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ABSTRACT This study proposes the design of quantised state-feedback controller using a Delta-Modulator
(1-M) for linear networked systems. This modulator can be considered as one type of sliding mode
quantiser (SMQ) and offers several advantages such as lower design complexity, lower cost, and less noisy.
The stability conditions of both the continuous-time and the discrete-time 1-M based quantised control
systems are derived. The bounds of the switching function, which ensure that the steady state behaviour of the
system is periodic, are derived. The effectiveness of the1-M based quantised control system is investigated
using a ZigBee protocol based experimental communication network with inherent imperfections associated
with a real-time network. It is shown that the designed quantised state-feedback controller could achieve the
desired performance.

INDEX TERMS Delta modulator, state-feedback control, switched control.

I. INTRODUCTION
During the past few years, sliding mode techniques have
been popular in control applications such as controller
design [1], [2], observer design [3] and slidingmode quantiser
(SMQs) [4], [5] due to their robustness and simplicity in con-
verting input signals to switching signals which are described
by a sequence of binary values. Different types of SMQs can
be used to generate these binary values such as delta mod-
ulator (1-M), sigma-delta modulator (61-M), delta-sigma
modulator (16-M) [6]–[8], pulse-width-modulator (PWM)
based sliding mode [9], where these are used in many control
applications [10]–[18].

However, the switching components in SMQs add more
complexities to the system. If these quantisers are to be
used effectively in control applications, they should satisfy
both the stability and equivalence conditions [9]. In [5],
[9] detailed investigations on the stability of SMQs in
continuous-time (CT) systems have been carried out where
it has been found out that the SMQs can be used in high-
speed switching. However, the gain of the switching function
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affects the stability of the closed loop system. Under the
assumption of ideal sliding mode and high switching fre-
quency, the SMQs are equivalent to the inputs. This ensures
the equivalence conditions [17], [19].

Most of the modern controllers are often implemented in
the discrete-time domain where discretisation would intro-
duce delays into switching components. In real-time, the
effects of discretisation and the factors which affect the
implementation under high switching frequency (for SMQs)
have been reported in [20]–[22]. However, the results pre-
sented in [20]–[22] do not explicitly address the issues
related to equivalence conditions. Therefore this has been
the primary motivation of this study where the performance
of SMQs designed using equivalence conditions is inves-
tigated. Amongst various quantisers, this study focuses on
using Delta-modulators (1-M) as a quantiser. This modu-
lator is extensively being used in power converters [6], [17]
and in applications where bandwidth utilisation of the
communication channel is necessary. Some further advan-
tages of, the 1-M include its simplicity in implemen-
tation, requirements of fewer hardware resources, lower
complexity, cost-effective operations, lower noise, and many
others [23]–[26].
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FIGURE 1. Continuous-time delta-modulator (1-M).

In this study, a 1-M based quantised state-feedback con-
troller is designed for multi-input-multi-output (MIMO) sys-
tems; both in CT and discrete-time (DT) domains. The main
contributions of this paper are highlighted as follows:
1) Established the stability conditions for both CT and DT
1-M based quantised state-feedback systems.

2) Derived sufficient conditions for the existence of peri-
odic orbits (or zig-zag behaviour) of the switching func-
tion and states.

3) Determined the bound of the switching function which
results in periodic orbits.

4) Validated the theoretical findings using a real ZigBee
protocol based communication system.

The rest of the paper is organised as follows. Section-II
and section-III discuss, CT-1-M and DT-1-M respectively
and the stability conditions are derived. The effectiveness
of the proposed control strategy and the theoretical findings
are validated using two simulation examples in section-IV
followed by conclusions on section-V.

For the rest of the paper, ‖x‖ and %(A)
4
= max

1≤i≤n
|λi|

respectively denote the standard Euclidean norm of the vector
x ∈ Rn and the spectral radius of the matrix A ∈ Rn×n.

II. CONTINUOUS-TIME SWITCHED CONTROL SYSTEM
A. REVIEW OF CONTINUOUS-TIME DELTA MODULATOR
The block diagram of aMIMOCT1-M is shown in Figure. 1.

It consists of two integrators, one on the feedback path
and the other in the decoder side. Input of the quantiser is
the difference between the output of the integrator on the
feedback path and the input signal. This is a static quantiser
and the output δ(t) is a single-bit signal which is transmitted
through a communication channel before received by the
decoder. Under ideal conditions, the output of the decoder
x̂(t) is equivalent to the input signal x̄(t) [7], [10], [19].

The MIMO CT 1-M is described as:

s(t) = x (t)− x̂ (t) (1a)
˙̂x(t) = 2 sgn(s(t)) (1b)

where x ∈ Rn, x̂ ∈ Rn, s ∈ Rn and 2 ∈ Rn×n

respectively denote the input signal, the quantised signal, the
switching signal and the gain of the 2-level quantiser. Further,

sgn(s(t)) ∈
[
{−1, 1} , · · · , {−1, 1}

]T
∈ Rn, where,

sgn(si(t)) =

{
+1, if si(t) ≥ 0;
−1, if si(t) < 0;

i = (1, 2, · · · , n) (2)

The communication channel between the encoder and the
decoder carries a single-bit n-dimensional signal which is
expressed as:

δ(t) =
1
2

[
1n + sgn(s(t))

]
(3)

where δ(t) ∈
[
{0, 1} , · · · , {0, 1}

]T
∈ Rn.

The quantiser gain2 is often selected as a positive definite
diagonal matrix for design simplicity. This is expressed as:

2 = diag{θii} ∀i = (1, 2, · · · , n). (4)

For proper operation of the MIMO CT 1-M, the quan-
tisation gain 2 must be same in both the encoder and the
decoder [10], [19]. In [27], it has been shown that the exis-
tence of the sliding mode ( i.e. s(t)T ṡ(t) ≤ 0 ) is ensured
provided ‖ẋ(t)‖∞ ≤ θ̂; θ̂ = min (θii).

B. CONTINUOUS-TIME QUANTISED STATE-FEEDBACK
CONTROL SYSTEM
The present study focuses on stabilisation problem of linear
time invariant (LTI) systems via state feedback which is
described by:

˙̄x(t) = A x̄(t)+ B u(t) (5a)

u(t) = −K x̄(t) (5b)

where x̄ ∈ Rn and u ∈ Rm respectively denote the system
states and the control signal. The pair (A,B) is assumed to be
controllable and the closed loop system is expressed as:

˙̄x(t) = Acl x̄(t) (6)

where Acl = A− BK .
The feedback control gainK is designed such that the poles

of the closed-loop system Acl are at desired locations. The
solution of (6) gives:

x̄(t) = eAcl t x̄(0) (7)
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where x̄(0) is the initial conditions of x̄(t). It is assumed that∥∥∥eAcl t∥∥∥ ≤ c e−λt (8)

The solution of (7) is therefore bounded and satisfies the
condition:

‖x̄(t)‖ ≤ c e−λt ‖x̄(0)‖ (9)

Using (1) and (5), the quantised state-feedback control
system can be described as:

ẋ(t) = A x(t)+ B û(t) (10a)
˙̂x(t) = 2 sgn(s(t)) (10b)

û(t) = −K x̂(t) (10c)

s(t) = x(t)− x̂(t) (10d)

where s(t) denotes the quantisation error. For the sake of
convenience let us re-write (10) as:

ẋ(t) = Acl x(t)+ BK s(t) (11a)

ṡ(t) = Acl x(t)+ BK s(t)−2 sgn(s(t)). (11b)

The objective is to limt→∞ s(t) = 0n in the equivalent sliding
mode.
Proposition 1: Assume x(0) is known and (8) holds.

If there exists a quantiser gain 2 = diag{θii} such that

c %(Acl) e−λt ‖x(0)‖ < θ̂, (12)

then the quantised state feedback control systems (11), is sta-
ble and converges to the system (5).

Proof: From (11),

s(t)T ṡ(t) = sT (t) (Acl x(t)+ BK s(t)−2 sgn(s(t)))

≤ sT (t)Acl x(t)+ sT (t)BK s(t)− θ̂ ‖s(t)‖1
≤ %(Acl) ‖s(t)‖ ‖x(t)‖ + ‖BK‖ ‖s(t))‖2

−θ̂ ‖s(t)‖1
≤ ‖s(t)‖ {%(Acl) ‖x(t)‖ + ‖BK‖ ‖s(t))‖ − θ̂}

(13)

Note that since, %(A)
4
= max {|λ| : λ ∈ spec(A)} and

‖s(t)‖2 ≤ ‖s(t)‖1, the solution for (11) is given by:

x(t) = eAcl t x̄(0)+

t∫
0

BK eAcl (t−τ) s(τ )dτ (14)

where
t∫

0

s(τ )dτ =

 t∫
0

s0(τ )dτ

t∫
0

s1(τ )dτ · · ·

t∫
0

sn(τ )dτ

T .
Considering (8), the bound of the solution can be found and

is given by:

‖x(t)‖ ≤ c e−λt ‖x(0)‖ + c

t∫
0

‖BK‖ e−λ(t−τ) s(τ )dτ

≤ c e−λt ‖x(0)‖ +
c ‖BK‖
λ

sup
0<τ<t

‖s(t)‖ (15)

Since sup
0<τ<t

‖s(t)‖ ≤ ‖s(t)‖, manipulating (13) and (15)

gives,

c %(Acl) e−λt ‖x(0)‖ +
(
1+

c
λ

)
‖BK‖ ‖s(t)‖ ≤ θ̂ ) (16)

Thus, s(t)T ṡ(t) ≤ 0 and the sliding mode is ensured.
Consider the case of ideal sliding mode and assume that

x̂(0) = x(0) (i.e. s(0) = 0). Then the switching function (11b)
will initiate an equivalent sliding mode and remain there
indefinitely (i.e. s(t) = 0) [7]. Therefore, if the condition
(12) is true, then using (11b) and (13), it can be proved that
s(t)T ṡ(t) ≤ 0.
Remark 1: If ‖s(0)‖ ≥ 0, then the switching

function (11b) requires finite-time (also called reaching-
time), to change its mode from the reaching-mode to
equivalent-mode. However, this finite-time may destabilise
the entire closed loop system. Hence, in this paper, initial
values of the system is assumed to be known and x̂(0) is
selected such that ‖s(0)‖ = 0.
Remark 2: Higher values of feedback control gain K will

make the degree of stability of the system higher. However,
it forces θii for all i = (1, 2, . . . , n) to be chosen high, which
results in the chattering phenomenon.
Remark 3: In Proposition 1, an ideal sliding mode is

assumed where infinite sampling switch is considered. As a
result of the imperfection of switch elements, the switching
manifold can be described as a boundary layer. The width of
the boundary layer is defined as:

‖s(t)‖ < ε(h) (17)

where h denotes the sampling time. It is worth to note that,
limh→0 ε(h) = 0. By choosing the optimal quantiser gain
2 and reducing sampling frequency of the switching; the
boundary layer (17) can be minimised, undesired oscillations
(chattering phenomena) can be attenuated and the system can
be stabilised.

III. DISCRETE-TIME SWITCHED CONTROL SYSTEMS
A. EULER DISCRETISED SYSTEM DESCRIPTION
The discrete-time equivalent of the CT system (5), using
Euler discretisation is expressed as:

x̄(k + 1) = Φ x̄(k)+ Γ u(k) (18a)

u(k) = −K x̄(k) (18b)

where Φ = In + hA =
{
φij
}
and Γ = hB. Note that x̄(k),

u(k) denote respectively x̄(kh) and u(kh) ∀ k ∈ [kh, (k + 1)h],
where h is the sampling period.

Simplifying (18) gives,

x̄(k + 1) = Φcl x̄(k) (19)

where

Φcl = In + h Acl (20)

The sampling time h ∈ R+ is selected in the range [28]:

0 < h < hmax =
2

% (Acl)
(21)
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FIGURE 2. Discrete-time delta-modulator (1-M).

This will ensure that the eigenvalues of Φcl are at desired
locations. Substituting (20) in (19) gives:

1x̄(k) = hAcl x̄(k) (22)

where 1x̄(k) = x̄(k + 1)− x̄(k).
Re-write (22) as:

1x̄(k) = hAcl (Φcl)
k x̄(0) (23)

where x̄(k) = (Φcl)
k x̄(0).

If the feedback gain matrix K is selected such that,
‖Φcl‖ < 1, the it can be shown that

‖1x̄(k)‖ < . . . < ‖1x̄(1)‖ < ‖1x̄(0)‖ . (24)

This proves,

‖1x̄(k)‖ < h % (Acl) ‖x̄(0)‖ (25)

B. DISCRETE-TIME DELTA MODULATOR
The block diagram of aMIMOdiscrete-time1-M is shown in
Figure. 2. From Figure. 2, the dynamics of the discrete-time
1-M can be expressed as:

x̂(k + 1) = x̂(k)+2 sgn(s(k)) (26a)

s(k) = x(k)− x̂(k) (26b)

where2 is a positive diagonal matrix i.e.,2 = diag{θii}∀i =
(1, 2, · · · , n).

Further sgn(s(k)) ∈
[
{−1, 1} , · · · , {−1, 1}

]T
∈ Rn,

where,

sgn(si(k)) =

{
+1, if si(k) ≥ 0;
−1, if si(k) < 0;

i = (1, 2, · · · , n)

(27)

The communication channel between the encoder and the
decoder carries a single-bit n-dimensional signal which is
expressed as:

δ(k) =
1
2

[
1n + sgn(s(k))

]
. (28)

This implies that δ(k) ∈
[
{0, 1} , · · · , {0, 1}

]T
∈ Rn.

For the proper operation of the MIMO DT 1-M, the
quantisation gain 2 must be same in both the encoder and
the decoder [10], [19]. In [27], it has been shown that the
existence of the sliding mode ( i.e. |s(k + 1)| ≤ |s(k)| ) is
ensured provided ‖4x(k)‖∞ ≤ θ̂) ∀4x(k) = x(k+1)−x(k).

C. DISCRETE-TIME QUANTISED STATE-FEEDBACK
CONTROL SYSTEM
Using (18) and (26), the quantised state-feedback control
system is described as:

x(k + 1) = Φ x(k)+ Γ û(k) (29a)

x̂(k + 1) = x̂(k)+2 sgn(s(k)) (29b)

û(k) = −K x̂(k) (29c)

s(k) = x(k)− x̂(k) (29d)

Substituting (29c) and (29d) into (29a) gives:

x(k + 1) = Φclx(k)+ ΓK s(k) (30)

Re-write (30) as:

11x(k) = hAcl x(k)+ ΓK s(k) (31)

Using (20), (29) and (31), the dynamics of the switching
function s(k) can be described as:

s(k + 1) = x(k + 1)− x̂(k + 1)

= Φclx(k)+ ΓK s(k)− x̂(k)−2 sgn(s(k))

= [Φcl − In] x(k)+ [ΓK + In] s(k)

−2 sgn(s(k))

= 1x(k)+ s(k)−2 sgn(s(k)) (32)

Definition 1: If there exists δ > 0 and M > 0 such that
|f (h)| < M |g(h)| for h < δ, then the order of f (h) is equal
g(h) provided h→ 0. This is denoted by f (h) = O (g(h)).
Lemma 1: Let si(k) be defined as in (32). If |s(k + 1)| <
|s(k)| and

sup
n≥0
|1xi(k)| < θii(h) <∞ (33)

then,

|si(∞)| ≤ 2θii(h) < ε (34)

for i = 1, · · · , n where ε is a positive constant.
Proof: Consider two cases: when si(k) > 0 and si(k) ≤

0 From (32), when si(k) > 0,

si(k + 1) = 1xi(k)+ si(k)− θii
< si(k) < 2θii (35)
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Correspondingly, when si(k) ≤ 0,

si(k + 1) = 1xi(k)+ si(k)+ θii
> si(k) > 2θii (36)

From the above two cases |si(k)| is bounded such that
|si(k)| < 2θii. Further, as k → ∞, si(k) will be bounded
as:

|si(∞)| ≤ 2θii < ε (37)

Using Definition 1, (31) can be expressed as:

1xi(k) = αi x(k)+ βi s(n) (38)

where αi and βi respectively denote the ith row of hAcl and
ΓK . If both αi and βi can be expressed as αi = O(h) and
βi = O(h), (33) can be satisfied with arbitrary small h. This
also means that θii is a function of h (i.e. θii(h)) and θii→ 0 as
h→ 0.
Remark 4: For an arbitrarily small value of h, 1x(k)

tends to its counterpart of the nominal system 1x̄(k)
in (22). Considering (25), this also implies that ‖1x(k)‖ ≤
h % (Acl) ‖x̄(0)‖ ≤ θii(h).
Proposition 2: If the condition in Lemma 1 is true,

then (30) is bounded as,
√
nθii ‖ΓK‖
1− ‖Φcl‖

. (39)

Proof: From (30):

‖x(k + 1)‖ = ‖Φcl x(k)+ ΓK s(k)‖

≤ ‖Φcl‖ ‖x(k)‖ + ‖ΓK‖ ‖s(k)‖ (40)

If In −Φcl is non-singular, iterating (40) κ times gives,

‖x(κ)‖ ≤ ‖Φcl‖
κ
‖x(0)‖ + ‖ΓK‖

κ−1∑
i=0

‖Φcl‖
i
‖s(κ − i− 1)‖

≤ ‖Φcl‖
κ
‖x(0)‖ +

√
nθii ‖ΓK‖

κ−1∑
i=0

‖Φcl‖
i

≤ ‖Φcl‖
κ
‖x(0)‖ +

√
nθii ‖ΓK‖ (1− ‖Φcl‖

κ)

1− ‖Φcl‖
(41)

When κ → ∞, it can be shown that ‖x(∞)‖ ≤
√
nθii‖ΓK‖
1−‖Φcl‖

which completes the proof.

D. BOUNDARY LAYER OF SLIDING MODE AND
PERIODICITY
In the following, we will estimate the boundary width
of sliding mode which is associated to the quantization
error.
Lemma 2 [29]: Let x(k), fs respectively denote the discre-

tised samples of x(t) and the over-sampling frequency of1-M
which satisfies

fs
2BX

> 2α. (42)

where X , BX respectively denote the upper bound of x and
the bandwidth of the closed-loop system and α is a positive
number. Then,

‖1x(k)‖ ≤
π

2α
X (43)

The bound of s(k) in the equivalent-based sliding mode,
is presented in the following [19], [30].
Lemma 3: If the diagonal elements of 2 is selected such

that

θ̂ = min(θii) ≥
π

2α
X ≥ ‖1x(k)‖ (44)

and the initial conditions satisfy s(0) = 0, then the
system (26) exhibits quasi-sliding motion and the switch-
ing function s(k) remain inside the boundary layer �(
‖s(k)‖ ≤ � = (‖1x(k)‖+

√
nθii)

2

2(θii−n‖1x(k)‖)

)
indefinitely.

Proof: Consider the dynamics of s(k) in (32). Let us
choose a positive-definite, DT candidate Lyapunov function,

V(k) = sT (k)s(k) (45)

Using (43), the first difference 1V(k) of the Lyapunov
function V(k) can be written as:

1V(k) = sT (k + 1)s(k + 1)− sT (k)s(k)

=
[
1x(k)+ s(k)−2 sgn(s(k))

]T
×
[
1x(k)+ s(k)−2 sgn(s(k))

]
− sT (k)s(k)

= 1xT (k)1x(k)+1xT (k)s(k)

−1xT (k)2 sgn(s(k))+ sT (k)1x(k)

+sT (k)s(k)− sT (k)2 sgn(s(k))

−2 sgn(sT (k))x(k)−2 sgn(sT (k))s(k)

+2 sgn(sT (k)2 sgn(s(k))− sT (k)s(k)

= ‖1x(k)‖2 + 2
n∑
i=1

1xi(k)si(k)

−2
n∑
i=1

1xi(k)θiisgn(si(k))

−2
n∑
i=1

|si(k)|θii +
n∑
i=1

θ2ii

≤ ‖1x(k)‖2 + 2‖1x(k)‖1‖s(k)‖1 + nθ2ii

−2

(
n∑
i=1

1xi(k)θiisgn(si(k))+
n∑
i=1

|si(k)|θii

)
≤ ‖1x(k)‖2 + 2‖1x(k)‖1‖s(k)‖1 + nθ2ii

+2
n∑
i=1

|1xi(k)|θii − 2
n∑
i=1

|si(k)|θii

≤ ‖1x(k)‖2 + 2‖1x(k)‖1‖s(k)‖1 + nθ2ii
+2θii‖1x(k)‖1 − 2θii‖s(k)‖1

≤ ‖1x(k)‖2 + 2
√
n‖1x(k)‖θ̂ + θ̂2

+2
(
n‖1x(k)‖ − θ̂

)
‖s(k)‖ (46)
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FIGURE 3. Networked control using ZigBee protocol based
communication network.

where θ̂ satisfies the dominance condition with respect to
1x(k). Solving1V(k) with respect to s(k), suggests that s(k)
is bounded such that ‖s(k)‖ ≤ �, where,

1V(k) ≤ 0 H⇒

� =
‖1x(k)‖2 + 2

√
n‖1x(k)‖θ̂ + θ̂2

2
(
θ̂ − n‖1x(k)‖

)
� =

(
‖1x(k)‖ +

√
nθ̂
)2

2
(
θ̂ − n‖1x(k)‖

) (47)

Remark 5: When the switching function s(k) is bounded
(i.e., ‖s(k)‖ ≤ �), the trajectory of the switching function
will exhibit periodic behaviour [30]. The period is dependent
on the choice of sampling time h and quantisation gain 2.
Remark 6: Let us re-write (29a) as:

x(k + 1) = Φcl x(k)+9s(k) (48)

where9 = 0K . When %(Φcl) < 1 and s(k) exhibits periodic
behaviour, then x(k) and x̂(k) also exhibit similar behaviour
and their periods will be similar [13].

IV. SIMULATION RESULTS
The effectiveness of the proposed1-M based quantised state-
feedback controller design is demonstrated in a practical
networked environment considering examples of both dis-
crete and continuous time systems. In this study, the wireless
communication channel is implemented using two Arduino
boards and two Zigbee modules as hardware in loop (HIL).
The modulated signal is transmitted to the Zigbee module 2
in Arduino board 2 from the Zigbee module 1 in Arduino
board 1. This board is connected to the computer and with the
plant, the controller, and the quantiser. The Zigbee module 2
in Arduino board 2 acts as a hop device in another computer
which transmits the signal back to the Zigbee module 1 in
Arduino board 1 which then transmits the signal into the
demodulator (see figure 3.)

A. EXAMPLE 1
Consider a continuous-time linear system with three number
of inputs described by:

ẋ(t) = A x(t)+ B u(t) (49)

FIGURE 4. Behaviour of the states for the Example 1 for the
continuous-time system.

FIGURE 5. Behaviour of the switching function for the Example 1 for the
continuous-time system.

FIGURE 6. Behaviour of states over time for the Example 1 for the
discrete-time system.

where A and B are given by,

A =

−1 0 −1
−1 −1 −1
−1 1 −1

 , B =

1 0 0
0 1 0
0 0 1


The controller and the quantisation gain of the 1-M based
quantiser are designed following the method described in
section-II for the continuous-time system.The initial condi-
tions x0 of the the plant is taken as x0 = [0.05;−0.5; 0], and
the poles and the feedback gain K is calculated by placing the
closed loop poles at xpoles,cl = −1,−1,−1. The performance
of the controller in stabilising the states are shown in Figure 4
and the behaviour of the switching function is shown in
Figure 5.
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FIGURE 7. Behaviour of the switching function for the example 1 for the discrete-time system.

FIGURE 8. Zig-zag (periodic) behaviour of the switching function for the example 1 for the discrete-time system.

FIGURE 9. Simulated example 2: Mechanical damper system.

After designing the controller for continuous time systems,
in the next phase, the 1-M based quantised controller is
designed for the discrete-time system. The discrete equivalent
of the continuous-time system described in (49), at a sampling
rate of h = 0.01 seconds, is given by:

x(k + 1) = Φx(k)+ Γ u(k) (50)

where

Φ =

 0.9900 0 −0.0100
−0.0100 0.9900 −0.0100
−0.0100 0.0100 0.9900


Γ =

0.0100 0 0
0 0.0100 0
0 0 0.0100


The controller and the gain of the1-M based quantiser are

designed following the approaches described in section-II and

FIGURE 10. Behaviour of the states for the Example 2 for the
continuous-time system.

section-III. The initial conditions and x0 and feedback gain K
are same as the continues-time system. The quantisation gain
2 is given by:

2 =

0.05 0 0
0 0.05 0
0 0 0.05


From Figure. 6, it is observed that all the states converge

to zero within finite time. Further, the switching function
starts inside the region �, as can be seen in Figure. 7, and
stays there indefinitely with a period of 2 (see Figure. 8).
It is worth to emphasis that although the period of the

VOLUME 10, 2022 48871



D. Almakhles et al.: Delta Modulator Based Quantised State-Feedback Control of Networked Linear Systems

FIGURE 11. Behaviour of the switching function for the Example 2 for the
continuous-time system.

FIGURE 12. Behaviour of the states for the Example 2 for the
discrete-time system.

switching function depends on the choice of the quantisation
gain and the sampling time, this remains always within the
region �.

B. EXAMPLE 2
The effectiveness of the proposed controller is further shown
considering an example of a mechanical system shown in
Figure. 9. The continuous-time dynamics of this system is
described as [31]:

ẋ(t) = A x(t)+ B u(t) (51)

where

A =


0 0 1 0
0 0 0 1

−
k1 + k2
m1

k2
m1

−
c1 + c2
m1

c2
m1

k2
m2

−
k2
m2

c2
m2

−
c2
m2



B =


0 0
0 0
1
m1

0

0
1
m2


The values of various parameters of the system, used in the
simulation, are:k1 = 1; k2 = 1; m1 = 1; m2 = 2; c1 = 1;
c2 = 1. The design of controller and the quantisation gain
follows same procedure as used in example 1.

The closed loop poles are placed at−2+1i,−2−1i,−2+
0.5i,−2 − 0.5i and the initial condition x0 are taken as
[0.05;−0.5;−0.05; 0.5]. The controller and the gain of the
1-M based quantiser are designed following the method
described in section-II for the continuous-time system. The
performance of the controller in stabilising the states are
shown in Figure 10 and the behaviour of the switching func-
tion is shown in Figure 11.

After designing the controller for continuous time systems,
in the next phase, the 1-M based quantised controller is
designed for the discrete-time system. The discrete equivalent
of the continuous-time system described in (51) at a sampling
rate of h = 0.01 seconds is given by:

x(k + 1) = Φx(k)+ Γ u(k) (52)

where

Φ =


1.0000 0 0.0100 0

0 1.0000 0 0.0100
−0.0200 0.0100 0.9900 0.0100
0.0050 −0.0050 0.0050 0.9950



Γ =


0 0
0 0

0.0100 0
0 0.0050



FIGURE 13. Behaviour of the switching function for the Example 2 for the discrete-time system.
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FIGURE 14. Zig-zag (periodic) behaviour of the switching function for the example 2 for the discrete-time system.

The quantisation gain matrix 2 is given by:

2 =


0.0427 0 0 0

0 0.0427 0 0
0 0 0.0427 0
0 0 0 0.0427


From Figure. 12, it is obvious that all the states converge to

zero is within finite time. Similar to example 1, the switching
function starts inside the region �, and remain there indefi-
nitely with a period 2 (see Figure. 13 and Figure. 14).

From both examples, it can be seen that the performance
of the quantised feedback controller is satisfactory. Although
this study mainly focuses on quantisation related issues, the
behaviour of the designed 1-M based quantised control sys-
tem is investigated under many networked constraints such
as random packet delay, transmission delay and packet losses
in the practical Zigbee protocol based networked control
system. From the results, it is observed that the proposed one-
bit quantised controller could maintain the stability of the
overall system.

V. CONCLUSION
In this study, a delta modulator based single-bit quantised
state-feedback controller is designed for linear networked
control systems. The stability conditions 1-M is derived for
both in CT and DT domains. It is confirmed that the stability
of delta Modulator is heavily dependent on the quantiser gain
and on some properties of the input signals. The bound of the
switching function is derived such that periodic behaviour in
the steady-state is ensured. The effectiveness of the designed
delta modulator based single-bit quantised control approach
is illustrated using a practical ZigBee protocol based net-
worked control system which inherent many network imper-
fections like packet losses, transmission delays, and bit-rate
constraints. The results of the experimental simulations were
carried out using two examples and the results of the simula-
tions confirm the theoretical findings.
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