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ABSTRACT The rapid development of the petrochemical industry has caused great harm to the environment.
Fine suspended particles with a diameter of less than 2.5microns cause serious health problemswhen inhaled
air of high concentration of PM2.5. Therefore, an estimate of the concentration of PM2.5 is sought. However,
it generally requires expensive instruments installed in an air quality monitoring station and a professional
to operate them. In addition to the expensive cost, the instruments require a high maintenance fee and are
restricted by geographical location. To eliminate the difficulty, this paper presents a low-cost and effective
approach to estimate the concentration of PM2.5 using image processing schemes. The proposed approach
consists of four stages. First, imageswith different concentrations of PM2.5 were taken and the related relative
humidity (RH) was collected. Second, an automatically selected region of interest (RoI) was used to extract
two features from an image, namely high-frequency information and transmittance by an improved dark
channel. Third, the two extracted features, together with the RH measurement, were used to build a support
vector regression (SVR) model. Fourth, the SVR model was applied to estimate the concentration of PM2.5,
whose performance was then evaluated and compared with four simple regression models and a modified
reported SVR method. In the given data set, the proposed method outperforms the comparison methods in
terms of R2 and root mean squared error. The best performance of our method reaches R2 = 0.816 which is
generally satisfactory in related applications.

INDEX TERMS Air quality monitoring, automatic region of interest selection, high frequency information
extraction, improved dark channel, PM2.5 concentration estimation.

I. INTRODUCTION
The petrochemical industry has led to rapid economic devel-
opment. It has been widely supported by other industries and
therefore provides many employment opportunities. How-
ever, it also causes great harm to the environment by emitting
toxic substances such as suspended total particulates, sus-
pended particulate PM10, fine suspended particulate PM2.5,
sulfur oxides, and nitrogen oxides. Among them, PM2.5 has
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the most serious impact on the environment [1]. PM2.5 refers
to fine suspended particles with a diameter of less than
2.5 microns [2]. Inhalation of high concentrations of PM2.5
will have a negative impact on human health [3], [4], such as
respiratory diseases, physiological dysfunction, and irritation
of the ocular and nasal mucosal tissues [5].

Currently, an accurate concentration of PM2.5 is measured
by an air quality monitoring station [6], [7]. However, the cost
of measuring instruments is very high. In 2019, Taiwan estab-
lished a total of 76 air quality monitoring stations. Each sta-
tion spent nearly one million NT dollars. The most expensive
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instrument, which costs 600,000 NT dollars, is used to mea-
sure the PM2.5 concentration. Moreover the maintenance fee
costs about 800,000 NT dollars each year [8]. In addition to
the high cost, the establishment of air quality monitoring sta-
tions is restricted by geographical location and professional
operators are required. These factors hinder the widespread
establishment of air qualitymonitoring stations. Furthermore,
a measurement of PM2.5 concentration is normally taken
every hour at an air monitoring station. That is, a real-
time measurement is not available, which may not meet the
requirement in some applications. To solve the problems
mentioned above, this paper presents a low-cost and effective
method, which is possibly used in real-time applications.

In the past, visibility was visually estimated by experienced
professionals in an air quality monitoring station. In other
words, it was extremely labor intensive and human error
could be involved. The human kind of error-prone mea-
surements can be eliminated by an image-based approach,
where human observation is replaced by a digital camera.
Previous studies [9], [10] suggest that the visibility of distant
targets decreases as the concentration of PM2.5 and/or rela-
tive humidity (RH) increases. That is, PM2.5 concentration
and RH significantly affect visibility. Visibility is the dis-
tance at which the outline of the target can be clearly seen.
Researchers attempted to estimate the visibility of images
taken with digital cameras [11], [12]. In this method, features
were extracted by a series of image processing schemes. Then
visibility was estimated. The above research indicates that
image processing is feasible in estimating visibility.

Note that visibility and PM2.5 concentration are highly
co-related. Recently, researchers have attempted to estimate
the PM2.5 concentration using image processing techniques.
In [13], the features of an image were extracted by a con-
volutional neural network. Then, a support vector regression
(SVR) model was trained and used to estimate the PM2.5
concentration. In [14], Liu et al. proposed an image analysis
method to estimate PM2.5 concentration where characteris-
tics such as contrast, transmittance, and entropy were used.
A SVR model was then used to relate the characteristics
and PM2.5 concentration. In addition, Liu et al. introduced
the concept of a region of interest (RoI) to improve the
performance of estimation. However, the RoI was manually
selected and therefore may not be the most informative.
In [15], based on a haze image model, a measure, called the
normalized first-order absolute sum of the high-frequency
spectrum, was used to estimate the concentration of PM2.5.
These reports suggest that SVR, RoI, and frequency infor-
mation may be appropriate to estimate the concentration
of PM2.5.
This paper will propose an approach to estimate the

PM2.5 concentration. The proposed method uses transmit-
tance, high-frequency information (HFI), extracted from our
automatically selected RoI in images, to build an SVR model
with RH measurement. To obtain the transmittance feature,
an improved dark channel prior (IDCP) presented in [16] is
used. The dark channel prior (DCP) was originally derived

from He et al. in [17]. It is observed that a zero or very
low pixel value exists in at least one of the RGB compo-
nents in a haze-free image, except for sky regions and white
objects. Otherwise, higher pixel values of the dark channel are
obtained in a hazy image. In [17], the atmospheric scattering
model in Eq. (1) is used.

I (x, y) = t (x, y) J (x, y)+ [1− t (x, y)]A, (1)

where I (x, y) represents the observed image, J (x, y) the
haze-free image,A the atmospheric light, and t(x, y) the trans-
mittance which refers to the portion of non-scattered light that
reaches the camera. For details, see [17]. Since the level of
haze or visibility is inversely proportional to t(x, y), t(x, y) is
used in our method.

Note that visibility is affected by PM2.5 concentration. And
visibility is related to HFI. Consequently, HFI is used as a
feature in this study.Moreover, an edge detector, for example,
a Sobel edge detector, can extract HFI from an image, where
the value of edge pixels is an indicator of HFI. That is, a strong
edgemeansmoreHFI and vice versa. Thus, we used the Sobel
edge detector to exploit the HFI in an image.

It is observed that not all t(x, y) and HFI in an image are
suitable for the estimation of PM2.5 concentration, because
they could be extracted from a region that is not the most
informative. Thus, an automatic selection of RoI is required
to find RoI that is most informative for extracting t(x, y) and
HFI. In this study, we used the difference in HFI between
images pairs with the highest and lowest concentrations of
PM2.5 to find the RoI that is the most informative. The
selected RoI is then used to extract t(x, y) and HFI.

A kernel-based SVR model, such as a radial-based func-
tion (RBF) kernel, has been proven to have advantages over
simple or multiple linear regression models. Therefore, in our
method an SVR model with an RBF kernel is used. Together
with the RH measurement and the two extracted features,
t (x, y) and HFI, the SVR model with RBF kernel is trained
and used to estimate the PM2.5 concentration in this study.
In the given data set, the proposed method achieves best
performance R2 = 0.816 that is generally satisfied in applica-
tions. The result of our method is superior to the comparison
methods, including four simple regression models and an
SVR model modified from [14].

There are at least four contributions in this study,
as described below.

• Our method provides a low-cost and effective image-
based alternative to the conventional method currently
used in air quality monitoring stations. The cost of our
method is low because a consumer digital camera is
good enough to take images, and common image pro-
cessing schemes are used. Thus, our method can be
possibly applied in real-time applications.

• Our method does not require professional operations.
Furthermore, the location of the installation of our
method is flexible, because only a camera and a personal
computer for image processing are required. Thus, our
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method eliminates the geographic restriction for an air
quality monitoring station.

• Our method presents a scheme for automatically select-
ing RoI that is more informative. It can eliminate the
potential manual error in [14] and improve the selection
of RoI in [20]. In the given data set, our proposed RoI
selection shows its effectiveness in feature extraction.
It may also be beneficial to extract characteristic infor-
mation for image-based methods to estimate the concen-
tration of PM2.5.

• We use two effective features in the SVR modelling,
together with RH measurement, that are extracted from
the RoI selected by our methodology. They are the HFI
feature and the transmittance feature of an improved
dark channel in [16]. The experimental results indicate
that they perform better than a modified SVR from [14]
that uses four features, including measurement of RH,
transmittance from [17], entropy, and contrast. It implies
that the two proposed features might help the perfor-
mance of SVR models for the estimation of PM2.5
concentration.

This paper is organized as follows. Section II provides
a brief review of IDCP in [16]. Section III introduces the
proposed approach, in which automatic RoI selection is men-
tioned; feature extraction is described; and the SVR model
used in this study is given. Section IV justifies the proposed
method, which will be compared with four simple regression
models and an SVR model. Finally, Section V concludes this
study.

II. REVIEW OF IMPROVED DCP
In this section, an improved DCP (IDCP) in [16] is briefly
reviewed. Due to its simplicity and effectiveness, the DCP
scheme, originally developed by He et al. in [17], prevails
in the community of single image haze removal. However,
there are four problems with DCP, including artifact, halo,
color distortion, and computational cost. Originally, IDCP
proposed an improvement on DCP to eliminate the problems.
In this article, we will use the improved dark channel to
estimate the transmittance of an image. The dark channel can
be obtained through a minimum filter and is related to the
haze in the images.

Fig. 1 shows an example to demonstrate the relation
between haze and dark channel, where the 15× 15 minimum
filter was used. Fig. 1(a) shows a haze-free image taken from
an air quality monitoring station in Taiwan, and the corre-
sponding dark channel is shown in Fig. 1(b). As mentioned,
the pixel values in Fig. 1(b) are very low, i.e., dark, except for
sky regions and some white objects. A corresponding hazy
image of Fig. 1(a) is shown in Fig. 1(c), whose dark channel
is given in Fig. 1(d), which shows a brighter dark channel
than that in Fig. 1(b), due to the haze in the image. Fig. 1
suggests that the haze can be measured by the dark channel
and transmittance accordingly.

The visual quality of the dehazed image can be used to
assess the quality of the dark channel in a haze removal

FIGURE 1. An example of a relation between haze and dark channel is
shown in (a) a haze-free image, (b) the dark channel of (a), and (c) a hazy
image of (a), and (d) the dark channel of (c).

scheme. It is well-known that the DCP scheme in [17] intro-
duces halo, color distortion, and artifacts in the dehazing
process. It has been shown in [18] that the problems result
from an incorrect estimation of the model parameters. In [16],
it is observed that the problems come mainly from A and
t(x, y) with fixed scaling factors. To eliminate the problems,
an improved DCPwas proposed in [16], where scaling factors
for A, t(x, y) and the parameter setting for the guided image
filter (GIF) [19] were introduced. The result of the experiment
indicates that the scheme proposed in [16] is capable of
alleviating the problems in the DCP scheme. Formore details,
see [16]. In other words, a better estimate of the dark channel
is obtained in [16]. Thus, the transmittance t(x, y) in [16] is
used in our method.

Given an image I in the RGB color space, the implemen-
tation steps for estimating A and t(x, y) in [16] are given as
follows.
step 1. Find the pixel-based dark channel as

Idark1 (x, y) = min
c

[Ic (x, y)] , (2)

where c ∈ {R,G,B}.
step 2. Find the maximum in Idark1 (x, y) and its correspond-

ing pixel in I , pmax . Then estimate the atmospheric
light as A = [ARAGAB] = αa × pmax , where αa =

min
[
(µ1)

0.0975 , 0.95
]
and µ1= mean

[
Idark1 (x, y)

]
.

step 3. Calculate the normalized dark channel as

Īdark� (x, y) = min
(w,z)ε�(x,y)

min
c

[
Ic (w, z)
Ac

]
, (3)

where�(x, y) is a 15× 15window centered at (x, y).
step 4. Obtain the initial transmittance as

t̃ (x, y)= 1−ωa × Īdark� (x, y), (4)

where ωa = min
[
(µ0.9)

0.375 , 0.95
]
and µ0.9 =

µ0.9= mean
[
Īdark� (x, y) ≤ 0.9

]
.
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FIGURE 2. (a) Hazy image, (b) initial transmittance t̃
(
x,y

)
, and (c) final

transmittance t
(
x,y

)
.

FIGURE 3. Transmittance t
(
x, y

)
for images with low and high

concentrations of PM2.5 (a) image with low PM2.5 concentration
(1µg/m3, RH = 56%), (b) t

(
x, y

)
of (a), (c) image with high PM2.5

concentration (75µg/m3, RH = 64%), and (d) t
(
x, y

)
of (c).

step 5. Find the final transmittance t (x, y) through refining
t̃ (x, y) by the GIF with the guide image Idark1 (x, y),
the window size N= 75, and the smoothing parame-
ter ε= 0.25.

Fig. 2 gives an example with its initial transmittance t̃ (x, y)
and the final transmittance t (x, y) by the above steps. As seen
in Fig. 2(b), the block effect is found in t̃ (x, y), especially in
the contour of buildings due to the 15×15minimumfilter. In a
single-image haze removal, this will cause halos in a dehazed
image. The halos will degrade the estimation performance of
our method due to the fact that uncorrelated transmittance
pixels are involved in the calculation of the transmittance
feature. Therefore, t̃ (x, y) is further refined by a GIF so that
the edges of the buildings can be retained, since they will be
used in the automatic search for the final RoI. As shown in
Fig. 2 (c), the edges are recovered after the GIF refinement.

To see the relation of t (x, y) and PM2.5 concentration.
Fig. 3 shows the difference of transmittance t (x, y) for
images with high and low concentrations of PM2.5. Fig. 3(a)
is an image with low PM2.5 concentration whose t (x, y)

FIGURE 4. The overall flow chart of the proposed approach to estimate
PM2.5 concentration.

is given in Fig. 3(b). Fig. 3(c) shows an image with high
concentration of PM2.5 concentration whose t (x, y) is shown
in Fig. 3(d). Fig. 3 indicates that a brighter t (x, y) is for the
image with low PM2.5 concentration and a darker one for
the image with high PM2.5 concentration. That is, different
concentrations of PM2.5 results in different t (x, y). Thus,
t (x, y) will be adopted in this study as a feature to build an
SVR model.

III. THE PROPOSED APPROACH
The proposed approach is described in detail in this section.
The approach consists of the following five stages. First, the
original data set S was preprocessed to align images and to
exclude inappropriate data. Then the input data set SI was
formed. Second, the data set SI was divided into training
data set Str and testing data set Stt . Third, the training data
set Str was used to automatically select the RoI to extract
features HFI and t (x, y). Fourth, an SVR model was built
with measurement of PM2.5 concentration, RHmeasurement,
and the two extracted features, that is, transmittance t (x, y)
and HFI in images. Fifth, the testing data set Stt was used to
justify the performance of the trained SVR. Fig. 4 shows the
overall flow chart of the proposed approach. Details of each
stage are described below.

A. IMAGE ALIGNMENT AND DATA EXCLUSION
In the original data set S, images taken in the same scene
at different times may be translated vertically and/or hori-
zontally. Thus, image alignment is required before images
can be used in the following steps. Details will be given in
Section IV.A. After the image alignment, the unreliable data
exclusion in S follows.
In [20], two factors are observed to affect the performance

of the PM2.5 concentration estimation. One is RH and the
other is the time difference between the time to take images
and the time to measure the concentration of PM2.5. In this
study, six images were taken in one hour from an air qual-
ity monitoring station, while the PM2.5 concentration was
collected hourly. In other words, six images were related to
only one concentration of PM2.5 for each hour. When the
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FIGURE 5. Comparison of near and distant objects in an image from low
to high concentrations of PM2.5. The near object is 1 km away, and the
distant object is 2.5 km away from an air quality monitoring station.

PM2.5 concentration changes within one hour, it will degrade
the performance of the estimate. To solve this problem, the
variance of the transmittance feature was calculated in six
images taken in the same hour. When the variance is greater
than a threshold, the six-image set is considered unreliable
and is discarded in this study. The details will be given in
Section IV.A.

B. AUTOMATIC SELECTION OF ROI
In light of [14], RoI helps improve the performance of
PM2.5 concentration estimation. Consequently, in this study,
a scheme for automatic selection of RoI was developed. Note
that the contour or edge of near and distant objects in images
taken from a fixed point, e.g., an air quality monitoring
station, changes its clarity as the concentration of PM2.5
changes. Furthermore, the change is smaller for near objects
than for distant ones. Thus, it can be used to select the RoI that
has the largest difference, that is, it is the most informative for
PM2.5 concentration. Fig. 5 explains the above idea. When
the PM2.5 concentration is low, the edges are clear for the
marked near object (1 km away) and themarked distant object
(2.5 km away) as shown in the first row. As the concentration
of PM2.5 increases, the edges of the near object become
vague, and those of the distant objects are hardly visible,
as shown in the last row. Based on this observation, images
with high and low concentrations of PM2.5 will be used to
locate the most informative RoI. In this study, the Sobel edge
detector was used to find the HFI. The Sobel edge images for
Fig. 5 are shown in Fig. 6, which indicates that HFI decreases
as the concentration of PM2.5 increases.

Based on the observation above, the proposed automatic
selection is described below. Given the input data set SI , the
implementation steps for the proposed automatic selection of
RoI are given below.
step 1. SelectM images with the highest PM2.5 concentra-

tion and M images with the lowest PM2.5 concen-
tration from data set SI .

step 2. Convert all selected images to grayscale images.
For each image, perform Sobel edge detection to
obtain HFI.

FIGURE 6. Comparison of Sobel edges on near and distant objects in
Fig. 5 from low to high concentrations of PM2.5.

step 3. Randomly combine with an image of high PM2.5
concentration and one of low PM2.5 concentration.
The total number of image pairs isM ×M .

step 4. Binarize an image pair using the Otsu algorithm
[21].

step 5. Perform a morphological dilation with W × W
structuring elements in the binarized image pair
from Step 4.

step 6. Perform a pixel-to-pixel XOR operation on the
binarized image pair to obtain a high-frequency
difference image.

step 7. Find connected regions in the high-frequency dif-
ference image using the labeling algorithm [22].

step 8. Mark the first three objects with the largest con-
nected regions, which are considered as three can-
didate RoIs.

step 9. Repeat Step 4 to Step 8 for allM ×M image pairs.
step 10. Count the number of selections for each candidate

RoI. The one having the highest number of selec-
tions is the selected RoI.

step 11. Exclude the sky area in the selected RoI, and the
resulting region is the final RoI, denoted as R∗.

An example of the proposed automatic RoI selection is
depicted in Fig. 7, where the intermediate results are also
shown.

There are three points that should be discussed in the above
steps: determination ofM in step 1, discrimination of HFI in
step 4, and determination ofW in step 5.

1) DETERMINATION OF M IN STEP 1
The total number of image pairs, which is M × M , with the
highest and lowest concentrations of PM2.5 is discussed here
because it may affect the performance of our method. Since
image pairs are used to obtain HFI, it suggests that a greater
difference between the image pairs is desired. To be robust,
M should not be small. On the other hand, it is not good to
have a large M because a degraded HFI will result. In our
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FIGURE 7. An example to demonstrate the results after the steps in
Section III.B.

FIGURE 8. (a) Image after Sobel edge detection, (b) binary image of
(a) after the Otsu algorithm, and (c) histogram of (a) and the threshold by
the Otsu algorithm.

experiments, about 0.6% of the total number of images gen-
erally have satisfactory performance. In other words, about
0.3% is for the highest and lowest concentrations of PM2.5,
respectively. In the experiments of Section IV, M = 48 was
used and took 0.34% of the total number of images, that is,
14,046.

2) HFI DISCRIMINATION IN STEP 4
The Sobel edge detection in Step 2 is to extract the HFI
that needs to be identified. Note that the pixel value in the

FIGURE 9. An example to show morphological dilation results with
different size of structuring elements (a) original image block, (b) binary
image after Step 4, and (c)∼(f) the resulted images with different sizes of
structuring elements.

Sobel edge image is proportional to its HFI. Thus, we discern
low-frequency and high-frequency information by the pixel
value. That is, a higher pixel value means stronger HFI.
The two parts can be binarized by a threshold. It is well-
known that the Otsu algorithm can provide an appropriate
threshold. Consequently, we use the Otsu algorithm to find
binary images in Step 4. Fig. 8 gives an example. Fig. 8(a) is
a Sobel edge image; Fig. 8(b) is its binary image through the
Otsu algorithm; and Fig. 8(c) shows the histogram of Fig. 8(a)
and the threshold obtained by the Otsu algorithm. In Fig. 8(c),
pixel values less than the threshold were assigned to zero,
whereas the other pixels were assigned to one. The resulting
binary image is shown in Fig. 8(b).

3) DETERMINATION OF W IN STEP 5
In Step 2, we obtain a Sobel edge image that generally has
unconnected pixels. In experiments, we also find that images
in SI may have little shift in the coordinates of the binary
images obtained in Step 4, due to imaging conditions, such as
light conditions that vary the intensity of the pixels. To link
the unconnected pixels, we perform a morphological dilation
on the images obtained by Step 4. The results with different
sizes of structuring elements are shown in Fig. 9. Fig. 9(a)
is an original image block cut from an image in SI whose
Sobel edge image by Step 2 is given in Fig. 9(b) that shows
unconnected pixels around the contour of the building and its
interior. As W increases, the contour pixels are connected,
and the interior of the building is filled. When W = 7,
the dilated contour and the interior region are appropriate
compared to Fig. 9 (a), while in the case ofW = 9, it includes
more pixels in the sky region that will degrade the results of
the following steps. Therefore,W = 7 is used in our method.

C. THREE FEATURES IN OUR METHOD
This section describes the three features that will be used
in the SVR modeling, that is, the HR measurement f RH ,
transmittance feature f tR∗ , and HFI feature f HFIR∗ .

1) RH MEASUREMENT
As described previously, RH was measured hourly by an air
quality monitoring station. In [20], it has been shown that RH
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FIGURE 10. Extracted f t
R∗ and f HFI

R∗ within R∗.

significantly affects the estimation of PM2.5 concentration.
Thus, we include RH measurement f RH in SVR modeling to
enhance estimation performance.

2) TRANSMITTANCE FEATURE
As shown in Fig. 3, images of different concentrations
of PM2.5 have different transmittance. Furthermore, the
improved dark channel in [16] is better than the original dark
channel in [17], because it results in a much better dehazing
performance. Therefore, this article used the transmittance
of IDCP as a feature in the proposed approach to estimate
the concentration of PM2.5. By the steps in Section II, the
transmittance of an image was found. Then the transmittance
feature within the RoI R∗, which is obtained in Section III.B,
is calculated as follows.

f tR∗ = mean
(x,y)εR∗

[t(x, y)] (5)

3) HFI FEATURE
Note that an edge detector can be considered as a high-pass
filter to obtain HFI. Therefore, the 3× 3 Sobel edge detector
was applied to find the HFI. Two directions are involved in
the detection of Sobel edges, that is, vertical and horizontal.
To find the vertical edge, the 3×3maskGx is applied whereas
3×3maskGy is used for horizontal edges. The corresponding
masks are given below.

Gx =

−1 0 1
−2 0 2
−1 0 1

 and Gy =

−1 −2 −1
0 0 0
1 2 1

 .
(6)

The HFI feature is found as the sum of the absolute pixel
values of edge images, which is

f HFIR∗ =
∑

x

∑
y

(
|fx(x, y)| +

∣∣fy(x, y)∣∣) , (7)

where (x, y) ∈ R∗; fx(x, y) and fy(x, y) are edge images in
vertical and horizontal directions.

Fig. 10 shows the features f tR∗ and f HFIR∗ , which were
extracted from R∗ in Fig. 8.

D. SUPPORT VECTOR REGRESSION
The SVR used in this study is briefly described in the follow-
ing. For details, see [23]. SVR is a generalized support vector

FIGURE 11. Distribution of PM2.5 concentration measured in the data
set S.

machine (SVM). That is, SVR is derived from SVM, a clas-
sifier, to an estimation of a real value function. Since kernel-
based SVR has excellent performance, this article adopts it to
estimate the PM2.5 concentration. Assume a training data set
Str = {(xi, yi)} for 1 ≤ i ≤ N , where x ∈ RM is the input
vector and y ∈ R is the desired output; subscript i denotes the
ith pattern;N is the total number of patterns. The kernel-based
SVR used in this study is formulated as

f (x) =
∑N

i=1
w8(xi)+ b, (8)

where w is a weight; 8(·) is a radial basis function (RBF)
kernel; and b is a bias. In this study, the training data set
Str had a three-dimensional input vector xi, which includes
features f tR∗ , f

HFI
R∗ , and the measured RH feature f RH ; the

desired output yi is the measured PM2.5 concentration f PM .
In a trained SVR, the output f (x) is used to estimate f PM in
the testing stage.

IV. RESULTS AND DISCUSSION
This section will verify the proposed approach using a given
data set obtained from the Taiwan government. In the follow-
ing, data preparation, data exclusion, and comparison with
other regression models are described in order.

A. DATA PREPARATION
1) ORIGINAL DATA SET
The experiment used an image data set taken from the
Kaohsiung Renwu Air Quality Monitoring Station, which
is under the Environmental Protection Agency of the Exec-
utive Yuan of Taiwan. The images were collected from
7:00 am to 17:00 pm from August 2018 to July 2019.
For every 10 minutes, an image was taken. The total
number of images in data set S is 21,720. Furthermore,
the data set included the hourly PM2.5 concentration and
RH measured. Fig. 11 shows the histogram of the mea-
sured PM2.5 concentration, whereas Fig. 12 shows the
histogram of the RH measurements. This data set was
considered as the original data set S in the following
experiment.
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FIGURE 12. RH measurement distribution map of the data set S.

FIGURE 13. An example of showing the same scene taken at different
times with a vertical translation (a) a scene taken at some time, (b) the
same scene taken at another time with a vertical translation, and (c) the
adjusted result of (b).

2) IMAGE ALIGNMENT
Since the images in data set Swere taken manually, it usually
happens that the same scene was taken at different times
under different shooting conditions. In other words, the same
scene taken at different times may be translated vertically
and/or horizontally. Fig. 13 shows an example for this case.
Figs. 13(a) and 13(b) are two images of the same scene
taken at different times with a vertical translation. Obviously,
it will significantly affect to locate R∗ and feature extraction
accordingly, if we use them as is. Consequently, the images
in the S data set should be aligned before being used in the
following experiment. The image alignment uses the first
image taken in S as a reference since it was taken with a
just-calibrated camera. Then the alignment was performed on
the rest of the images. Fig. 13(c) gives the adjusted result of
Fig. 13(b). The aligned image set then takes the place of the
original image set in S.

3) DATA EXCLUSION
As described previously, the data set S consists of three parts.
For each hour, there are six images, one PM2.5 concentration
measurement and one RH measurement. The hourly data is
considered as a subset of S. When the subset is discarded
(retained), it means that six images and two measurements
are discarded (retained). Note that a measurement of the
concentration of PM2.5 is associated with six images every
hour. Furthermore, the PM2.5 concentration can vary in one
hour as the weather changes. When the difference is large,
it will degrade the estimation performance. Thus, the data

TABLE 1. Changes of f t
R∗ and estimated PM2.5 concentration in six

images within the same hour.

in this case should be excluded from the SVR modeling.
Table 1 shows an example, where time, f tR∗ , and the estimated
PM2.5 concentration are given. As shown in Table 1, the
feature of transmittance f tR∗ decreases from 0.837 to 0.348 in
one hour. Consequently, the differences in the estimated con-
centrations of PM2.5 by the proposed approach in each case
are large. In other words, the data in this case are not reliable
and should be discarded.

To exclude unreliable data, for each subset, the following
three steps are performed.

step 1. Calculate the standard deviation of f tR∗ in six images
within a subset, which is denoted as σs. This contin-
ues until all images in each subset in S are processed.

step 2. Obtain the mean of all σs in each subset and denote
as µS .

step 3. Use µS as a threshold, discard the subset, if σs > µS .
Otherwise, retain the subset. This process applies to
all subsets in S.

Fig. 14 shows the box plot of σs for data set S where
µS = 0.0181 is indicated as well. According to the crite-
rion in Step 3, approximately 35% of the subsets in S were
considered not reliable and therefore discarded. After data
exclusion, the total number of images is reduced from 21,720
to 14,046.

4) TRAINING SET AND TESTING SET
After data exclusion, the retained data in S were the input
data set SI for the following experiments. The SI was divided
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FIGURE 14. The box plot of σ s with µS .

TABLE 2. Ratios of training and testing data with the number of patterns.

into training set Str and testing set Stt . Each training pattern
consists of a three-dimensional input vector of features f RH ,
f tR∗ , f

HFI
R∗ , and its corresponding desired output f PM , that is,

the measured PM2.5 concentration. By the training set Str ,
a SVRmodel was built. The trained SVRmodelwas then used
to estimate f PM in Stt . The experiments were conducted with
the ratios of Str to Stt from 1:9 to 9:1. The number of patterns
in Str and Stt for different ratios is shown in Table 2. For each
ratio, three experiments with randomly selected examples
were performed. Then the average performance indices, R2

and root mean squared error (RMSE) were recorded and
compared.

B. PERFORMANCE INDICES
In the experiment, two performance indices were used to
evaluate the proposed approach and comparison methods.
They were the root mean squared error (RMSE) and the
coefficient of determination R2. The RMSE is calculated as

RMSE =

√
1
N

∑N

i=1

(
f PMi − f̂ PMi

)2
, (9)

TABLE 3. Models and features used in the proposed approach and
comparison methods.

where N is the total number of f PMi ; f̂ PMi is the estimate of
PM2.5 concentration in the ith example; and f PMi is the ith

measured PM2.5 concentration. The smaller RMSE means
that f̂ PMi is closer to f PMi , i.e., better estimation performance
is achieved.

The second performance index R2 is calculated as

R2 = 1−

∑N
i=1

(
f PMi − f̂ PMi

)2
∑N

i=1
(
f PMi − f̄ PMi

)2 , (10)

where f̄ PMi is the mean of f PMi . R2, ranging from 0 to 1,
represents the goodness of a model to explain the output
variation by the input of the model. A higher R2 means better
estimation performance for a model.

C. PERFORMANCE COMPARISON
In this subsection, the performance of the proposed approach
is investigated and compared with a modified Liu method in
[14], the Liaw method in [20] and three simple regression
models, including linear regression (LR), polynomial regres-
sion (PR) and exponential regression (ER) models, using the
feature f tR∗ . The original Liu method [14] used the features of
distance, transmittance by [17], entropy, contrast, sky color,
and solar zenith angle to build an SVR model. However,
features such as distance, sky color, and solar zenith angle are
not available in this study. Consequently, these features were
not considered in the comparison. Instead, we modified Liu’s
method using features relative humidity f RH , transmittance

by [17] f t,[17]R∗ , entropy f eR∗ , contrast f
c
R∗ , calculated within R

∗.
The modified Liu method is abbreviated as the mLiu method.
The original Liaw method [20] used HFI as a characteristic
in an LR model to estimate the concentration of PM2.5. The
differences between Liaw’s method and LR are the exclusion
of data described in Section IV.A and the automatic selection
of RoI without exclusion of the sky region, except for using
different features. The models and features used in the pro-
posed approach and the comparison methods are summarized
in Table 3.
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TABLE 4. Effect of the three features on the performance of our method.

TABLE 5. Average performance of our method and the comparison
methods.

FIGURE 15. R2 for our method and the comparison methods.

1) AVERAGE PERFORMANCE OF FEATURE SUB-SETTING IN
OUR METHOD
In this study, our method uses three features, that is, f RH , f tR∗ ,
and f HFIR∗ . In this experiment, we will investigate their effect
on performance in the proposed method. Table 4 shows the
average performance of feature subsetting for the ratios in
Table 2. In Table 4, it indicates that f RH has the poorest per-
formanceR2 = 0.017whereas f tR∗ and f

HFI
R∗ havemuch higher

R2 than that for f RH , that is, 0.616 and 0.629, respectively.
When f RH is respectively added to f tR∗ and f

HFI
R∗ , R2 for f tR∗

and f HFIR∗ have improved by 0.122 and 0.136, respectively.
The R2 reaches 0.793 when all three features are used. A
similar result is obtained for the RMSE performance. The
results suggest that f RH is able to enhance the performance
of f tR∗ and f

HFI
R∗ . The three selected features are appropriate,

since the estimation performance is improved as additional
features are used.

2) AVERAGE PERFORMANCE FOR DIFFERENT RATIOS OF
TRAINING AND TESTING DATA
The average performance of the three experiments for our
method and the comparison methods with each ratio in
Table 2 are given in Fig. 15 for R2 and Fig. 16 for RMSE. The
average performance of all ratios in R2 and RMSE is recorded
in Table 5.

FIGURE 16. RMSE for our method and the comparison methods.

In Table 5, in R2 our method is superior to the Liaw
method by 0.110 and the mLiu method by 0.059 and 0.169,
0.169, 0.190 to LR, PR and ER, respectively. For RMSE, the
proposed approach has less RMSE than Liaw, mLiu, LR, PR,
and ER by 0.371, 0.959, 2.59, 2.569, and 3.503, respectively.
Table 5 indicates that the LR, PR, and ERmodels have similar
performance and the Liaw method, an LR model, has better
performance than the LR, PR, and ER methods with the help
of data exclusion and automatic RoI selection. However, it is
much inferior to the SVR models, that is, our method and the
mLiumethod. Additionally, our SVRmodel, which uses three
features, is better than the mLiu method with four features.
It suggests that features f HFIR∗ and f tR∗ are more effective than

f t,[17]R∗ , f eR∗ , and f
c
R∗ in the estimation of PM2.5 concentration.

3) BEST PERFORMANCE COMPARISON
To further investigate the performance of the compari-
son methods, we discuss the best case of each method.
Fig. 15 shows that the best performance for our method and
the mLiu method occurred in an 8:2 ratio, whereas 7:3 was
for the rest of methods. In the 8:2 case, our method reaches
the highest R2 performance 0.816, whereas the mLiu method
has 0.803. The Liaw method, LR, PR and ER yields 0.700,
0.627, 0.630, 0.601, respectively, in R2. Therefore, the ratio
8:2 is recommended when our method and the mLiu method
are used in the application, while the ratio 7:3 should be used
when the simple regression is considered.

The scatter plots of the best performance for our method
and the comparison methods are depicted in Fig. 17.
Figs. 17(a) to 17(c) indicate that LR, PR, and ER show a
weak positive relationship. In other words, LR, PR and ER are
not good enough to estimate the PM2.5 concentration in the
given data set. LR has an underestimation problem in high-
level PM2.5 concentration. A similar result is found in PR,
while ER could not adequately estimate the concentration of
PM2.5 for all levels, due to the wide spread in the scatter
plot. Regarding the Liaw method, Fig. 17(d) shows that only
images of f PM less than 70 were retained after data exclusion.
Additionally, it has an underestimation problem for cases
with f PM > 58. The mLiu method is much better than the
simple regression models, since it shows a strong positive
relationship as in Fig. 17(e). However, it indicates that there
was a large variance happened when f PM > 40. On the
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FIGURE 17. Scatter plots (a) LR, (b) PR, (c) ER, (d) Liaw method, (e) mLiu method, and (f) our method.
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contrary, our method shows a strong positive relationship
with a more confined variation in the cases f PM > 40 as in
Fig. 17(f). However, our method had several poor estimates
of low-level PM2.5 concentration. It will be considered for
further improvement in the future.

V. CONCLUSION
This article has presented an image-based approach to esti-
mate the PM2.5 concentration, where the features of relative
humidity and transmittance, together with high-frequency
information from the proposed automatically selected RoI,
were used to build an SVR model. In essence, our method
consists of four main stages: data exclusion, automatic selec-
tion of RoI, feature extraction, and SVR modeling. For a
given data set obtained from the Taiwan government, the
proposed method was justified and compared with a modified
Liu method and four simple regression models, that is, the
Liawmethod, linear, polynomial, and exponential regression.
The result indicates that our method was superior to the
comparison methods, in terms of R2 and RMSE. The best
performance obtained by our method was R2 = 0.816 in
the given data set. The result suggests that the proposed
method could be an effective and low-cost alternative to
estimating the PM2.5 concentration for the method used in
an air quality monitoring station. Additionally, our method
could alleviate the restriction of installation location and
professional operation in air quality monitoring stations and
could possibly be used in real-time applications. For further
research, an improvement will be made in the estimation of
the low-level PM2.5 concentration. In addition, our effort will
be to find more effective features in the estimation of PM2.5
concentration.
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