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ABSTRACT Increasing the energy efficiency of deep learning systems is critical for improving the cognitive
capability of edge devices, often battery operated, as well as for data centers, constrained by the total power
envelope. Specialized architectures accelerated by analog vector-matrix multipliers (VMMs) can reduce by
orders of magnitude the energy per operation, since the reduced precision of analog computation does not
undermine the classification accuracy of the neural network. We show an analog vector-matrix multiplier
fabricated with industry-standard 0.18 µmCMOS process, exploiting a single-transistor non-volatile analog
memory cell and dedicated technology circuit co-design. The design is focused on implementation in neural
networks performing offline training. The VMM performs the analog multiplication of a vector of inputs,
encoded in the duration of time pulses, times a matrix of weights, encoded in the programmable currents of
the memory cells. A 1.72 µm2 memory cell is realized with a single transistor with floating gate, which can
be operated as a two-terminal analog memristive device with more than 64 programmable current levels and
high Ihigh/Ilow ratio (> 103), tuned by the charge injected in the floating gate. A small-area charge amplifier
is used to convert the multiply and accumulate operation result into a voltage. System-level projections based
on our measurements and simulations provide a throughput of 333.17GOps/s and an energy efficiency of
122.3 TOps/J, higher than comparable-precision VMMs reported in the literature, and an equivalent area
per cell down to 2.15 µm2, lower than any similar state-of-the-art solution. Of critical importance in view
of translation to industry, our proposal uses in a new way an industry-standard low-cost single-poly CMOS
process flow.

INDEX TERMS Analog computing, analog memory, analog neural networks, analog non-volatile memory,
computing in-memory, neuromorphic computing.

I. INTRODUCTION
Classification accuracy and energy per task are the primary
metrics for machine learning hardware, both at the level of
edge devices, that typically must perform cognitive functions
using the limited energy provided by batteries, and at the
level of the data center, whose total computing capacity is
constrained by the power envelope. This is the motivation
of the vibrant research in dedicated architectures for Deep
Neural Networks (DNNs), alternative to the Von Neumann
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model [1]–[3]. The most recurring computational task in a
DNN is the multiplication of a vector of inputs of a network
layer by a matrix of programmable weights, which explains
the research attempts to develop specialized vector-matrix
multipliers (VMMs) as dedicated hardware primitives with a
high degree of parallelism, small latency, and energy-efficient
operation [4]. In addition to parallel operation, the storage
of the weights in local memory, or the usage of circuits
in which computing elements and memory are intertwined
as in ‘‘computing in-memory’’ solutions, are options to
boost VMM performance and energy efficiency at the same
time.
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In this scenario, dedicated analog VMMs [5]–[19] are
promising for the possibility of exploiting technology-circuit
co-design to provide an intrinsic and very high degree of
parallelism and a quantum leap in energy efficiency. Analog
computing has been historically phased away in the 80s
for its sensitivity to noise, non-linearity, and process varia-
tions; however, deep neural networks have been proven to
be capable of high classification accuracy also with limited
arithmetic precision [20], [21], and to be resilient to noise and
non-linearity [16], [22] in analog implementations.

Analog VMMs require analog non-volatile memo-
ries (NVMs) for weight storage, possibly close to the
logic circuits to minimize the energy required for mem-
ory access [20], [23]. Emerging technologies such as
Ferroelectric (Fe-) FETs [24] and Resistive Random Access
Memories (RRAMs) [25], [26] still present technology
challenges as dense analog NVMs: in particular, FeFETs,
despite being able to achieve good linearity [24], [27],
still have scalability issues; RRAMs, on the other side, are
very promising from a scalability perspective, but often
show an intrinsic bi-stable behavior [28], and limited ana-
log multi-level programmability [29]. Single-poly floating
gate (FG) cells represent an interesting alternative to industry
standard double-poly FG flash memories [30]–[38], which
require dedicated and expensive additional process steps.
Different solutions for single-poly analog NVMs have been
proposed for neuromorphic circuits also by some authors
of the present paper [16], but typically require a large area
due to the presence of a p-type MOSCAP between the
control gate (surrounding n-well) and the FG (poly gate).
Furthermore, they often need relatively high program volt-
age [39]–[41]. A few high-density proposals (area ≤ 3 µm2)
can still be found: [42], [43] present compact solutions,
limited to single-bit logic; in [44], a Y-shaped two-transistor
device cell is presented, used in [13] as analog memory
for neuromorphic computing. A single-MOSFET device is
proposed in [45], where electrons or holes can be injected in
the spacer of non-overlapped channel regions, with limited
analog capability.

In this paper, we show an analog VMM realized in an
industry-standard, low-cost single-poly 0.18 µm CMOS pro-
cess using a time-domain approach [9], [12], [17], namely
where input signals are encoded in the duration of time
pulses, achieving minimum area occupation and improved
performance in terms of energy per task. The programmable
weights are stored in a non-volatile memory matrix realized
with novel single poly, single transistor, two-terminal FG
cells, the 1T-FG cell, using 3.3V nMOS transistors with a
relatively thick SiO2 gate oxide (∼ 7 µm) and a minimum
area per analog cell of just 1.72 µm. We experimentally
demonstrate the possibility to program and erase the cell
with positive drain voltage and grounded source, with ana-
log multi-level programmability corresponding to 6 equiv-
alent bits and cyclability. Experiments and simulations are
used to evaluate the performance metrics of the proposed
time domain VMM: an energy efficiency of 122.3 TOps/J,

a throughput of 333.17GOps/s for a 500× 500 VMM, with
an overall silicon area of 0.537mm2 are obtained. System-
level simulations of a 2-layer network processing the MNIST
dataset [46], realized in a fully-analog approach using the
proposedVMMwith limited precision, result in a comparable
inference accuracy with respect to floating-point precision
operation (∼ 1% at 6 bits).

II. 1T-FG CELL-BASED TIME-DOMAIN ANALOG VMM
A M × N time domain VMM (TD-VMM) architecture is
depicted in Fig. 1(a), with details of the input vector of M
elements, theM×N 1T-FGmemorymatrix where the compu-
tation takes place, and the N amplifiers converting the results
into N output voltages. Each of the M inputs (i = 1, . . . ,M )
is encoded in the duration ti of a voltage pulse of constant
amplitude VDS,ON applied to the i-th row of the array. Each
input pulse activates all cells in the row for its time duration,
which ranges from 0 to a maximum pulse width T . The
programmable weights wi,j are encoded in the currents Ii,j of
1T-FG cells, which can be programmed by means of charge
injection in the FG of each cell. The sources of all cells in the
same column are connected to the same bitline (BL) node at
virtual ground. The net charge Qi,j injected by cell (i, j) into
the bitline is

Qi,j = Ii,j · ti. (1)

The total charge injected in the bitline j is converted into a
voltage by means of a so-called charge amplifier, realized
using a purposedly designed operational transconductance
amplifier (OTA) with a feedback capacitor. The output volt-
age is therefore:

Vout,j =
1
C

M∑
i

Qi,j =
1
C

M∑
i

Ii,j · ti. (2)

As the VMM implementation heavily impacts the overall
performance of a neural network, in terms of precision, area
occupation and power consumption, several challenges arise
for an effective design. To enable a comparison with other
analog and digital options, we consider the following figures
of merit (FOMs):

• Throughput (THR), i.e. number of elementary opera-
tions performed per unit time (Ops/s);

• Energy Efficiency (EE), defined as the number of ele-
mentary operations per unit energy (Ops/J);

• Effective Number of Bits (ENOB), indicating the equiv-
alent number of bits of an analog-to-digital conversion
only affected by quantization noise, considering the
signal-to-noise ratio (SNR) and non-linearity (expressed
by total harmonic distortion (THD)) of the real
implementation.

An elementary operation (‘‘Op’’) is a scalar sum or multipli-
cation: the multiplication of a vector of M elements times a
(M × N ) matrix involves (2M − 1) × N elementary opera-
tions [16]. More details on the FOMs are in Appendix A.
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A. SINGLE-TRANSISTOR ANALOG MEMORY (1T-FG CELL)
The layout of a 4×8 subset of the 1T-FGmemory cell array is
shown in Fig. 1(b). A single cell consists of a minimum-size
3.3V n-type MOSFET with 7 nm-thick silicon oxide, where
the gate terminal is floating. Thus, cell addressing in a two
dimensional array is done by selecting drain (D) and source
(S), which are respectively connected to the wordline (WL)
and to the bitline (BL). The cell pitch of 1.12µmand 1.54µm
results in a cell area of 1.72 µm2.
Due to the lack of cell selectors in the 1T-FG array, the

possible unintentional selection of a cell must be accurately
addressed. To limit half selection issues, different configu-
rations should be adopted when performing a program/erase
(i.e. write) or a read operation. When writing, it is important
to avoid that the non-selected cells are disturbed: Fig. 1(c)
shows the implemented voltage scheme for such operation.
When awrite (program/erase) voltageVwri is applied between
D and S of the target cell, the non-selected lines are kept in a
high-impedance (Hi-Z) state. In this way, a minimum of three
cells in series will be exposed to the same Vwri, which is not
enough to produce the unintentional writing of half-selected
cells. A read operation can be performed by forcing a voltage
Vsource between D and S, and reading the resulting current
Isense, as illustrated in Fig. 1(d). Non-selected BLs are put in
Hi-Z, whereas non-selected WLs are forced to 0 V.

The proposed architecture can be subject to sneak-path
leakage currents due to half-selected cells when either WL or
BL (or both) are in Hi-Z, especially for extremely large mem-
ory array dimensions. This is not a practical issue for reduced
dimension memory arrays exploited in our time-domain
VMM application, and we believe the resulting small leakage
can be tolerated considering that the cells are programmed
only once right after the training phase, while they are
accessed only in read-mode during normal inference oper-
ations. In addition, in the proposed VMM, the whole array
is read in parallel, with all the BL voltages forced to 0 V
by the OTA virtual grounds, and the WLs being either at
VDD or 0 V depending on the corresponding input pulse: in
each cell the current can only flow from the WL (D) toward
the BL (S), and never in the opposite direction. For this
reason, unintentional cell activation cannot take place during
the inference operation.

The program and erase schemes for a single cell are illus-
trated in Fig. 1(e) and (f), respectively. By relying on oxide
tunneling and different gate injection phenomena [32], it is
possible to program or erase each cell to target a specific
current when the wordline is activated with a fine granularity,
using a series of voltage pulses. It is worth to clarify that,
for both program and erase operations, no negative voltage is
needed, and the intensity and sign of the injected charge is
tuned by modulating the amplitude of the VDS . Appendix B
provides more detail of the underlying carrier injection phe-
nomena involved in cell programming.

It is worth to mention that device-to-device variations
(surely one of the major problems of analog design) can be

almost entirely mitigated with program and erase operations:
indeed, memory programming stops when the desired level of
current in a 1T-FG cell is reached, independent of the initial
threshold voltage of the transistor.

B. EXPERIMENTS ON ANALOG PROGRAM AND ERASE
We have performed the electrical characterization of single
1T-FG cells to demonstrate program and erase operations
andmulti-level analog programmability.Writing a cell results
in a shift of its threshold voltage: Fig. 2(a) shows several
I-V characteristics of the same cell at different program-
ming stages: after the cell is first erased with a 6.2 V pulse,
the leftmost transfer characteristic is measured (lowest Vth).
Then, single 80 ms program pulses are applied to the cell,
and a new I-V curve is captured each time, so that the
resulting variation of the threshold voltage can be verified.
Different programming schemes can be used to obtain the
curves: in Fig. 2(b) and (c), we investigate two possible
approaches, respectively Constant-Pulse Programming (CPP)
and Incremental-Step Pulse Programming (ISPP) [47]. Each
plot shows the variation of the read voltage Vread , defined as
the VDS when a current ID = 1 nA is forced to flow through
the cell, after a CPP or ISPP programming pulse. Using a
CPP approach, programming occurs with 80 ms pulses at a
constant value of 4.8V,whereas the cell is erasedwith a single
80 ms pulse at 6.2 V. With ISPP, every state can be reached
using pulses with progressively increasing amplitude. The
programming voltage varies from 4.5 V to 6 V in steps of
5 mV, enabling a fine granularity. A similar result could
be likely achieved by increasing the voltage amplitude and
decreasing the pulse time. By comparing the evolution of the
read voltage, it is clear that ISPP presents better linearity with
respect to CPP, allowing us to reach all the desired states
within the selected Vread range and with a better predictable
number of steps. Additionally, linearity reduces the stress
on the device gate oxide caused by the high electric field,
as explained in Appendix C, where an additional level of
detail regarding CPP and ISPP comparison is provided.

The benefits of ISPP are even better explored in Fig. 2(d),
where several ISPP programming cycles were performed on
the same cell, setting a stop condition to analyze only the
rising part. In particular, increasing step pulses were used
to bring the cell from a reset state to an upper read voltage
threshold of Vhigh = 1.4V, whereas a 6.2 V pulse was used
to quickly erase the cell and get it ready for another cycle.
The Vread measured points show high linearity and analog
capability, spanning more than 64 intermediate levels within
the explored operating range, corresponding to a weight
ENOB greater than 6 bits. A preliminary endurance test of
100 cycles, corresponding to more than 10 thousand pulses,
shows no evident variation in programmability. It is important
to point out that the value of 80 ms for a single program/erase
pulse is a limit imposed by the test setup: fast pulses can
be practically used in the integrated memory, with further
benefits in terms of both ENOB and cyclability. For the same
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FIGURE 1. Analog time-domain VMM and 1T-FG cell. (a) Architecture of the proposed M × N analog time-domain VMM: the input signals tin ∈ [0, T ] are
highlighted in green, the matrix cells, realized with single transistor floating gate devices (1T- FG cells), and the integrator blocks (operational amplifiers
with feedback capacitors) performing the charge-to-voltage conversion are depicted in black, with BL connections in orange; (b) layout of a 4× 8 1T-FG
cell array composed of several pairs of mirrored cells, sharing the BL contact; electrical scheme for (c) write and (d) read operations with detail of the
applied voltages for selected and non-selected WLs and BLs; sketch of the injection phenomena involved in (e) program and (f) erase operations.

reasons, while an increment of the value of a cell can be finely
realized with 80 ms programming pulses, a decrementing
operation is done by erasing the cell and re-programming it to
reach the target value. Shorter time pulses can enable gradual
erasing and possibly successive approximation programming
schemes.

Finally, retention test measurements (Fig. 2(e)) show no
degradation after a 12-hour time frame, considering 16
programmed levels. Results are therefore promising, but they
need to be improved for industrial level applications, espe-
cially if data must be retained for much longer time with
similar granularity achieved right after the cell programming.
Higher retention can be obtained using devices with thicker
gate oxide, such as for example 5 V MOSFETs, which have
an oxide thickness close to 10 nm.

C. DESIGN OF THE CHARGE AMPLIFIER
The charge amplifier, or Miller integrator, integrates the
current gathered at its input node coming from its column
matrix cells. Its design is crucial since it heavily impacts

the performance of the VMM, affecting throughput, energy
efficiency, area occupation and accuracy of the operation.
In Appendix D we describe the methodology used to design
the block, composed by a current-mirror OTA and a feedback
capacitor. The transistor-level schematic of the OTA is shown
in Fig. 3(a), whereas its layout is shown in Fig. 3(b), resulting
in an area of 15.91×13.26 = 211 µm2. Voltage supply is set
at VDD = 1.2V and VSS = −1.2V, whereas the voltage at
the non inverting node is Vref = 0V. With a bias current Ibias
of 1.25 µA, all transistors are in saturation, and the resulting
DC gain, static power consumption and GBW are of 56.9 dB,
3.79 µW and 9.77MHz, respectively. By varying the bias
current value, with a lower and an upper limit set by the
saturation of the transistors, it is possible to increase the GBW
of the device, at the cost of a higher power consumption,
as shown by Fig. 3(c).

Fig. 3(d) shows the circuit representation of the integra-
tor block, composed by the current-mirror OTA, the feed-
back capacitor C = 0.6 pF, and the reset transistor which
is activated right before starting a new integration cycle.
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FIGURE 2. Measurements on a single 1T-FG cell. (a) I–V characteristics of the cell: starting from a condition where the cell has been erased with a 6.2 V
pulse, the various curves are obtained performing a VD sweep after the cell has been programmed using single 80 ms pulses with CPP or ISPP techniques.
A more detailed comparison between the two techniques, displaying the read voltage (measured using a 1 nA current source) after every programming
pulse, is shown in: (b) CPP technique, where 4.8 V pulses are used to program the cell, whereas a single 6.2 V pulse is sufficient for the erase operation;
(c) ISPP technique, where programming is performed using incremental voltage pulses, from 4.5 V with incremental steps of 5 mV. (d) Cell cycling of ISPP
programming operations – note that even after 100 full program-and-erase cycles, all analog levels between the chosen interval can still be reached.
In (e), the retention characteristic of 16 different analog levels is evaluated in a 12 hour time frame.

The capacitor is realized using a MIM (Metal-Insulator-
Metal) structure, featuring high linearity at the cost of large
area with respect to MOS capacitors. However, given that it
makes only use of the top metal layers, it can be placed on
top of the other elements, without adding area overhead.

To separately evaluate the constraints on precision due to
the integrator block, we use as input to the integrator an ideal
current source (Fig. 3(d)), in place of the BL gathering the
currents from the column of 1T-FG cells. The pulsed current
source provides an on current Iin for a duration tin, following
the timing diagram of Fig. 3(e), where also the reset signal is
shown.

With the objective of evaluating the precision of the net-
work (using the ENOB definition given in Appendix A),
we can define the following simulation setup. We consider
a sinusoidal input signal, applying K + 1 (K = 128) ideal
current pulses with a constant amplitude and a duration cal-
culated as follows:

tin(k) =
T
2

(
1+ sin 2π

k
K

)
, (3)

with k = 0, . . . ,K ⇒ tin(k) = 0, . . . ,T . The ampli-
tude of the current pulses is kept at a constant level Iin =
1VMAXC/T , which represents the maximum weight value.
Therefore, the corresponding output voltage Vout is expected
to vary with a practically sinusoidal rule (from sample to
sample) between 0 and 1VMAX , the latter chosen equal to
1V. For each one of the K simulations, the output voltage
is sampled at the time (T + T/4), and thus the Vout -k curve
represents the sinusoidal output over which the ENOB is eval-
uated. Recalling Fig. 3(c), by changing the Ibias of the OTA,
it is possible to improve its GBW, at the cost of an increased
static power dissipation. Similarly, since the GBW sets the
minimum period T of the VMM, it is possible to evaluate the
minimum T that, for a given power consumption, guarantees
a certain ENOB, shown in Fig. 3(f): we can observe that the
Pdiss-T curves have a nearly hyperbolic behavior, meaning
that it is possible to move along a fixed ENOB curve while
keeping constant the Pdiss × T product, and thus the energy
required for the integration. These considerations set theo-
retical limits for the THR and EE achievable with a VMM
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FIGURE 3. Integrator block. (a) Transistor level design and (b) layout of the gain-enhanced current-mirror OTA; (c) OTA static power versus GBW, obtained
for different bias current; (d) simulation setup of the integrator block with a current input provided by an ideal current source, with (e) showing a timing
diagram of the input and reset signals, and (f) showing the simulated results of the minimum period T needed to reach a target precision (in bits), for a
given power (set by Ibias).

based on the proposed OTA. From Fig. 3(f) one can see that a
precision of 6 bits – which is an acceptable value for most
DNNs [16] – is reached with T = 0.45 µs, obtained for
Ibias = 1.25 µA, i.e. for a dissipated power of 7.3 µW.

When the actual bitline is posed at the input of the OTA
instead of the ideal current source, the non-ideal virtual
ground due to the finite DC gain of the OTA has a significant
impact on the performance of the VMM: the voltage at the
inverting node connected to the BL column of the memory
array is not exactly constant, and the resulting current pulse
through the cells during the integration period will be dis-
torted with respect to the ideal rectangular waveform.

Starting from the theoretical limit corresponding to T =
0.45 µs and OTA Ibias = 1.25 µA , the whole VMM is
simulated with the same input applied to the 1T-FG cells
of the same columns and the resulting ENOB accuracy is
extracted. For 1T-FG cells programming, we have emulated
the charge injection in the FG by means of an ideal pulse-
current source, which charges the FG at the beginning of each
transient simulation to emulate the programmed weight: in
an actual implementation, a CPP approach will be used with
two different voltage values for program (Vprg = 4.8V) and
erase (Vers = 6.2V) operation. During VMM operation, the
wordline voltage pulse will be set at VDD = 1.2V to properly
drive the corresponding cells. Cells are programmed at the
maximum Ii,j weight so that the maximum current (full scale)
is provided as input to the integrator:

Icolumn =
1VMAXC

T
(4)

where1VMAX = 1V. In this case, if tin = T , the output volt-
age of the integrator corresponds exactly to 1VMAX . When a
series of tin inputs sampled from a sine shape spanning the
full scale (0 . . . T ) is provided to the VMM, the sinusoidal
sequence of resulting outputs is affected by non-linearity,
with a THD = −26 dB (noise is a second order effect, with
SNR = 38 dB), therefore the ENOB is limited to 4 bits.
This degradation is due to the current pulse which causes a
deviation of the virtual ground voltage from 0 V, because of
the finite GBW of the OTA. The 1T-FG cell source voltage
variation leads to a distortion of the Ii,j waveform. This effect
can be mitigated by lowering the current. Looking at (4),
a lower Icolumn can be obtained by either lowering the output
voltage range 1VMAX or increasing the integration period T .
Note that, since Icolumn is the current corresponding to the
maximum weight, all other current values corresponding to
different weights will be lower than Icolumn, and therefore will
not introduce any further undesired effects.

III. VMM PERFORMANCE ANALYSIS
In order to optimize the real VMM operated with the 1T-FG
cells, we have extracted the ENOB as a function of three
parameters: the maximum output voltage 1VMAX , the maxi-
mum period T and the 1T-FG column array sizeM . As a first
analysis, we have considered a single cell VMM (M = 1)
in Fig. 4(a): for a long period (e.g. T = 2 µs), an ENOB of
6 bits can be reached in a wide range of 1VMAX , between
0.48 V and 1.1 V. In Fig. 4(b), the same analysis is repeated
for a fixed T of 2 µs and for an increasing M up to 1000.
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FIGURE 4. TD-VMM performance. (a) Single cell VMM (M = 1) ENOB as a function of the period T for decreasing maximum output voltage 1VMAX ;
(b) ENOB as a function of 1VMAX for a fixed T = 2 µs and for different sized VMMs (M from 1 to 1000); (c) ENOB as a function of T for a fixed
1VMAX = 0.75 V and for different M, from 1 to 1000; (d) Output voltage sampled for an input pulse width modulated with a sinusoidal rule for various
VMM settings (ideal current source, non optimized single memory cell, M = 500 optimized cells); (e) VMM Energy Efficiency and Throughput, as a
function of M, for a target precision of 6 bits, considering two different biasing condition (i.e. different dissipated power values) of the OTA.

Finally, by selecting a 1VMAX of 0.75 V as an intermediate
point where a close-to-maximumENOB is achieved, we have
increased the period with a fine granularity in Fig. 4(c):
although for M = 1 a 6-bit ENOB is practically achieved
with a period close to 1.5 µs, for increasing M the period
must be relaxed up to 2.15 µs for a size of 500, while the
case with M = 1000 saturates to ENOB = 5.7 in the
investigated range. A detailed discussion about the limit-
ing factors (i.e. THD and SNR) of the ENOB precision in
Appendix E.

The effect of the VMM optimization, namely varying T
and 1VMAX to reach the target ENOB, is illustrated in
Fig. 4(d), which shows the sequence of output voltages sam-
pled at the end of the integration, for a sequence of input
pulse widths sampled from a sine shape spanning the whole
pulse-width range 0 . . . T . An almost perfect sinusoidal shape
is obtained when the OTA integrator is biased with an ideal
current pulse generator, with T = 0.45 µs and 1VMAX =
1V, while the waveform appears quite distorted when a 1T-
FG cell is considered (note the ‘‘clipped’’ output values close
to the peak). However, after fine optimization (1VMAX =
750mV, T = 2.15 µs), even the reported case with M =
500 reaches the required precision, as also qualitatively con-
firmed by the good sinusoidal shape of the output samples
depicted in green.

The resulting EE and THR (defined in Appendix V-A) for
a target accuracy of 6 bits are shown in Fig. 4(e), for different

VMM sizes. The EE is evaluated for two different biasing
conditions of the OTA, which in turn determine two different
values of Pdiss. A lower Ibias = 0.6 µA leads to a lower
dissipated power but, recalling Fig. 3(f), a higher T needs to
be used to ensure adequate precision. This leads to lower EE
for the lower Ibias, but at M = 1000 an inversion occurs:
the Ediss evaluated at Ibias = 0.6 µA is lower than the one
evaluated at Ibias = 1.25 µA, meaning that, even if a higher
T is needed, the lower Pdiss makes it more convenient to bias
the OTAwith a smaller current. On the other hand, the THR is
always higher at Ibias = 1.25 µA, as Fig. 4(e) clearly shows.
Note that the THR is evaluated considering a squared matrix
for the VMM, i.e. N = M .

IV. VMM AND NEURAL NETWORK BENCHMARKING
Table 1 shows a comparison of the TD-VMM with the other
proposed analog VMMs in terms of accuracy, area occupa-
tion, EE and THR. The comparison regarding the accuracy
is based on the ENOB, which provides information on the
scalar product multiplication accuracy and would also enable
a comparison with dedicated digital solutions. This is very
useful since we treat the VMM as a standalone building
block, that can be included in many different types of neural
network. The classification accuracy of a complete neural
network depends of course on both the accuracy of the
employed VMMs and on the overall architecture. All perfor-
mance parameters of the TD-VMM are assessed considering
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TABLE 1. Comparison between state-of-the-art CMOS analog VMMs.

a 500×500 VMM: the VMM area normalized to a single cell
(including the pure memory area and a fraction of the charge
amplifier area, shared within the cells of the same column) is
extracted as the ratio of the total area of a 500× 500 memory
array and 500 integrators to the total 250 000 cells. The result
of 2.15 µm2 is significantly lower than any other single poly
solutions, and even tops the 55 nm commercial NOR flash
memory proposed in [12], while it is worse than the 180 nm
NOR flash [10] or the 14 nm ReRAM solution [9], that,
however, exploits a more advanced and non-standard tech-
nology node with simulation-based FOMs. In terms of energy
efficiency, the resulting EE is 122.3 TOps/J, almost one order
of magnitude higher than most of the other solutions, and still
comparable with the best ones which rely on non-standard
processes. The corresponding THR results in 333.17GOps/s.
Although our VMM has been designed for a target precision
of 6 bits, as most of the other solutions, higher ENOB values
can be reached with a further optimization, at the cost of a
worse tradeoff between the VMM area overhead and energy
efficiency.

We designed the TD-VMM as a general purpose building
block to be used in different neuromorphic applications: in
order to fully exploit the advantages of the analog domain,
and avoid additional conversions to the digital world, it could
be possible to implement it in a fully analog neural network
(i.e. cascaded layers of analog neurons realized by VMMs
followed by analog activation functions [49]). However,

analog to digital converters (ADCs) are sometimes manda-
tory, especially in convolutional networks that rely on VMMs
to improve efficiency and computation time, but still need
to be designed to work in a digital environment. In such
scenarios, the presence of ADCs will add energy and area
overhead to the network, since one ADC per column would
be needed to convert each VMM output into a digital signal.
We refer to state-of-the-art ADCs [48], [50] to evaluate their
impact on area and energy efficiency: for example, the 9-bits,
high-speed, low-power ADC presented in [48] contributes
with an additional energy of 1.6 pJ to the Ediss term in (9),
resulting in a slightly decreased EE of 102.27 TOps/J for the
500×500 VMM. On the other side, the 0.04mm2 ADC area,
to be added to our value of 2.15 µm2 by dividing it by the
number of VMM rows, would degrade the normalized area
value to 82.15 µm2.
To assess the performance of the proposed analog VMM in

a full neural network, we consider a 2 layer network (Fig. 5)
for image recognition of the MNIST database. Fig. 5(a)
shows a top level view of the network: it takes as input
a 28 × 28 image of a handwritten digit and processes it
through a Fully-Connected (FC) layer, followed by a ReLU
(Rectified Linear Unit) activation function. Then, another
FC layer operates on the resulting data, and a Softmax
activation function performs the 10-digit final classifica-
tion. A fully analog implementation is shown in Fig. 5(b):
Voltage-Controlled Oscillators (VCOs) perform voltage to
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FIGURE 5. Assessment of a full neural network including the proposed VMM. (a) high-level design of the neural network resolving the MNIST dataset: the
network is composed by two differential Fully-Connected (FC) layers, followed by non-linear activation functions (ReLU and Softmax respectively); a more
detailed view of the operation of the network is shown in (b), where two TD-VMMs for each FC layers are used to implement positive and negative
weights. In (c), the classification error rate of the analog network is shown as a function of SINAD and ENOB.

pulse-width conversions, so that the data is encoded in time
pulses. Two pairs of TD-VMMs are used for each FC layer,
implementing both positive and negative weights: the corre-
sponding outputs of the two VMMs are then subtracted to
obtain the final result. An analog ReLU can be easily real-
ized (e.g. comparator controlling a pass gate), while analog
Softmax designs can be found in literature [49], as men-
tioned. The assessment of the network was performed via
software: training was done on a set of 8000 images, using
a back propagation algorithm with floating point precision.
Optimum weights were then extracted after a training of 50
epochs: tests on a set of 2000 images showed a classification
accuracy of 98.9%. In order to evaluate the performance of
an analog neural network when operating with a reduced
precision and in the presence of noise and non-linearity,
we emulated via software the operation performed by the
TD-VMMs using fixed point operation and adding a white
noise disturb corresponding to the SINAD at the output of
each multiplication stage [16]:

yj = Wi,j · xj + α
FS
2
10
−SINAD

20 , (5)

with α being a random gaussian variable (mean 0, standard
deviation 1). Fig. 5(c) shows the error rate of the classification
using the analog network when varying the SINAD (and
therefore the ENOB): it is clear how a reduced precision can
give satisfactory classification results, with a < 3% error

when using an ENOB = 5, and an error of 1.23% with
ENOB = 6. This analysis validates our reduced precision
assumptions and optimization of the TD-VMM for 6-bit
operation.

V. CONCLUSION
In this paper, we have demonstrated a time-domain analog
VMM realized using a commercial 0.18 µm CMOS pro-
cess. The proposed VMM is suitable for neural networks
performing offline training. The programmable weights are
stored in single-poly, single-transistor, two-terminal FG cells,
representing the smallest single-poly NVM cell available in
the literature, with a size of 1.54× 1.12 = 1.72 µm2. Exper-
iments demonstrate simple program and erase operations,
requiring positive and relatively low voltage levels. Multi-
time and multi-level analog programmability have been suc-
cessfully verified, with a Ihigh/Ilow ratio of more than three
orders of magnitude, no visible read disturb in its range of
operation, and over 64 threshold voltage levels. Retention can
be further improved considering thicker gate oxide options.
A dedicated compact gain-enhanced OTA has been designed
with a tunable GBW that can be traded off with dissipated
power, enabling a performance optimization flow involving
required arithmetic precision, array size, power consumption
and throughput. We show that an optimized 500×500 VMM
with ENOB = 6 reaches an EE of 122.3 TOps/J and a
THR of 333.17GOps/s, occupying a layout area of only
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0.0537mm2. Reported FOMs are better than those of most
other solutions, and comparable with respect to architectures
based on non-standard technology nodes. The implementa-
tion of an image recognition neural network for the MNIST
database based on the proposed analog VMM shows that an
ENOB of 6 can provide a classification accuracy of 98.77%.
These results are noteworthy, also considering that they are
achieved by exploiting a reliable industry-standard low-cost
single-poly CMOS process flow in an unconventional way,
with FG devices not being part of the process design kit
delivered by the foundry.

APPENDIX
A. VMM FIGURE-OF-MERIT DEFINITION
Definitions of ENOB, EE and THR are given below, based
on the architecture and operation of the proposed TD-VMM.

1) EFFECTIVE NUMBER OF BITS (ENOB)
We follow the classical method inherited by the analog-to-
digital converters of applying a sine input and calculating the
Signal to Noise and Distortion Ratio (SINAD) at the output,
which in turn is a combination of non-linearity (THD) and
noise (SNR), according to:

10
SINAD

10 = 10
SNR
10 + 10

−THD
10 . (6)

Then, the conversion between SINAD and ENOB is given by:

ENOB =
SINAD− 1.76

6.02
. (7)

2) TROUGHPUT (THR)
We consider the N × (2M − 1) elementary operations, which
are performed in parallel by a M × N VMM and can be
repeated after a time equal to T + Tres (where Tres is the time
needed to reset the charge amplifier), therefore we get:

THR =
N (2M − 1)
T + Tres

. (8)

3) ENERGY EFFICIENCY (EE)
We consider the (2M − 1) elementary operations performed
by a single column (and a single integrator block): the energy
per operation is computed by integrating the dissipated power
Pdiss(t) over the operation period T (Ediss), by considering
the contribution of the integrator and of the current flowing
through the cells programmed with realistic weights. All the
N columns operate in parallel during the period T , and each
of them dissipates (on average) an energy equal to Ediss.
Therefore, the EE can be evaluated as follows:

EE =
N (2M − 1)
N · Ediss

. (9)

B. CELL PROGRAM AND ERASE
The carrier injection phenomena enabling cell pro-
gram and erase operations, as illustrated respectively in
Fig. 1(e) and (f), are discussed below.

1) PROGRAM
The program operation exploits channel hot electron injection
(CHEI): with large VDS , electrons coming from the source
are accelerated by the longitudinal electric field, and undergo
scattering in the vicinity of the drain, after which they can
emerge with adequate direction and kinetic energy to have
a finite probability to tunnel to the FG through the gate
oxide (even if the electric field between drain and gate is
unfavorable) and to be trapped in the FG. The net result is
an increase of the equivalent threshold voltage Vth of the cell
transistor.

2) ERASE
For higher VDS , electrons in the channel are sufficiently
accelerated to trigger impact ionization in the vicinity of the
drain, with generation of electron-hole pairs. In this case, the
dominant mechanism of charge injection in the FG becomes
impact-ionized hot hole injections (IHHI), since holes are
favored, with respect to electrons, by the accelerating electric
field induced between drain and gate by the drain bias. The
injection of positive charge in the FG causes a decrease of the
cell transistor threshold voltage.

C. CPP AND ISPP PROGRAM SCHEME
A more detailed comparison between CPP and ISPP pro-
gramming scheme is reported below.

With CPP, starting from a completely erased cell, the
channel current is maximum and the transverse electric field
(directed from the drain side channel to the FG, counter-
acting the injection of electrons) is minimum for the first
pulse. For subsequent pulses, the available channel current
decreases, as negative charge accumulates on the FG, lead-
ing to increased Vth, whereas the transverse electric field
increases. Therefore, the increase of Vread is maximum for
the first pulse and decreases at each successive one. On the
other hand, the gradual increase of the programming voltage
VD performed by ISPP is transferred by capacitive coupling
to the gate and partially compensates the decrease of the gate
voltageVG due to the accumulation of electrons in the floating
gate, keeping the net charge injected into the FG per pulse
almost constant in a wide range of the pulse train. This results
in better linearity of program and erase operations with the
number of pulses and finer granularity. The maximum value
is achieved with a Vprg of 5.2 V, after ∼ 140 pulses, against
the ∼ 75 of CPP for the same 80 ms pulse width. However,
with ISPP the transverse electric field see a twofold increase
at each subsequent pulse (decreasing FG potential, increasing
VD pulse amplitude), that explains why after 140 pulses the
program dynamic is reversed and Vread decreases for subse-
quent pulses.

D. GAIN-ENHANCED OTA DESIGN METHODOLOGY
A differential amplifier for charge amplifier applications
must satisfy the following conditions:
• high DC gain to keep the voltage at the inverting input
node as constant as possible – in order to offer a constant
bias voltage for the memory cells connected to the node;
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• high Gain Bandwidth Product (GBW), that will deter-
mine the minimum input time (and therefore the inte-
gration period T) that guarantees the desired precision;

• minimize the area overhead to the VMM.
The transistor-level design of the OTA is shown in

Fig. 3(a): with respect to a conventional two stage amplifier,
the choice of a current mirror OTA topology helps improv-
ing the trade-off between power consumption and GBW,
since the only high impedance node is the output node and
therefore there is no internal low frequency pole and no need
for compensation [51]. On the other side, the OTA typically
suffers from a low DC gain A0, given by:

A0 = gm1Srd5, (10)

where gm1 is the transconductance of the input pair, S is the
current ratio of mirrors M2 − M4 and M3 − M5 and rd5 is
the resistance seen from the output node Vout . In order to
increase the DC gain, transistors M12 and M13 are added to
shunt portions of the input stage current [52]. This results in
lower current delivered to the output transistors, translating
in higher output resistance values, while the gain of the input
pair remains not affected by this change: the net result is an
increase of A0 of about 15/20 dB [52].
In addition, although by varying the bias current value

it is possible to increase the GBW of the device, the DC
gain A0 remains constant, since a different Ibias has the same
but opposite effect on gm1 transconductance and rd5 output
resistance.

E. VMM PRECISION OPTIMIZATION METHODOLOGY
In this section we discuss the dependence of the VMM pre-
cision (ENOB) on noise (SNR) and distortion (THD), as a
result of several factors, among which we recall: unideal
virtual ground of the OTA affecting the BL voltage (source
of the 1T-FG cells) during the current integration, non-linear
characteristics of the OTA, impact of the noise on both the
1T-FG cells and on the integrator operation.

The main trends can be understood by considering sim-
ulation results performed on a single cell VMM (M = 1),
in Fig. 4(a), but can also be applied to higher values of M
as investigated Fig. 4(b). For a given T , there is an optimum
1VMAX allowing to maximize the ENOB, as a result of two
different limiting causes at the boundaries: higher 1VMAX
requires higher Icolumn, leading to an increased variation of the
virtual ground voltage due to limited GBWof the OTA, which
results in a reduced THD because the 1T-FG cell IDS,ON is not
constant; on the other hand, for low values of 1VMAX , noise
becomes comparable with the reduced Icolumn signal and the
reduced SNR becomes the limiting factor for the ENOB.
A similar discussion can explain the behavior for a fixed
1VMAX , when the maximum period T is varied (Fig. 4(c)): a
small pulse width requires a high current to charge the 0.6 pF
capacitor to the same1VMAX , modulating the virtual ground
voltage and then the effective current IDS,ON provided by the
1T-FG cell in on state. On the other hand, while an extremely
long pulse width requires small currents which can possibly

become comparable to 1T-FG cell noise, noise averaging over
time represents an effective filtering action preventing ENOB
degradation, if 1VMAX is reasonably large. In addition, one
should not that an extreme value for1VMAX , that is close to 0
V or close to the supply voltage VDD, can produce an increase
of the THD due to the OTA transfer-characteristics offset and
saturation, respectively.

The impact of the number of cells in the BL (i.e. M )
shown in Fig. 4(b) and (c), can be understood if one consider
that, for a fixed pulse width T and output swing 1VMAX ,
the total current charging the capacitor is equal to Icolumn
(from (4)), meaning that each cell provides a fraction of the
total current equal to Icell = Icolumn/M . As the VMM size
increases, the capacitive load seen at the input of the OTA is
also higher, and the amplifier GBW is not large enough to
retrieve immediately the BL node voltage to ground after a
deviation caused by the rising edge of the input pulse: this
leads to a degradation of the THD, that in turn limits the
accuracy of the network.
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