crowd level. Fridman et al. [110]
adopted social comparison theory in their crowd behav-
ioral model to account for the various social factors influ-
encing human behavior. Wolinski et al. [109] presented a
local interaction algorithm with a new context-aware, prob-
abilistic motion prediction model to improve the quality
of crowd simulations. Karamouzas et al. [111] proposed an
optimization-based integration scheme for implicit integra-
tion of physics-based multi-agent animation. To date, sev-
eral studies on crowd simulation have successfully applied
deep reinforcement learning [112]-[115]. Chen et al. [116]
brought attention mechanisms into DRL to train robots with
swarm behaviors. Wang et al. [115] presented to apply DRL
to the path planning-based crowd simulation.

In recent years, there has been a surge of inter-
est in controlling the characters’ motion [33], [117] by
DRL. Park et al. [117] combined kinematic controllers with
DRL to produce a responsive controller for biped agents.
Chentanez et al. [118] proposed a deep reinforcement learn-
ing method that learns to control articulated humanoid bod-
ies to imitate given target motions closely when simulated
in a physics simulator. The work from Luo et al. [33] pre-
sented a motion synthesis based on imitation learning and
introduces Generative Adversarial Networks (GAN) to adapt
high-level controls. The work from Peng et al. [119] adapted
DRL to learn robust control policies capable of imitating
example motion clips, allowing the trained characters to react
intelligently in interactive environments. Clegg et al. [120]
introduced a model-free deep reinforcement learning method
to automatically discovering robust dressing control policies
by designing an appropriate input state space and a reward
function. Moreover, interactively controlling physics-based
characters in real-time is attainable by combining a motion
matching technique and DRL-based control policy [121].

2) LEARNING FROM DOMAIN-SPECIFIC DATA

Research on producing animations by learning domain-
specified datasets has been studied widely in recent
years [122]. Xiang et al. [32] presented a data-driven frame-
work, FASTSWARM, to model complex behaviors of flying
insects based on real-world data and simulate plausible ani-
mations of flying insect swarms. Lee et al. [45] presented
a crowd simulation method which use an agent model
generated from real-world observations. Chao et al. [123]
applied characteristics of drivers from an empirical video
to an agent-based model. Boatright et al. [124] classified

VOLUME 10, 2022

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

IEEE Access

the contexts and learn the characteristics from a dataset.
Charalambous et al. [125] presented a real-time synthesis
method for crowd steering behaviors with the temporal per-
ception pattern. Du ef al. [126] investigated different ways
of representing joint angles (Euler angle, quaternion, and
exponential map) from motion capture data, concluding that
Quaternion representation is more appealing for statistically
modeling motion data. Gopalakrishnan et al. [127] presented
a Gated Recurrent Unit (GRU)-based method for predicting
and synthesizing human motion, and consider alternative
metrics and human evaluation to deal with the uncertainty
of the task. Kim et al. [128] presented a layered volumetric
human body model composed of a data-driven inner layer and
a physics-based external layer to produce realistic skin defor-
mation due to interactions with the environment. In addition,
the data-driven approaches are also widely used in traffic
simulation [4]-[6], fluid simulation [129], [130], etc.

lll. METHODOLOGY

The goal of this study is to create a data-driven framework
that produces swarm behaviors and natural movements while
following high-level user controls. This section describes the
proposed methodology. The first part provides an overview of
the proposed approach, followed by details about the training
process, and eventually the trained policy is applied to the
simulation phase.

A. METHOD OVERVIEW
The overview of the proposed approach is depicted in
Figure 1, which contains the following main parts:

e -
/ Leader change)

even Environment
Q:"‘?.‘?l.‘

% PN

Action vector of all agents

= \
] > agent ummber in v
‘;‘ Replay 2 -Hﬂﬂm-m
\ o

Buffer

Observations

F Vi
N3 a = i
1\\ 61 s) ‘ Policy
a
N 4 Rule-based

Action -

Generator A
\ Agent yZ N

(a) Training Process (b) Simulation Phase

FIGURE 1. Overview of the proposed method.

Training process is driven by deep reinforcement learn-
ing (DRL). This study presents a rule-based action gener-
ator (RAG) to build an initial action vector of DRL for
producing better swarm behaviors. This work also includes
designing a series of reward functions that enable the
trained policy to preserve swarm behaviors, as well as
introducing embedded features of swarm (EFS) as quan-
tities of state observations to improve the trained policy’s
scalability.

Simulation phase utilizes the trained policy to make
agents of the swarm react to changes in the user-controlled
leader agent.

VOLUME 10, 2022

B. SIMULATION PHASE

The movement of an agent in swarm is determined by its
speed u and orientation (heading direction) g, where u € R
and ¢ € R3. During the simulation phase, the user controls
the leader agent by adjusting its orientation and speed.

/

U =u+Au-h
g =q+Aq-h (D

where h represents the holding duration of press buttons,
u' stands the new speed of the leader agent while ¢’ indi-
cates its new orientation (Euler angles). Moreover, Au and
Agq denote the minimum change of speed and orientation,
respectively. At each time-step ¢, every agent makes a deci-
sion a = {v, w} according to the trained policy.

”§+1 =y + i
Qi1 = q; + i (2)

where v denotes a change in speed and w denotes a change in
orientation.

rotation speed up / down
029
5%' = == ()
———

————= control | state changed) i
[(User input <220 il Policy

-

\’
~

N

Leader Agent

FIGURE 2. Simulation phrase.

C. TRAINING PROCESS

1) DEEP REINFORCEMENT LEARNING (DRL)

Generally, DRL is characterized as Markov decision process
(MDP) [131] to address sequential decision-making prob-
lems. MDP is represented as (S, A, P, R, y), where § is a
set of environment’s states, A is a collection of agent’s actions
(decisions), and P(s, a, s”) is the probability of transitioning
to the next state 5" given the current state s and the action a.
R(s, a,s') is a reward function that indicates the attractive-
ness of the agent state, and y € [0, 1] is a discount factor that
prevents the total of rewards from approaching infinite [132].
DRL finds an optimal policy 7 (s) that maximizes the expec-
tation on cumulative rewards 7 (7).

n(m) = Es.ap... {Z y’rt} 3)

t=0

where s, ~ P(s;—1,a;,8), ap ~ 7(sy), and r, =
R(st—1, ar, st). The essence of DRL is the development of
a value function, which is an approximation on (7). A state-
action value function Qy (s, a) is considered to provide the
cumulative reward when taking action a according to pol-
icy m. An appropriate value function should satisfy the
Bellman optimality equation.

O(s,a) = R(s,a,s) +y max o', a') 4
aeA’

48475

IEEE Access

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

where A’ represents all potential actions in the next
state s'.

This study utilizes an actor-critic method that is similar
to Deep Deterministic Policy Gradient (DDPG) [133]. The
benefits of DDPG include the reduction in training time,
improved stability of the training process, and reduced sen-
sitivity to hyperparameter changes. It combines Determin-
istic Policy Gradient (DPG) [134] with Deep Q-Network
(DQN) [135]. DDPG extends DQN to continuous space
with the actor-critic framework while learning a determin-
istic policy. The actor (policy) and the critic (value func-
tion) are represented as deep neural networks m(s|0) and
0(s, a|¢p), where 6 and ¢ are parameter values of each net-
work, respectively. The critic network Q evaluates state and
action pairs, and it is learned by minimizing the mean-squared
Bellman error (MSBE) loss L that measures how much Q
satisfies the Bellman equation.

M
L= % Z(n +yOGsj, T (SHIP) — Osi ail) (5)

where y is a discount factor, ¢ is fixed parameter of the
target network which is updated periodically to the current
parameter to stabilize the learning. The actor network m
decides what to do based on current state, and it is learned
by the deterministic policy gradient V.J.

VJ = i S (v, Vo (s|0) (6
= M; 20, alP)s=s;.amr (s Vo (510)|s=5;) (6)

where V,, Vy are partial derivatives with respect to a, 6,
respectively. A sketch of DDPG is illustrated in Figure 3. The
proposed training process is described in Algorithm 1, and the
structure of neural networks is described in detail in the next
section (see in Section IV-Al).

@ citc)
\ Network | Q
B MInIleatIOn{ TD-Error

P

(Target Actor | .+ Target Critic | Q
. Network / ' Network J

FIGURE 3. An overview of deep deterministic policy gradient.

DDPG is an off-policy model-free actor-critic method
that stabilizes learning through experience replay and the
frozen target network. Experience replay lets online rein-

forcement learning agents store and reuse previous experi-
ences. The core idea of the proposed method is to initialize

48476

the experience replay buffer with action vectors generated by
a rule-based action generator, and keep them until the leader
agent is changed.

Algorithm 1 DDPG With RAG
1: Initialize critic network Q(s, a|¢), actor network 7 (s|0)
with parameters ¢ and 0
2: Initialize target network Q'(s, al¢’) and 7'(s|0") with
parameters ¢’ < ¢, 0’ < 0
3: Initialize replay buffer E with size S, updating rate of the
target network A
4: for episode = 1, Z do
Initialize a random noise process W for action
exploration
6: Observe initial state s;
7. if episode mod K == 1 then

8: Update leader agent’s speed and orientation
randomly
9: Update all protection flags to false in £
10: end if
11: fort=1,Mdo
12: if episode mod K == 1 then
13: Select action a; from Rule-based Action Genera-
tor in Section I1I-C3
14: Set the protection flag f; to true for preventing
overwrite in E
15: else
16: Select action a; = 7 (s;|0) + W, according to the
policy and exploration noise
17: Set the protection flag f; to false
18: end if
19: Execute action a; and obtain reward r; and observe
new state ;1
20: Store transition (s, ar, 17, St4+1,ft) in replay
buffer £
21: Sample a random minibatch of H transitions
(S,', ag, ri, S,‘.;,.]) from E
22: Update critic by minimizing the loss in Eq. 5
23: Update actor policy using Eq. 6
24: Update the target networks:

¢ <1+ (1 —1)g’
0 «— A0+ (1 —1)o
25: end for
26: end for

2) DATA COLLECTION
DRL is essentially a trial-and-error technique that gains expe-
rience by driving the agent to continuously interact with the
environment. In this study, the trainer randomly assigns a new
velocity and location to the leader agent every K episode. The
follower agents keep exploring the action space with the same
leader agent for K episodes.

The initial condition of follower agents in each episode
is identical. In the training process, follower agents have
two exploration policies for generating actions: one is a

VOLUME 10, 2022

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

IEEE Access

noise-based approach provided by the original DDPG [133],
and the other is the proposed rule-based action genera-
tor (RAG) which is discussed in Section III-C3. During each
episode, the trainer collects the follower agents’ state obser-
vations and actions at each time step At. The collected expe-
riences are then reformed into new trajectories, each of which
is composed of agent-independent transitions and can be
utilized by any agent during simulation. Lastly, the reformed
trajectories are stored in the experience replay buffer. A new
trajectory rl.k indicates the i-th agent’s sequential actions in
the k-th episode, and can be represented as follow:

ok = (sl dl, s, fori={1,2,...N},
t={1,2,... . M},k={1,2,....K} (7

where si and s; 1 Tepresent the current and next state observa-

tion, ai is the action taken by the i-th agent, and r;: ; indicates
the reward for action a;. Moreover, N denotes the number of
agents, M denotes the maximum steps in an episode, and K
denotes the maximum episodes.

3) RULE-BASED ACTION GENERATOR (RAG)

The rule-based action generator (RAG) is inspired by the
work from chen et al. [27], which is one of the most recently
rule-based methods for producing swarm animation. The pri-
mary notion of RAG, as depicted in Figure 4, is to calcu-
late the velocity of each agent in the next time step based
on the current position and velocity, and convert it into a
DRL-relevant action vector a = {v, w}. RAG sorts agents
by three spheres, denoted by three radii Ryep, Ry and Reop
(0 < Rsep < Rui < Reon). Specifically, Ry, represents
the repulsion zone which is the private separation space for
each agent; R,; indicates the alignment region where the
agents tend to align with their neighbors; and R, signifies
an attractive zone where the agents are cohesion.

The next velocities of all agents

|: (v Ve v, Vel]

e <
po [T .ol -]

Action vector of all agents

FIGURE 4. Rule-based action generator.

The force on i-th agent F; consists of three components: the
repulsion force F l‘.ve” , the alignment force F' l.”l’, and the attrac-
tion force F -‘"’h. The three forces are computed as follow:

Ff = —Z <T<|pu|>|””| + (1= TpghH) 5 |> ®)
F Pij Vij

where F} e {F?, Fdli F&hy signify the three types of
forces for the i-th agent, and N, indicate the numbers of
neighbors when these three different forces are calculated,

VOLUME 10, 2022

respectively. Furthermore, the constant parameters w, denote
the weights for the three forces. p;; = p; — p; is a vector from
the position of i-th agent p; to its j-th neighbor p;. Similarly,
vij = vj — v; represents the velocity difference between the
i-th agent and its j-th neighbor. The value of T'(|p;|) can be
calculated as follows:

=1, 0 < pjjl = Ryep;
T(pi) =13 0, Ryp < Ipijl < Rui;)
I, Raui < |pil < Reon-
RAG collects the velocity of each agent every At time step.

The following equation (Eq. 10) can be used to transform of
the i-th agent’s next action, a; = {v;, w;}.

vi = |vi| — vil,

w; = arccos (Vi Vi) (10)
L /

vilvil

where v; is the current velocity of the i-th agent, and v/
is the new velocity v} in the next time step, which can be
easily calculated with the F;. As shown in Figure 5, the

ﬁule-based action vector \
of all agents -

ah|ah | s @] - | an Experience Replay Buffer
[

T (s, a'y, reward, s'))
(s',, a'y, reward, s'3)

Agent 1

(s'w. a"v,'m, reward, 0)

Agent 2

Ty (N, @Yy, reward, sN,)

Agent 3

Y
A

\ Agent N7 \:\ /

FIGURE 5. Rule-based experience collection.

AR R AR

generated action vectors and state observations are stored in
an experience replay buffer. This study proposes to keep the
RAG-generated experience in the experience replay buffer for
K episodes or until the leader agent is changed.

D. OBSERVATIONS AND ACTIONS

The policy is a mapping from state observations to actions.
The state observation S is constructed with local observations
and embedded features of swarm (EFS).

Local observations of an agent, as defined in Eq. 11,
include the agent’s speed (s, € R) and orientation (s, € RY),
the vector from the position of the agent to the leader agent
(sf ead € [R3), the distance between the agent and the leader
agent (s;iea + € R), the relative speed to the leader agent
(Sluead € R).

Sy =1
Sg =4
Sfead = Dlead _ﬁ
S;iead = ”‘S]l)ead“2
S?ead = Ulead — i (11)

48477

IEEE Access

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

where i, g and p represent the current agent’s speed, ori-
entation, and position, respectively. Furthermore, in the 3d
hemisphere of the agent’s heading direction, 42 rays with
the length of R, are cast at 30° intervals. This observation
s‘fay € R* stores distances between the agent and detected
objects (eg., obstacles or other agents), however, the negative
distance is only stored if the detected object is an obstacle.
Embedded features of swarm (EFS) is inspired by the
mean embeddings presented by Hiittenrauch et al. [136].
It employs the average speed of neighbors s,,, the mean square
error (MSE) on orientation s, and position s; between the
agent and its neighbors. The key advantage of using EFS
is that it overcomes the limitation of a fixed number of
neighbors during the simulation and enhances the scalability
of the trained policy. The Eq. 12 shows the definition of EFS,

where N, indicates the number of neighbors.

_ 1 ,.
Sy = u
u Nnbr ; nbr
Nubr
= — > g, —all2
Nupr i—1
Nubr
o= —— 3 lIphy — Bl (12)
Nupr nor

i=1

All quantities are concatenated into a single large state obser-
vation vector.

d - - - 54
S = {S“’ Sq» Sfead’ s;leaal7 Sray’ Su> Sq> Sd} eR (13)

The action vector (A € R*) of an agent is composed of a
change in speed v € R and a change in orientation w € R3,
as mentioned in Section III-B.

1) REWARD FUNCTIONS

For generating swarm behaviors, a reward function R with
five terms was dedicated to evaluate agents’ actions during
training.

R = Tspd + Vdir + Vieader + Yobs + Yegnarray (14)
The ryyy term indicates that the agent’s speed is more similar
to its neighbors, the higher reward is received.

Nnbr

1
doda—wh) (15)

Nupr

Tspd = Wpd €XP (—Aspd

where N, denotes the number of neighbors, i is the speed
of the current agent, and wy,q represents the weight of 7.
Moreover, Ag,q indicates the rate of the reward’s change, the
greater it is, the more sensitive the reward’s change is. The
rgir term represents that the agent receives a higher reward if
its orientation resembles its neighbors’.

1 Nnbr
Tdir = Wdir €Xp (—Adir N E (g —qill)) (16)
nor .
1

48478

where g denotes the orientation of the current agent, w;, rep-
resents the weight of 74, and the meaning of A4, is similar
to that of Agg. The rjeqqer term leds the agent following the
leader agent by giving a higher reward if the agent’s position
is closer to the leader agent’s repulsion zone.

Tleader =Wleader €XP A leader * ||IA7 — Dleader|2 + Rsep)) 17

where wg;, represents the weight of 7,44, and the meaning
of Ajeader is similar to that of Agy. p and pjeader denote
the position of the current agent and the leader agent,
respectively. The r,ps term checks if the agent is too close
to obstacles.
Nobs
Tobs = €XP ((Aobs Z ||13 _pj||2) - Rsep) —Wops (18)
j

where w,ps indicates a penalty if agent-obstacle collision
occurred. The last term reguarray plays a role in keeping
alignment with the agent’s neighbors.

Nnbr 2
1 R Rui — R,
Veqnarray:N) E - <||p —pill2— = 3 Y8p> + Wdist
nbr =
i

19)

where w,ps indicates the maximum reward when the agent

keeps an appropriate distance from its neighbors, and the
. . . . Rai—Rse S

appropriate distance is determined by %, which lies in

the middle of the alignment zone.

IV. EXPERIMENTAL RESULTS

This section starts by describing the configurations of experi-
ments. Subsequently, the control accuracy, the swarm behav-
ior quality, and the scalability of the proposed method
are evaluated experimentally. Eventually, the comparison
between the proposed dynamic reward function and the fixed
reward method given in the previous study.

A. EXPERIMENT CONFIGURATIONS

1) NEURAL NETWORKS DESIGN

As illustrated in Figure 3, DDPG (Deep Deterministic Policy
Gradient [133]) is composed of four neural networks: an
actor network, a critic network, an actor target network, and
a critic target network. The actor target network has the
same structure as the actor network, while the critic target
network has the same structure as the critic network. The
structures of these two categories of neural networks used
in the experiments are shown in Figure 6. Actor networks
output an action for a given state. They are fed with state
observations in the form of a 54-dimensional vector. Actor
networks are composed of three fully connected layers: two of
the layers have ReLU (Rectified Linear Unit [137]) activation
functions with 128 and 256 neurons, respectively; the final
layer has a linear output activation function with 64 neurons.
The output of actor networks is a 4-dimensional action vector
that contains the change in speed and orientation. Critic net-
works predict the value of a given action and state. They have

VOLUME 10, 2022

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

IEEE Access

a similar structure as actor networks except that their input
includes an additional action vector from the actor network
and the final outcome is a scalar value.

Hidden Layers

Input Layer Output Layer

A
e
O

State
observation

X

K
A
ele
gégg@

%

V
50
Q-G
0‘

SeR™ = =
Q

/

FC-128 FC-256 FC-64
(Relu) (Relu) (Linear)

(a) Structure of Actor Networks

Hidden Layers

Input Layer
Output Layer

obsz:\al::ion l//H&
o TN\
i value
Action
AeR*

FC-128 FC-256 FC-64

(ReLU) (RelU) (Linear)

(b) Structure of Critic Networks

FIGURE 6. Neural networks design.

2) MODULAR CONTROL

A navigation module, which is a specified path consisting of
waypoints, is added to the simulation since it more precisely
controls the leader agent than a joystick.

The waypoint of the navigation module contains the target
position information and the target velocity information for
the leader agent. The green lines in Figure 7 (b), (c), and (d)
indicate the path of the navigation module.

3) SCENARIOS AND PARAMETERS

As shown in Figure 7, four different scenarios are dedicated
in this study to evaluate the performance of the proposed
method. Obstacle-free roaming is a scenario without obsta-
cles in which the user uses the joystick to control the swarm.
Quadrilateral scenario contains a quadrilateral path in an
obstacle-free environment to control the swarm. Stairway
scenario involves a stair-like obstacle and the swarm move
along a specified stair-like path. Maze scenario is a complex
environment with numerous obstacles.

Figure 8 shows an example of the training setup, where
the orange cone in the training environment represents
the leader agent and the blue cones represent follower
agents. All parameters for the experiments are summarized
in Table 1.

VOLUME 10, 2022

(c) Stairway (d) Maze
FIGURE 7. Experiment scenarios.
TABLE 1. Parameters of experiments.
Parameters Values

Repulsion radius (Rrep) 1.0
Alignment radius (Ry;;) 9.0
Attractive radius (Rgtt) 18.0
Time step (At) 0.1
Learning rate (actor) le-4
Learining rate (critic) le-3
Discount factor () 0.98
Replay buffer size 10,000
Batch size (H) 300
Max episodes (Z) 50,000
Episodes to change leader (K) 500
Max step (M) 1,200
Target update rate (\) le-3
Exploration noise (V) 0.05
Change unit in speed (Au) 0.1
Change unit in orientation (A q) 4°
Wepd 1.3
Wi 1.0
Wieader 4.9
Wobs 16.0
Wist 9.5

B. CONTROL ACCURACY
To evaluate the control accuracy of the proposed method, this
experiment employs the average speed differential between
the leader agent and 200 follower agents as a metric. The
leader agent’s speed varies from 0.5 to I unit/s, while per-
forming 90- and /80-degree turns in top, bottom, left, and
right directions, respectively. This experiment produces ten
recordings, each with one second of duration, for each control
test. The metric is summarized in Table 2.

Simultaneously, the evaluations of control accuracy
are also carried out in the Quadrilateral scenario, the

48479

IEEE Access

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

o

Leader agent

3
N @ .

Agents

Training Environment

FIGURE 8. Training setup example.

TABLE 2. The average speed differential between agents and the leader
agent.

Control Rule-based Proposed method
Top 0.1332 0.0974
90° Bottom 0.1458 0.0842
Left 0.1692 0.0528
Right 0.1260 0.0644
Top 0.2432 0.1337
180° Bottom 0.2016 0.1287
Left 0.3024 0.1551
Right 0.2754 0.1698

Stairway scenario, and the Maze scenario. The initial speed
is 0.5 units/s, and the speed is increased by 0.2 units/s at each
waypoint. Table 3 presents the metrics of these three scenarios
and the visual outcomes are shown in Figure 9. The results
show that the proposed method has minor average speed
differences, indicating that its control accuracy is greater than
the rule-based method.

TABLE 3. The average speed differential on three different scenarios.

Scenarios Rule-based Proposed method
Quadrilateral 0.1136 0.0934
Stairway 0.3744 0.1127
Maze 0.3962 0.1895

C. SWARM BEHAVIOR QUALITY

Two metrics proposed by Eliot et al. [138] are utilized to
evaluate the quality of produced swarm animation: the cohe-
sion/repulsion metric and the inter-agent distance metric.
The cohesion/repulsion metric is a distance-based metric
that evaluates whether a swarm state is stable by analyzing
the average number of repulsion occurrences and attraction
occurrences. The inter-agent distance metric indicates how
the agents are physically distributed, which only considers
the inter-agent distances and their standard deviation. The
average distance for the swarm can be calculated by Eq. 20.

N N ;
> izt 220 Wlpi = pjll2
N
Zi:l ertbr

w(P) = (20)

48480

i
A v
AR o
W " " (L .]
i |] | i
LY !]
1 o

(a) Quadrilateral

(c) Maze

FIGURE 9. Visualization of control accuracy and swarm behavior quality
evaluations on three different scenarios.

where P denotes the positions of all agents of the swarm,

,ibr represents the number of neighbor agents for the
i-th agent, and p! indicates the position of the j-th neighbor
for the i-th agent. As defined in Eq. 21, the standard deviation
explains the distribution within the swarm.

Ni ;
S S (ps = pllla — n(P)?

o(P) = i -
Zi:l rtzbr

2D

(LT
T I

Al
‘:liHiuUmuin1||wm||i|un|n||

I Bl

(IR

T

HE) Lo P®)

[proposed method

I rute-based method

0.0 0.2 0.4 0.6 0.8 1.0 12
of thousand steps

FIGURE 10. The results of inter-agent distance metric over time.

The simulation settings are identical to those mentioned
in the previous section for the control accuracy. Table 4
presents the result of the cohesion/repulsion metric. What
comes out in the table is that the swarm generated by the
proposed method is more stable than the rule-based method
since the number of cohesion occurrences is close to the

VOLUME 10, 2022

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

IEEE Access

number of repulsion occurrences. Figure 10 shows the evo-
lution of the inter-agent distance metric over time. The clear
trend of decreasing the standard deviation indicates that the
inter-agent distances within the swarm are getting uniform.

TABLE 4. The result of cohesion/repulsion metric.

Rule-based Proposed method
Control
repulsion cohesion | repulsion cohesion

Top 103.0 70.3 61.7 68.1

90° Bottom 99.7 48.8 54.7 61.6
Left 109.1 74.2 69.9 76.7

Right 95.8 49.0 50.3 534

Top 150.6 129.3 78.9 84.6

180° Bottom 146.1 57.0 97.6 111.4
Left 161.7 85.5 96.6 101.6

Right 149.1 46.3 84.2 82.7

D. SCALABILITY

This study analyzes the scalability of the trained policy with
or without embedded features of swarming (EFS) by applying
the policy, which was trained with 200 agents, to simulations
with 200, 600, and 1,000 agents, respectively. The perfor-
mance of each simulation is evaluated by computing the
average rewards of each step. As shown in Figure 11, for the
simulation with 600 agents, the trained policy without EFS
is challenging to obtain acceptable average rewards, whereas
the trained policy with EFS obtains almost as high average
reward as the original simulation with 200 agents. Further-
more, the average rewards with EFS are still acceptable for
the simulation with 1,000 agents. The visualization results of
each simulation are shown in Figure 12.

baseline (200 agents)
w/ EFS (600 agents)
w/ EFS (1,000 agents)

0.8 -
— W/ EFS (600 agents)

0.6

0.4

02 , /’//f/w

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Average Reward

of thousand steps

FIGURE 11. Normalized average rewards of the trained policy w/ or
w/o EFS.

TABLE 5. Differences between the proposed method and existing
methods.

Method Lee et al. Hiittenrauch et al. Proposed method
Training algorithm DDPG TRPO DDPG

On/off policy Off-policy ~ On-policy Off-policy
Rewards Fixed Dynamic Dynamic
Experience Replay Yes No Yes

Scalability No Yes Yes

Movement (2D /3D) | 2D 2D 2D & 3D

VOLUME 10, 2022

;. {

V% 4 o
e 4 N B
i RS
I,/ﬂﬁi/l gt o .,g;‘;
Lo N TR A
7 v ¥
m .. A3 o ‘M“h‘»
s 7y O
48 267 0 Y
a "h\h\d !

(c) DRL + EFS (1,000 agents) (d) DRL w/o EFS (600 agents)

FIGURE 12. Visualization of scalability simulation.

FIGURE 13. Crowd simulation for the evaluation of reward functions.

-~ Hittenrauch et al. 2019
— Proposed method
0.75H ~ Leeetal 2018

0.5

0.25

Normalized Average Reward

800
of steps

FIGURE 14. Comparison of three different reward functions.

E. DYNAMIC REWARDS VS FIXED REWARDS

In this section, the proposed dynamic reward function is
compared with two existing reward functions: a fixed reward
function proposed by Lee et al. [31] and a dynamic reward
function for rendezvous and pursuit-evasion proposed by
Hiittenrauch et al. [136]. The differences between three meth-
ods are summarized in Table 5. To evaluate the effectiveness
of the reward functions, a two-dimensional crowd simulation
was built. As shown in Figure 13, the red cube represents the
target pursued by agents, and green items represent agents.

48481

IEEE Access

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

The crowd simulation aims to guide 30 agents through the
gap to the side with the red cube.

Figure 14 compares the normalized average rewards
obtained from three different reward functions. From the
chart, it can be seen that the proposed method obtains high
rewards earlier than the other two methods.

V. CONCLUSION

This paper presents an improved deep reinforcement learn-
ing (DRL) method for generating swarm animations. The
proposed method aims to generate high-quality swarm ani-
mations that respond to user controls in real time. The second
goal of this study is to improve the scalability of trained
policy even as the number of agents increases. Firstly, this
study combined Deep Deterministic Policy Gradient (DDPG)
with the rule-based action generator (RAG) to improve the
swarm behavior quality by enhancing DDPG’s action explo-
ration strategy. The user controls the swarm by interacting
with the swarm’s leader agent. Four different scenarios have
been designed to evaluate the control accuracy and quality
of the generated swarm behavior by metrics and visualiza-
tion in experiments. The experiment results show that the
proposed approach outperforms state-of-the-art methods in
terms of swarm behavior quality and control accuracy. Sec-
ondly, a new state observation quantity of DRL called the
embedded features of swarm (EFS) is introduced as a state
observation of DRL. In the experiment, the trained policy
trained on a group of 200 agents has been applied to swarm
with 600 agents and 1,000 agents, respectively. The experi-
mental results show that the trained policy with EFS can scale
to a more extensive system than it has been trained on. Finally,
various practical, dynamic reward functions are designed
for DRL. In the experiment, the proposed dynamic reward
functions compared with existing fixed reward functions and
dynamic reward functions, respectively. The experimental
results show that the proposed dynamic reward functions are
more effective than the existing reward functions.

Future studies will continue to expand the categories
of animation, such as birds and insects, that the proposed
method can produce. Currently, the presented state observa-
tions and reward functions are only defined for general swarm
behaviors. The corresponding state observations and reward
functions for different categories need to be implemented
since different categories of swarm required different external
influences to be considered. For example, the movement
of bird flocks needs to take into account the speed of the
wind, and insects have a more random movement of indi-
viduals in the swarm, as well as fish need to consider the
speed of the current in their movement. Using the energy
equation to model an extra velocity vector field in the envi-
ronment would be a step in the right direction. Moreover,
more study is needed to develop a deeper understanding of
the effects of centralized training and decentralized training
for multi-agent reinforcement learning on swarm animation.
Centralized training proposes a virtual central controller to
centrally train all agents of a swarm. The proposed method

48482

virtually is a decentralized training method in which both
the actor network and the critic network are trained on each
agent. Centralized training with decentralized execution is a
hybrid architecture that trains the actor network on each agent
and trains the critic network on a virtual central controller.
Centralized training with decentralized execution will be a
useful starting point for developing shape-constrained swarm
animations, but it may potentially sacrifice scalability due to
its architecture.

REFERENCES

[1] M. Dorigo and M. Birattari, “Swarm intelligence,” Scholarpedia, vol. 2,
no. 9, p. 1462, 2007.

[2] R. Bouffanais, Design and Control of Swarm Dynamics (SpringerBriefs
in Complexity), 1st ed. Singapore: Springer, 2016.

[3] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, ‘“Swarm robotic
behaviors and current applications,” Frontiers Robot. Al, vol. 7, p. 36,
Apr. 2020.

[4] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M. C. Lin, and Z. Deng,
“A survey on visual traffic simulation: Models, evaluations, and appli-
cations in autonomous driving,” Comput. Graph. Forum, vol. 39, no. 1,
pp. 287-308, 2020.

[5] H. Bi, T. Mao, Z. Wang, and Z. Deng, “A data-driven model for lane-
changing in traffic simulation,” in Proc. Symp. Comput. Animation, 2016,
pp. 149-158.

[6] D. Wilkie, J. Sewall, and M. Lin, “Flow reconstruction for data-driven
traffic animation,” ACM Trans. Graph., vol. 32, no. 4, p. 89:1-89:10,
Jul. 2013.

[7] C. Kolon and I. B. Schwartz, “The dynamics of interacting swarms,”
Naval Res. Lab. Washington, DC, USA, Tech. Rep. MR/6790-18-9782,
Apr. 2018.

[8] J. N. Yasin, S. A. S. Mohamed, M.-H. Haghbayan, J. Heikkonen,
H. Tenhunen, and J. Plosila, “Navigation of autonomous swarm of drones
using translational coordinates,” in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Col-
lection (Lecture Notes in Computer Science), Y. Demazeau, T. Holvoet,
J. M. Corchado, and S. Costantini, Eds. Cham, Switzerland: Springer,
2020, pp. 353-362.

[9] B. N. Sharma, J. Raj, and J. Vanualailai, ‘‘Navigation of carlike robots in
an extended dynamic environment with swarm avoidance,” Int. J. Robust
Nonlinear Control, vol. 28, no. 2, pp. 678-698, Aug. 2017.

[10] D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and
mapping with robot swarms for agricultural applications,” in Proc. 14th
IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Aug. 2017,
pp. 1-6.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw. Perth, WA, Australia: IEEE,
Nov./Dec. 1995, pp. 1942-1948.

[12] C. A. C. Coello, G. B. Lamont, and D. A. van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-
tionary Computation), 2nd ed. London, U.K.: Springer, 2007.

[13] C. Blum and X. Li, “Swarm intelligence in optimization,” in Swarm
Intelligence: Introduction and Applications (Natural Computing Series),
C. Blum and D. Merkle, Eds. Berlin, Germany: Springer, 2008,
pp. 43-85.

[14] S. Mirjalili, “Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective prob-
lems,” Neural Comput. Appl., vol. 27, no. 4, pp. 1053-1073, May 2016.

[15] M. Mafarja, I. Aljarah, A. A. Heidari, H. Faris, P. Fournier-Viger, X. Li,
and S. Mirjalili, “Binary dragonfly optimization for feature selection
using time-varying transfer functions,” Knowl.-Based Syst., vol. 161,
pp. 185-204, Dec. 2018.

[16] Z.-M. Gao and J. Zhao, “An improved grey wolf optimization algorithm
with variable weights,” Comput. Intell. Neurosci., vol. 2019, Jun. 2019,
Art. no. e2981282.

[17] A. Bellaachia and A. Bari, “Flock by leader: A novel machine learning
biologically inspired clustering algorithm,” in Advances in Swarm Intelli-
gence (Lecture Notes in Computer Science), Y. Tan, Y. Shi, and Z. Ji, Eds.
Berlin, Germany: Springer, 2012, pp. 117-126.

VOLUME 10, 2022

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

IEEE Access

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D. E. Knuth, “Postscript about NP-hard problems,” ACM SIGACT News,
vol. 6, no. 2, pp. 15-16, Apr. 1974.

D. Karaboga and B. Basturk, “Artificial bee colony (ABC) opti-
mization algorithm for solving constrained optimization problems,” in
Foundations of Fuzzy Logic and Soft Computing (Lecture Notes in
Computer Science), P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and
W. Pedrycz, Eds. Berlin, Germany: Springer, 2007, pp. 789-798.

A. R. Yildiz, B. S. Yildiz, S. M. Sait, S. Bureerat, and N. Pholdee,
“A new hybrid Harris hawks-Nelder—-Mead optimization algorithm for
solving design and manufacturing problems,” Mater. Test., vol. 61, no. 8,
pp. 735-743, Aug. 2019.

Z. Cai, X. Chang, Y. Wang, X. Yi, and X.-J. Yang, “Distributed control
for flocking and group maneuvering of nonholonomic agents,” Comput.
Animation Virtual Worlds, vol. 28, nos. 3—4, p. e1777, May 2017.

C. S. Ho, “Flocking animation and modelling environment: FAME,”
Mes. thesis, Dept. School Comput. Eng., Nanyang Technol. Univ., Sin-
gapore, 2012.

S. Podila and Y. Zhu, “A 3D animation tool for simulating fish escape
behavior,” in Proc. 24th Int. Conf. Inf. Vis. (IV), Sep. 2020, pp. 757-760.
J. Kim, Y. Seol, T. Kwon, and J. Lee, “Interactive manipulation of
large-scale crowd animation,” ACM Trans. Graph., vol. 33, no. 4,
pp. 83:1-83:10, Jul. 2014.

J.-H. Kim, J. Im, and J. Lee, “Post-processing framework for enhancing
liquid surfaces in VFX pipeline,” IEEE Access, vol. 9, pp. 91091-91103,
2021.

J.-H. Kim and J. Lee, ““Stable and anisotropic freezing framework with
interaction between IISPH fluids and ice particles,” IEEE Access, vol. 9,
pp. 146097-146109, 2021.

Q. Chen, G. Luo, Y. Tong, X. Jin, and Z. Deng, *“Shape-constrained flying
insects animation,” Comput. Animation Virtual Worlds, vol. 30, nos. 3—4,
May 2019, Art. no. e1902.

L. D’Alfonso, A. Bono, and A. Filice, “A kinematic swarm model for
vortex-like behavior around an uncertain target,” in Proc. 25th IEEE Int.
Conf. Emerg. Technol. Factory Autom. (ETFA). Piscataway, NJ, USA:
IEEE, Sep. 2020, pp. 435-440.

X. Wang, J. Ren, X. Jin, and D. Manocha, “BSwarm: Biologically-
plausible dynamics model of insect swarms,” in Proc. 14th ACM
SIGGRAPH/Eurographics Symp. Comput. Animation, J. Barbi¢ and
Z. Deng, Eds., New York, NY, USA, 2015, pp. 111-118.

M. Oshita, “Agent navigation using deep learning with agent space heat
map for crowd simulation,” Comput. Animation Virtual Worlds, vol. 30,
nos. 3—4, May 2019, Art. no. e1878.

J. Lee, J. Won, and J. Lee, “Crowd simulation by deep reinforcement
learning,” in Proc. 11th Annu. Int. Conf. Motion, Interact., Games,
P. Charalambous, Ed. New York, NY, USA, Nov. 2018, pp. 1-7.

W. Xiang, X. Yao, H. Wang, and X. Jin, “FASTSWARM: A data-driven
framework for real-time flying insect swarm simulation,” Comput. Ani-
mation Virtual Worlds, vol. 31, nos. 4-5, Jul. 2020, Art. no. e1957.

Y.-S. Luo, J. H. Soeseno, T. P.-C. Chen, and W.-C. Chen, ‘Carl: Control-
lable agent with reinforcement learning for quadruped locomotion,” in
Proc. ACM Trans. Graph., vol. 39, no. 4, pp. 38-41, 2020.

S. Taylor, T. Kim, Y. Yue, M. Mabhler, J. Krahe, A. G. Rodriguez,
J. Hodgins, and I. Matthews, “A deep learning approach for generalized
speech animation,” ACM Trans. Graph., vol. 36, no. 4, pp. 93:1-93:11,
Aug. 2017.

H. R. Pulliam, *“On the advantages of flocking,” J. Theor. Biol., vol. 38,
no. 2, pp. 419-422, Feb. 1973.

L. Landeau and J. Terborgh, ““Oddity and the ‘confusion effect’ in preda-
tion,” Animal Behav., vol. 34, no. 5, pp. 1372-1380, Oct. 1986.

B. L. Partridge, “The structure and function of fish schools,” Sci. Amer:,
vol. 246, no. 6, pp. 114-123, Jun. 1982.

T. J. Pitcher, “Functions of shoaling behaviour in teleosts,” in The
Behaviour of Teleost Fishes, T. J. Pitcher, Ed. Boston, MA, USA:
Springer, 1986, pp. 294-337.

M. A. Elgar, “Predator vigilance and group size in mammals and birds:
A critical review of the empirical evidence,” Biol. Rev., vol. 64, no. 1,
pp. 13-33, Feb. 1989.

A. Huth and C. Wissel, “The simulation of fish schools in compari-
son with experimental data,” Ecol. Model., vols. 75-76, pp. 135-146,
Sep. 1994.

C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proc. 14th Annu. Conf. Comput. Graph. Interact. Techn.
(SIGGRAPH), M. C. Stone, Ed. New York, NY, USA: Association for
Computing Machinery, Jul. 1987, pp. 25-34.

VOLUME 10, 2022

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

T. Vicsek, A. Czirdk, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel
type of phase transition in a system of self-driven particles,” Phys. Rev.
Lett., vol. 75, no. 6, pp. 1226-1229, 1995.

C. R. Ward, F. Gobet, and G. Kendall, “Evolving collective behavior in
an artificial ecology,” Artif. Life, vol. 7, no. 2, pp. 191-209, Apr. 2001.
R. S. Olson, D. B. Knoester, and C. Adami, “Critical interplay between
density-dependent predation and evolution of the selfish herd,” in Proc.
15th Annu. Conf. Genet. Evol. Comput. Conf. (GECCO), C. Blum and
E. Alba, Eds. New York, NY, USA, 2013, p. 247.

K. H. Lee, M. G. Choi, Q. Hong, and J. Lee, “Group behavior from
video: A data-driven approach to crowd simulation,” in Proc. ACM
SIGGRAPH/Eurographics Symp. Comput. Animation (SCA). Goslar,
Germany: Eurographics Association, 2007, pp. 109-118.

Y. Li, M. Christie, O. Siret, R. Kulpa, and J. Pettré, “Cloning crowd
motions,” in Proc. ACM SIGGRAPH/Eurographics Symp. Comput.
Animation (SCA). Goslar, Germany: Eurographics Association, 2012,
pp. 201-210.

J. Ren, X. Wang, X. Jin, and D. Manocha, “Simulating flying
insects using dynamics and data-driven noise modeling to generate
diverse collective behaviors,” PLoS ONE, vol. 11, no. 5, May 2016,
Art. no. e0155698.

Q. Chao, Z. Deng, J. Ren, Q. Ye, and X. Jin, “Realistic data-driven
traffic flow animation using texture synthesis,” IEEE Trans. Vis. Comput.
Graphics, vol. 24, no. 2, pp. 1167-1178, Feb. 2018.

J. Ren, W. Xiang, Y. Xiao, R. Yang, D. Manocha, and X. Jin, “Heter-
Sim: Heterogeneous multi-agent systems simulation by interactive data-
driven optimization,” IEEE Trans. Vis. Comput. Graphics, vol. 27, no. 3,
pp. 1953-1966, Mar. 2021.

J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, “Rule-based modeling
of biochemical systems with BioNetGen,” in Systems Biology (Methods
in Molecular Biology), I. V. Maly, Ed. Totowa, NJ, USA: Humana Press,
2009, pp. 113-167.

S. Kim, C. Hoffmann, and J. M. Lee, “An experiment in rule-based
crowd behavior for intelligent games,” in Proc. 4th Int. Conf. Comput.
Sci. Converg. Inf. Technol., 2009, pp. 410-415.

C. W. Reynolds, “Steering behaviors for autonomous characters,” in
Proc. Game Developers Conf., vol. 1999. Princeton, NJ, USA: Citeseer,
1999, pp. 763-782.

X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, per-
ception, behavior,” in Proc. 21st Annu. Conf. Comput. Graph. Interact.
Techn. (SIGGRAPH). New York, NY, USA: Association for Computing
Machinery, Jul. 1994, pp. 43-50.

P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson,
“(Not) evolving collective behaviours in synthetic fish,” in From Animals
to Animats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior. Cambridge, MA, USA: MIT Press,
1996, pp. 635-644.

D. Helbing, I. Farkas, and T. Vicsek, ““Simulating dynamical features of
escape panic,” Nature, vol. 407, no. 6803, pp. 487-490, Sep. 2000.

Y. Liu, K. M. Passino, and M. M. Polycarpou, “Stability analysis of
M-dimensional asynchronous swarms with a fixed communication topol-
ogy,” IEEE Trans. Autom. Control, vol. 48, no. 1, pp. 76-95, Jan. 2003.
V. Gazi and K. M. Passino, ““Stability analysis of swarms,” IEEE Trans.
Autom. Control, vol. 48, no. 4, pp. 692-697, Apr. 2003.

R. O. Saber and R. M. Murray, “Flocking with obstacle avoidance:
Cooperation with limited communication in mobile networks,” in Proc.
IEEE Conf. Decision Control (CDC), vol. 2, Dec. 2003, pp. 2022-2028.
R. Olfati-Saber and R. M. Murray, ““Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520-1533, Sep. 2004.

D. Eui Chang, S. C. Shadden, J. E. Marsden, and R. Olfati-Saber, *“Colli-
sion avoidance for multiple agent systems,” in Proc. 42nd IEEE Int. Conf.
Decis. Control, vol. 1, Dec. 2003, pp. 539-543.

H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stability of flocking
motion,” Dept. Elect. Syst. Eng., Univ. Pennsylvania, Philadelphia, PA,
USA, Tech. Rep. MS-CIS-03-03, 2003.

R. O. Saber, “A unified analytical look at Reynolds flocking rules,”
Control Dyn. Syst., California Inst. Tech., Pasadena, CA, USA,
Tech. Rep. CDS 03-014, 2003.

H. P. H. Shum, T. Komura, M. Shiraishi, and S. Yamazaki, ““Interaction
patches for multi-character animation,” ACM Trans. Graph., vol. 27,
no. 5, pp. 114:1-114:8, Dec. 2008.

J. Pettre, J.-P. Laumond, and D. Thalmann, “A navigation graph for
real-time crowd animation on multilayered and uneven terrain,” in Proc.
1st Int. Workshop Crowd Simulation, vol. 43. New York, NY, USA:
Pergamon, 2005, p. 194.

48483

IEEE Access

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator

[65]
[66]

[67]

[68]

[69]

[70]
[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

48484

H. Noser and D. Thalmann, “The animation of autonomous actors based
on production rules,” in Proc. Comput. Animation, 1996, pp. 47-57.

X. Tu, Artificial Animals for Computer Animation: Biomechanics, Loco-
motion, Perception, and Behavior. Springer, Berlin, Germany, Dec. 1999.
A. Pilco, X. Luo, A. A. N. Newball, C. Ziiga, and C. Lozano-Garzén,
“Procedural animation generation technology of virtual fish flock,” in
Proc. Int. Conf. Virtual Reality Vis. (ICVRV), Nov. 2019, pp. 233-237.
M. Anderson, E. McDaniel, and S. Chenney, ““Constrained animation of
flocks,” in Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Anima-
tion, 2003, pp. 286-297.

J. Xu, X. Jin, Y. Yu, T. Shen, and M. Zhou, “Shape-constrained
flock animation,” Comput. Animation Virtual Worlds, vol. 19, nos. 3—4,
pp- 319-330, 2008.

M. Klotsman and A. Tal, “Animation of flocks flying in line formations,”
Artif. Life, vol. 18, no. 1, pp. 91-105, Dec. 2011.

X. Wang, L. Zhou, Z. Deng, and X. Jin, “Flock morphing animation,”
Comput. Animation Virtual Worlds, vol. 25, nos. 3—4, pp. 351-360, 2014.
L. Zheng, J. Zhao, Y. Cheng, H. Chen, X. Liu, and W. Wang, “Geometry-
constrained crowd formation animation,” Comput. Graph., vol. 38,
pp. 268-276, Feb. 2014.

D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré,
“Parameter estimation and comparative evaluation of crowd simula-
tions,” Comput. Graph. Forum, vol. 33, no. 2, pp. 303-312, May 2014.
S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and
Y. Sheikh, “Neural volumes: Learning dynamic renderable volumes from
images,” ACM Trans. Graph., vol. 38, no. 4, pp. 65:1-65:14, Jul. 2019.
A. Keller, J. Kfivanek, J. Novak, A. Kaplanyan, and M. Salvi, “Machine
learning and rendering,” in Proc. ACM SIGGRAPH Courses. New York,
NY, USA: Association for Computing Machinery, Aug. 2018, pp. 1-2.
A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli,
R. Martin-Brualla, T. Simon, J. Saragih, M. Niefner, R. Pandey,
S. Fanello, G. Wetzstein, J.-Y. Zhu, C. Theobalt, M. Agrawala,
E. Shechtman, D. B. Goldman, and M. Zollhofer, ““State of the art on
neural rendering,” Comput. Graph. Forum, vol. 39, no. 2, pp. 701-727,
2020.

Y. Zhang, W. Dong, C. Ma, X. Mei, K. Li, F. Huang, B.-G. Hu,
and O. Deussen, “Data-driven synthesis of cartoon faces using differ-
ent styles,” IEEE Trans. Image Process., vol. 26, no. 1, pp. 464-478,
Jan. 2017.

M. A. Otaduy, B. Bickel, D. Bradley, and H. Wang, ‘‘Data-driven simu-
lation methods in computer graphics: Cloth, tissue and faces,” in Proc.
ACM SIGGRAPH Courses (SIGGRAPH). New York, NY, USA: Associ-
ation for Computing Machinery, Aug. 2012, pp. 1-96.

N. Jin, Y. Zhu, Z. Geng, and R. Fedkiw, “A pixel-based framework
for data-driven clothing,” Comput. Graph. Forum, vol. 39, no. 8,
pp. 135-144, Dec. 2020.

D. Fan, L. Yang, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis,
“Reinforcement learning for bluff body active flow control in experi-
ments and simulations,” Proc. Nat. Acad. Sci. USA, vol. 117, no. 42,
pp- 26091-26098, Oct. 2020.

R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or,
“MeshCNN,” ACM Trans. Graph., vol. 38, no. 4, pp. 1-12, Aug. 2019.
F. Milano, A. Loquercio, A. Rosinol, D. Scaramuzza, and L. Carlone,
“Primal-dual mesh convolutional neural networks,”” in Advances in Neu-
ral Information Processing Systems, vol. 33, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red Hook, NY, USA: Curran
Associates, 2020, pp. 952-963.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘“PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. (NIPS). Red Hook, NY, USA: Curran
Associates, Dec. 2017, pp. 5105-5114.

A. Sinha, J. Bai, and K. Ramani, “Deep learning 3D shape surfaces using
geometry images,” in Computer Vision—ECCV 2016 (Lecture Notes in
Computer Science), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Cham, Switzerland: Springer, 2016, pp. 223-240.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A deep representation for volumetric shapes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1912-1920.

A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov,
“Shape Google: Geometric words and expressions for invariant
shape retrieval,” ACM Trans. Graph., vol. 30, no. 1, pp. 1:1-1:20,
Jan. 2011.

D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen, “GWCNN: A metric
alignment layer for deep shape analysis,” Comput. Graph. Forum, vol. 36,
no. 5, pp. 49-57, Aug. 2017.

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

L. Gao, Y.-K. Lai, J. Yang, L.-X. Zhang, S. Xia, and L. Kobbelt, “Sparse
data driven mesh deformation,” IEEE Trans. Vis. Comput. Graphics,
vol. 27, no. 3, pp. 2085-2100, Mar. 2021.

Z.-S. Wang, J. Lee, C. G. Song, and S.-J. Kim, “Data-driven point sam-
pling with blue-noise properties for triangular meshes,” in Proc. 3rd Int.
Conf. Comput. Sci. Softw. Eng. (CSSE). New York, NY, USA: Association
for Computing Machinery, May 2020, pp. 77-82.

T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, ‘“Emer-
gent complexity via multi-agent competition,” in Proc. Int. Conf. Learn.
Represent., Feb. 2018, pp. 1-12.

X. B. Peng, G. Berseth, and M. Van de Panne, ‘““Terrain-adaptive loco-
motion skills using deep reinforcement learning,” ACM Trans. Graph.,
vol. 35, no. 4, pp. 81:1-81:12, Jul. 2016.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., Jun. 2015,
pp. 1889-1897.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“Prox-
imal policy optimization algorithms,” Aug. 2017, arXiv:1707.06347.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, Nov. 2018.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Sci. Robot., vol. 4, no. 26, Jan. 2019, Art. no. eaau5872.

J. Won and J. Lee, “‘Learning body shape variation in physics-based char-
acters,” ACM Trans. Graph., vol. 38, no. 6, pp. 207:1-207:12, Nov. 2019.
S. Gu, E. Holly, T. Lillicrap, and S. Levine, ‘‘Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3389-3396.

M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “‘Reinforcement learn-
ing for robot soccer,” Auton. Robots, vol. 27, no. 1, pp. 55-73, Jul. 2009.
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘“Human-level
control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, 1. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,
2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol. 550,
no. 7676, pp. 354-359, 2017.

M. Xu, H. Jiang, X. Jin, and Z. Deng, “Crowd simulation and its
applications: Recent advances,” J. Comput. Sci. Technol., vol. 29, no. 5,
pp. 799-811, Sep. 2014.

H. Y. Ling, F. Zinno, G. Cheng, and M. Van De Panne, ‘““Character
controllers using motion VAEs,” ACM Trans. Graph., vol. 39, no. 4,
pp. 40:1-40:12, Aug. 2020.

D. Thalmann, “Crowd simulation,” in Encyclopedia of Computer Graph-
ics and Games, N. Lee, Ed. Cham, Switzerland: Springer, 2016, pp. 1-8.
R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate dynamics for
dense crowd simulation,” ACM Trans. Graph., vol. 28, no. 5, pp. 1-8,
Dec. 2009.

A. Treuille, S. Cooper, and Z. Popovi¢, “Continuum crowds,” ACM
Trans. Graph., vol. 25, no. 3, pp. 1160-1168, Jul. 2006.

T. Kretz and M. Schreckenberg, “The F.A.S.T.-model,” in in Proc. Int.
Conf. Cellular Automata, Sep. 2006, pp. 712-715.

M. Lhommet, D. Lourdeaux, and J.-P. Barthes, “Never alone in the
crowd: A microscopic crowd model based on emotional contagion,”
in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent Technol.,
Aug. 2011, pp. 89-92.

D. Wolinski, M. C. Lin, and J. Pettré, ‘““WarpDriver: Context-aware prob-
abilistic motion prediction for crowd simulation,” ACM Trans. Graph.,
vol. 35, no. 6, pp. 164:1-164:11, Nov. 2016.

N. Fridman and G. A. Kaminka, “Towards a cognitive model of crowd
behavior based on social comparison theory,” in Proc. AAAI, 2007,
pp. 731-737.

I. Karamouzas, N. Sohre, R. Narain, and S. J. Guy, “Implicit crowds:
Optimization integrator for robust crowd simulation,” ACM Trans.
Graph., vol. 36, no. 4, pp. 136:1-136:13, Jul. 2017.

VOLUME 10, 2022

Z.-S. Wang et al.: Controllable Swarm Animation Using Deep Reinforcement Learning With Rule-Based Action Generator I EEEACC@SS

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133

[134]

[135]

P. Henry, C. Vollmer, B. Ferris, and D. Fox, “‘Learning to navigate through
crowded environments,” in Proc. IEEE Int. Conf. Robot. Automat.,
May 2010, pp. 981-986.

F. Martinez-Gil, M. Lozano, and F. Fernandez, ““Strategies for simulat-
ing pedestrian navigation with multiple reinforcement learning agents,”
Auton. Agents Multi-Agent Syst., vol. 29, no. 1, pp. 98-130, Jan. 2015.
L. Torrey, *“Crowd simulation via multi-agent reinforcement learning,” in
Proc. 6th AAAI Conf. Artif. Intell. Interact. Digit. Entertainment (AIIDE).
Stanford, CA, USA: AAAI Press, Oct. 2010, pp. 89-94.

Q. Wang, H. Liu, K. Gao, and L. Zhang, “Improved multi-agent reinforce-
ment learning for path planning-based crowd simulation,” /EEE Access,
vol. 7, pp. 7384173855, 2019.

C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in Proc. Int. Conf. Robot. Autom. (ICRA). Piscataway, NJ,
USA: IEEE, May 2019, pp. 6015-6022.

S. Park, H. Ryu, S. Lee, S. Lee, and J. Lee, “Learning predict-and-
simulate policies from unorganized human motion data,” ACM Trans.
Graph., vol. 38, no. 6, pp. 205:1-205:11, Nov. 2019.

N. Chentanez, M. Miiller, M. Macklin, V. Makoviychuk, and S. Jeschke,
“Physics-based motion capture imitation with deep reinforcement learn-
ing,” in Proc. 11th Annu. Int. Conf. Motion, Interact., Games. New York,
NY, USA: Association for Computing Machinery, Nov. 2018, pp. 1-10.
X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 143:1-143:14, Jul. 2018.
A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk, “Learning to dress:
Synthesizing human dressing motion via deep reinforcement learning,”
ACM Trans. Graph., vol. 37, no. 6, pp. 179:1-179:10, Dec. 2018.

K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “DReCon: Data-
driven responsive control of physics-based characters,” ACM Trans.
Graph., vol. 38, no. 6, pp. 206:1-206:11, Nov. 2019.

H. Yu, T. Komura, and J. J. Zhang, “‘Data-driven animation technology
(D2AT),” in Proc. SIGGRAPH Asia Workshops. New York, NY, USA:
Association for Computing Machinery, Nov. 2017, pp. 1-4.

Q. Chao, J. Shen, and X. Jin, “Video-based personalized traffic learning,”
Graph. Models, vol. 75, no. 6, pp. 305-317, Nov. 2013.

C. D. Boatright, M. Kapadia, J. M. Shapira, and N. I. Badler, “Context-
sensitive data-driven crowd simulation,” in Proc. 12th ACM SIGGRAPH
Int. Conf. Virtual-Reality Continuum Appl. Ind., New York, NY, USA,
2013, pp. 51-56.

P. Charalambous and Y. Chrysanthou, “The PAG crowd: A graph based
approach for efficient data-driven crowd simulation,” Comput. Graph.
Forum, vol. 33, no. 8, pp. 95-108, Dec. 2014.

H. Du, M. Manns, E. Herrmann, and K. Fischer, “Joint angle data
representation for data driven human motion synthesis,” Proc. CIRP,
vol. 41, pp. 746-751, Jan. 2016.

A. Gopalakrishnan, A. Mali, D. Kifer, L. Giles, and A. G. Ororbia,
“A neural temporal model for human motion prediction,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12116-12125.

M. Kim, G. Pons-Moll, S. Pujades, S. Bang, J. Kim, M. J. Black, and
S.-H. Lee, “‘Data-driven physics for human soft tissue animation,” ACM
Trans. Graph., vol. 36, no. 4, pp. 54:1-54:12, Jul. 2017.

Q. Chen, Y. Wang, H. Wang, and X. Yang, “‘Data-driven simulation in
fluids animation: A survey,” Virtual Reality Intell. Hardw., vol. 3, no. 2,
pp. 87-104, Apr. 2021.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. Battaglia, ‘“Learning to simulate complex physics with
graph networks,” in Proc. Int. Conf. Mach. Learn., Nov. 2020,
pp. 8459-8468.

M. L. Puterman, Ed., Markov Decision Processes (Wiley Series in Prob-
ability and Statistics). Hoboken, NJ, USA: Wiley, Apr. 1994.

M. Wiering and M. van Otterlo, Eds., Reinforcement Learning: State-of-
the-Art (Adaptation, Learning, and Optimization), vol. 12. Heidelberg,
Germany: Springer, 2012.

T. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
Proc. 4th Int. Conf. Learn. Represent. (ICLR) San Juan, Puerto Rico,
Jan. 2016, pp. 2-4.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., Jan. 2014, pp. 387-395.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” in Proc. NIPS Deep Learn. Workshop, 2013. [Online]. Avail-
able: https://arxiv.org/abs/1312.5602

VOLUME 10, 2022

[136] M. Hiittenrauch, S. Adrian, and G. Neumann, ‘‘Deep reinforcement learn-
ing for swarm systems,” J. Mach. Learn. Res., vol. 20, no. 54, pp. 1-31,
2019.

[137] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML Workshop Deep
Learn. Audio, Speech Lang. Process., 2013, p. 3.

[138] N. Eliot, D. Kendall, and M. Brockway, ““A new metric for the analysis
of swarms using potential fields,” IEEE Access, vol. 6, pp. 63258-63267,
2018.

ZONG-SHENG WANG received the B.S. and
M.S. degrees in computer engineering and the
Ph.D. degree in convergence software from
Hallym University, Chuncheon, South Korea,
in 2012, 2014, and 2021, respectively. Since
September 2021, he has been a Researcher Fel-
low with Hallym University. His current research
interests include computer graphics, virtual reality
rehabilitation, deep reinforcement learning, and
optimization algorithms.

CHANG GEUN SONG received the B.S. degree
in computer science and statistics from Seoul
National University, in 1981, the M.S. degree in
computer science from the KAIST, in 1983, and
the Ph.D. degree in electrical engineering and
computer science (EECS) from The University of
Oklahoma, in 1992.

He was the Senior Vice President of Industry-
University Cooperation and also the Director of
the Industry Academic Cooperation Foundation,
Hallym University, South Korea. He has been a Visiting Professor with Impe-
rial College London, in 1995, and the Georgia Institute of Technology, USA,
in 1996. He is currently a Professor with the School of Software, Hallym
University. He has authored more than 50 technical papers in international
journals and conferences and has published 28 domestic journals and more
than 110 conference papers. He is the inventor of 13 patents and applications.
His research interests include virtual reality/augmented reality (VR/AR), 3D
computer graphics, HCI, and algorithm and scientific computation.

JUNG LEE is currently an Associate Professor
with the Department of Convergence Software,
Hallym University. His current research interests
include augmented/virtual reality, fluid animation,
and computer graphics.

JONG-HYUN KIM received the B.A. degree
from the Department of Digital Contents, Sejong
University, in 2008, and the M.S. and Ph.D.
degrees from the Department of Computer Science
and Engineering, Korea University, in 2010 and
2016, respectively. He is currently an Associate
Professor with the School of Software Applica-
tion, Kangnam University. His research interests
include physics-based simulation and natural phe-
nomenon modeling and virtual production.

SUN-JEONG KIM is currently a Professor with
the Department of Convergence Software, Hallym
- University. Her research interests include geomet-

oa ric modeling, scientific visualization, virtual real-
G/ ity, augmented reality, and GP-GPU programming.

48485

