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ABSTRACT Infrared object detection has high application value in the field of remote sensing due to its anti-
interference ability and long detection distance. However, infrared images suffer from many disadvantages
such as poor fine-grained information, low resolution and contrast, which makes infrared object detection
methods have rather poor performance while utilizing conventional object detection methods. Two novel
lightweight attention mechanisms were proposed in this study to solve the problem. Sliced concatenate and
multi receptive-field spatial group-wise enhance (SCMR-SGE)module, utilizing grouping feature operation,
enhances the sub-features by generating attention factors at each location in each semantic group and
suppresses irrelevant information. Joint attention module is used to selectively enhance or inhibit channel
information through attention factors generated by three different pooling layers. Unlike the previous work,
each module was used only once, and was embed into two modules into feature pyramid network (FPN)
instead of backbone network. The mAP50 of our method based on YOLOv5m alone reached 82.7%, which
was the best result on the original FLIR dataset which didn’t process the imbalanced sample problem. At the
same time, the detection speed can still be maintained at around 60 FPS on single GPU. Our experiments
demonstrated that our lightweight attention mechanisms have better performance than mainstream ones, and
the method of embedding our attention mechanisms into the CNN is effective and universal.

INDEX TERMS Infrared object detection, lightweight attention mechanism, convolutional neural network.

I. INTRODUCTION
Infrared imaging technology can convert the invisible object
surface temperature into a visible thermal image representing
the object surface temperature distribution. Infrared imaging
technology uses the infrared spectrum of the object, which
has better anti-interference performance and larger operating
range than the visible spectrum in bad weather [1]. These
characteristics make it have high application value in the
fields of security system, fire alarm, automatic driving and
so on [2]–[6].

For many years, object detection for infrared images has
always been a challenging task. Compared with the optical
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image, the infrared image is obtained by ‘‘measuring’’ the
heat radiated by the object, whichmakes infrared image suffer
from low resolution, low contrast and low signal-to-noise
ratio (SNR) [2]. Therefore, the object detection task for the
infrared image ismore difficult than that for the visible image.
In daily life, the infrared characteristics of most objects are
not obvious, and the boundary between them is also fuzzy,
which can cause a lot of trouble to the task when the target
area has complex background.

In the past few years, benefiting from the rapid develop-
ment of Convolutional Neural Network (CNN) and its strong
performance, infrared target detection has ushered in new
development opportunities. With a large amounts of data
training, CNNs can well fit a model for specific tasks. Influ-
ential methods such as SSD [7], YOLO [8], Retina-Net [9],
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Faster R-CNN [10], ResNet [11] and so on, have proved
their superior performance. However, these methods, with
little consideration for the infrared object detection, are aimed
at the conventional object detection task. Optical images,
benefiting from their relatively high resolution, contain fine-
grained detail which is essential to object detection. On the
other side, the lack of information makes it tough to extract
inherent features in infrared images for object detection task.

Many researchers have investigated approaches to improve
the feature extraction capability for infrared targets. In [12],
Mcintosh et al. proposed Target to Clutter Ratio (TCR)Metric
to derive the optimum eigenvectors, which can simultane-
ously represent targets and discriminate them from clutter.
In [13], Nasrabadi et al. introduced a powerful method using a
combination of a two-dimensional wavelet transform, which
decomposes the images into uniform subbands, and an effi-
cient algorithm called the Reed Xiaoli (RX), which can detect
multi-variate anomaly. In [14], Liu et al. utilize eigenvectors
obtained by computing every location in the image through
a target map function, where large values indicate the target
position. These methods have improved the detection per-
formance on infrared targets. However, they involve a large
number of mathematical operations with high complexity,
which means they are easy to encounter operations not inte-
grated in the deep learning framework. This makes them have
difficulty to give full play to the acceleration function of the
GPU, resulting in reduced training and detection speed and
poor generality. CNN based methods such as [15]–[17] trying
to use paired visible images as complimentary. To alleviate
the issue that infrared images lack of fine-grained features,
a series of networks with fusion architectures are built to
enhance original infrared images with detailed visual charac-
teristics. But these methods still have some limitations, such
as the need for tons of precisely paired color-thermal images
increases the operational cost and are hard to collect.

On the other hand, inspired by human visual attention
mechanism, researchers introduce the attention mechanisms
into CNNs to improve the performance of method with low
cost. By roughly scanning the global area of image, humans
can easily determine the target areas needed to be focused
on. Similarly, the attention mechanism assigns weights to
the information processed by the method, and invests more
attention resources in high weight areas to get details from
them while suppressing other irrelevant areas. A local cross-
channel interaction strategy was introduced in ECAnet [18]
without reducing the dimension to learn channel attention.
SEnet [19] uses global average pooling to extract the global
features of each feature map, and then obtains the weight
of each channel through MLP and sigmoid function, which
makes the key channels obtain higher weight and suppresses
the irrelevant channels. Based on SEnet and Inception [20],
SKnet [21] can adaptively select the size of receptive field
according to the input of the network, so as to distinguish
the importance between different channels. CBAM [22] and
BAM [23] utilize both global average pooling and maxi-
mum pooling on the basis of SEnet, and introduce spatial

attention mechanism to make the method obtain the weight
from channel and space. [24] introduces transformer [25]
block to attention mechanism for infrared object detection
task. However, most of existing work directly embed the
attention mechanism into all residual structures in backbone
of CNNs. In fact, how to embed the attention mechanism into
the CNN and which layers of the CNNs are embedded also
have a certain impact on the performance of the method.

Generally speaking, researchers nowadays focus on two
technology routes: either improving the feature extraction
ability of their methods or enriching the fine-grained features
in infrared images. In this article, we propose a novel spatial
attention module and a novel channel attention module to
improve feature extraction capabilities. Both twomodules are
lightweight and can be easily embedded into existing meth-
ods. In particular, we find suitable position for our modules
and minimize the number of them we use.

To sum up, the contributions of this article are as follows:
1) A novel spatial attention mechanism called

SCMR-SGE module is proposed to improve detection
performance of our method. SCMR-SGE can effec-
tively highlight multi interested targets in multi areas
with diverse high order semantics and suppress back-
ground noise. Meanwhile, it is still a lightweight atten-
tion mechanism attaching almost no extra parameters
and calculations.

2) We propose a novel channel attention mechanism
called joint attention (JA) module utilizing three differ-
ent pooling layers to selectively enhance or suppress
specific channels. Specifically, we directly compare
the important factors obtained from channel attention
mechanism which utilize three different pooling layers
to determine the final weight, which makes the alloca-
tion of attention resources more reasonable.

3) Unlike most of other methods that use multiple atten-
tion modules, we only use each module once and
embed them in FPN structure rather than the back-
bone network to achieve better performance. The
experiment results show that our arrangement is
effective.

The rest of this article is arranged as follows: In Section 2,
we introduce the method and structure in detail. Experiment
settings are presented in Section 3. We make full explanation
of our experiments setting and results, along with discussions
based on our comparative experiments in Section 4. Finally,
we summarize our work in Section 5.

II. METHODS
A. SLICED CONCATENATE AND MULTI-RECEPTIVE FIELD
SGE
The first-generation source using the similarity between local
and global as an attentionmaskwas proposed in [26]. Authors
believe that features generated byCNNs is composed ofmany
sub-features, which can usually be distributed in grouped
form in the feature of each layer. By scaling the feature
vectors over all the locations in each group, SGE module can
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FIGURE 1. Structure of proposed SCMR-SGE Module. This attention module can obtain semantically enhanced feature maps.

spatially suppress the possible noise and highlight the correct
semantic feature regions with minimal additional compu-
tational burden. These feature vectors are determined only
by the similarity between global and local features within
each group. However, each group in SGE module is only
composed of several adjacent feature maps, thereby reducing
the information flow and information representation capabil-
ities between groups. To solve this problem, in [27], author
proposed the SSE module. The SSE module introduced the
idea of channel shuffle in Shufflenet [28], which shuffled
feature maps originally from different groups into new groups
to strengthen the information flow between groups. How-
ever, such a way of information exchange can only make
information flow between adjacent groups, the input and
output channels from distant groups are still uncorrelated.
Furthermore, SGE module employs global average pooling
to approximate the semantic vector that one group learns to
represent. Obviously, this operation can rapidly gather global
information in feature maps, which is efficient in image
classification tasks because they only need to focus on the
most interested area in featuremaps. However, this may cause
problems in the field of object detection tasks, because they
may have multiple interested areas in an image. In this case,
the global average pooling operation cannot well separate all
interested areas, resulting in the loss of information in some
areas causing missed detection.

Mainly inspired by the above research, we proposed
SCMR-SGE module. The FPN structure in YOLOv5 com-
bines the deep feature maps with the shallow ones for feature
fusion. Feature maps generated by deep layers in CNNs

usually contains rich semantic information but their resolu-
tion is relatively low. On the contrary, those high-resolution
feature maps generated by shallow layers have less semantic
information but rich in spatial information [29]. In order
to make better use of the feature fusion function of FPN,
the idea of sliced concatenate is introduced in our module.
The overall structure of proposed SCMR-SGE module is
shown in Figure 1. First, feature maps generated by relative
shallow layers in CNNs concatenate those ones generated
by deep layers through sliced concatenate operation. Then,
SCMR-SGE divides feature maps into G groups along
the channel dimension. After that, as mentioned above,
to approximate a more appropriate semantic vector that this
group learns to represent, SCMR-SGE adopts multi average
pooling modes to acquire global and local statistical fea-
tures respectively. Finally, more relevant features between
channels are aggregated, and an attention factor is gener-
ated at each spatial location within each group to learn
more advanced semantic information through spatial enhance
operation [27].

In [30], sliced concatenate function is achieved through
loop structure, which does not increase floating point oper-
ations (FLOPs). However, [31] points out that it is insuf-
ficient to use FLOPs as the only metric for computation
complexity. The original design in CASEnet resulted in a
large increase in network memory accesses cost (MAC) and
reducing degree of parallelism. Compared with the original
method, this operation almost doubled the time cost in train-
ing stage and the latency in detection stage in our experiment.
Therefore, we modified the original operation to improve
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FIGURE 2. Illustration of standard convolution and group feature.
(a) Standard convolution; (b) Convolutional layers with three groups.

operational efficiency. Modified sliced concatenate operation
can be completed by the following steps: first, we generate an
all-zero tensor with the same shape as the tensors needed to
be sliced concatenated. Then, the first tensor to be operated
concatenate this all-zero tensor, which is also used for con-
catenating the second tensor to be operated. Next, reshape
these two tensors channel dimension into (C, 2), where each
tensor has 2C channels after concatenating, and transpose
into (2, C). Finally, reshape them into 2C channels and add
these two tensors. Sliced concatenate operation ensures each
group contains feature maps generated by both shallow layers
and deep layers, which carry strong position information and
semantic information, respectively.

Grouping feature can significantly reduce the amounts of
calculations [28]. It can be seen from Figure 2 that each
group learns different features by fewer parameters compared
with standard convolution. Suppose the size of input feature
map is C×H×W and the number of convolution kernels
is N, the total parameter amount of grouping features is
N× (C/G)×H×W under the circumstance of channels are
divided into G groups. However, the total parameter amount
of standard convolution is N×C×H×W. It means that the
total parameter amount is reduced to the original (1/G).

It is difficult for a CNN to obtain favorable feature dis-
tributions in deep networks. To solve this problem, semantic
features in critical regions are enhanced through learning the
overall information of each entire group. In particular, local
averaging function employs two different sizes of pooling
to refine receptive field. The procedure for spatial enhance-
ment is as follows: global and local statistical features g
are obtained through global averaging function and local
averaging function to approximate the semantic vectors that

this group learns to represent

gij =
1
k2

i+s∑
i=i−s

j+s∑
j=j−s

xij (1)

where k is pooling size, s = (k − 1)/2, xij ∈ RC/G. In this
article, we choose 3, 7 and global as pooling size, respec-
tively. In particular, when the pooling size is set to global, the
operation will be simplified to global average pooling.

Then, a corresponding importance coefficient ci is gener-
ated by a simple dot product for each feature, which measures
the similarity between the semantic feature g and the local
feature x.

cij = gij · xij (2)

Next, c is normalized over the space in order to prevent
coefficients deviation between various samples.

µc =
1
m

m∑
i=1,j=1

cij (3)

λc =
1
m

m∑
i=1,j=1

(cij − µc)2 (4)

ĉi =
cij − µc
λc + ε

(5)

where m=H×W, ε is a constant added for numerical sta-
bility. To make sure that the identity transform can be repre-
sented through normalization inserted in the network, a pair
of parameters γ , β are introduced for each coefficient ĉi to
scale and shift the normalized result:

ai = γ ĉi + β (6)

Finally, importance coefficient generated through sigmoid
function is employed to scale the original xij spatially to
obtain the enhanced feature x̂ij.

x̂ij = xij · σ (ai) (7)

where σ represents sigmoid function. All the enhanced fea-
ture maps constitute the final output, which significantly
eliminate the interference of background noise in infrared
images and highlight the interested areas. This operation can
greatly improve the performance of initial YOLOv5s, yet the
same, just like SE or CBAM module, SCMR-SGE module
can be embedded in existing mainstream network structures
and the additional computational burden is negligible.

In short, SCMR-SGE module utilizes attention factors
guided by the similarities between the global and multi
receptive field local information, which can simultaneously
integrate attention in channels and spaces, to improve fea-
ture extraction capabilities. In particular, sliced concatenate
operation promote the information exchange between each
group, which can make the result more robust. SCMR-SGE
module enables each feature group to autonomously enhance
high order semantic features and suppress possible noise with
negligible additional parameters.
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FIGURE 3. Simplified illustration of different pooling layers. (a) Maximum
Pooling; (b) Average pooling; (c) Log-sum-exp pooling. The shade of color
represents the weight of this pixel.

B. JOINT ATTENTION MODULE
Squeeze-and-Excitation (SE) module, which is the first atten-
tion module take into consideration the relationship between
channels, was proposed to improve the quality of representa-
tions by explicitly modelling the inter dependencies between
the channels [19]. ‘‘Feature recalibration’’ strategy is adopted
in SE module. Specifically, squeeze operation embeds global
information and excitation operation implements adaptive
recalibration. The importance of each feature channel is
automatically acquired through this procedure, then the use-
ful features are promoted according to this important factor
and the features that are not useful for the current task are
suppressed. However, Woo et al. pointed out that features
generated by global average pooling are suboptimal features
in order to infer fine channel attention, and they suggest to
use max-pooled features as well [25].

As mentioned above, the pooling layers play an important
role in determining what information should be passed down
by network. Figure 3 is a toy example of different pooling
layers. Suppose that two photos are taken at the same scene,
but someone set a bonfire in one of them. In this case, if our
target is not this bonfire, maximum pooling will tend to
express the feature of this bonfire and the result of average
pooling will also be shifted. Representing the temperature
distribution of the object is a central feature of infrared images
and distinguishes it from visible light images, which means
objects of the same kind tend to share similar activation value.
Thus, we need a smooth pooling approach that allows similar
pixels to share similar weights. We thereby utilize the Log-
Sum-Exp (LSE) pooling proposed in [32]. The LSE pooling
function is defined as

x = log[
1
S
·

∑
(i,j)∈S

exp(r · xij)] (8)

where xij is the activation value of each pixel in the pooling
region S, and S= s× s is the total number of pixels in S.
r is a hyperparameter which controls how smooth one wants
the approximation to be. Infinite value implies the effect will
similar to the maximum pooling, zero value will have an
effect similar to the average pooling. The advantage of this
aggregation is by controlling the value of r, pixels have similar
scores will share a similar weight in the training procedure,
which controls the level of similarity. On account of suffering

from overflow and underflow problems, the LSE function is
modified as

xp = xmax +
1
r
· log[

1
S
·

∑
(i,j)∈S

exp(r(xij − xmax))] (9)

where xmax = max{|x ij|, (i, j) ∈ S}.
[22] argues that different pooling layers can gather other

important clues about distinctive object features to refine
channel-wise attention. Thus, simultaneously using different
pooling layers can greatly improve representation capacity of
networks rather than using each of them independently. Based
on this conclusion, A novel Joint Attention (JA) Module,
which employs three different pooling layers in Figure 3.
simultaneously, is proposedmainly inspired by the researches
mentioned above. The overall structure of JAM is shown
in Figure 4. Our idea is simple: since different pooling
approaches extract different feature factors, then it might be
better to compare the extracted feature factors directly. Chan-
nels will be enhanced if anyone of the three approaches gives
a high importance factor, otherwise, suppress this channel
instead. In particular, we double our operation with the aid of
the up-sampling function in FPN network to make the results
more robust.

The operation of proposed JA Module can be described as
follow: First, three different descriptors are generated by three
different pooling layers, respectively. Then, each of these
three descriptors is forwarded to a shared network, which is
composed of multi-layer perceptron (MLP) with one hidden
layer, to generate three important factors. Finally, the three
vectors are compared to selectively enhance or suppress them.
Specifically, we take the maximum value if any value of
the three vectors in the same position is greater than 0.5,
conversely, if all three values in the same position are less
than 0.5, their minimum value is taken. In short, the proposed
channel attention is computed as

A(F) = ES{σ (MLP(avgpool(F), σ (MLP(maxpool(F),

σ (MLP(LSEpool(F), } (10)

where σ denotes the sigmoid function, MLP weights are
shared for all the inputs, ES denotes the enhance and suppress
operation. Then, we employ up-sampling function and repeat
the ES operation to eliminate the offset caused by the linear
interpolation calculation in the up-sampling function as much
as possible:

Â(F) = ES{A(F),A[upsample(F)]} (11)

important factors can be further refined after up-sample stage,
which makes the JA module more robust.

To sum up, JA module utilizes three different pooling
layers to determine enhance or suppress channel attention fac-
tors. This will allow JA module make full use of the channel
factors representing fine, prominent and smoothed features
respectively to improve representation capability. In addition,
JAmodule also take the advantage of the up-sample operation
to recalibrate the final attention factors, which contributes to
its compelling effectiveness in practice.
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FIGURE 4. Structure of proposed Joint Attention (JA) Module. This module can enhance/suppress and obtain up-sampled feature maps.

C. POSITION OF EMBEDDING
YOLOv5 [33] adopts the modular design idea and has four
versions: YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x.
The only difference between the four versions is the number
of CSP modules stacked. Stacking more CSP modules can
obtain better feature extraction capability, which is conducive
to our comparative experiments. By embedding our modules
at the same position of FPN network in different version of
YOLOv5, we can determine whether our method is universal
according to the experimental results. The overall structure of
YOLOv5s is illustrated in Figure 5. YOLOv5m, YOLOv5l
and YOLOv5x reuse 2, 3 and 4 groups of CSP modules at the
position of CSP module in YOLOv5s respectively.

Since we want to make the method as efficient as possible,
although the modules proposed above are lightweight enough
yet we still want to employ thesemodels as less as of possible.
Thus, we decide to focus on the FPN network, which is
designed for feature fusion, to refine the features extracted
by backbone network. As mentioned above, these two mod-
ules, SCMR-SGE and JAM, focus on ‘where’ and ‘what’
need to be paid attention respectively, should be embed-
ded in different layers at FPN network. Considering that
SCMR-SGEmodule needs feature maps containing relatively
more semantic information, concatenate module marked by
blue rectangle accepts feature maps generated by the last
CSP module in backbone network and the final outputs of
backbone network, which makes it suitable for SCMR-SGE
module. On the other side, replacing up-sampling function
with JAM marked by red rectangle can refine the feature
maps processed by SCMR-SGE module without interfering
the coarse features extracted by shallower layers. Benefiting
from YOLOv5s adopts FPN [26] and PANet [34] for the

neck network at the same time, feature maps processed in
such way can carry stronger semantic feature and flow to
each prediction head. This arrangement, focusing on feature
fusion stage instead of feature extraction stage, is different
from the common practice of embedding the attention mech-
anisms into the residual structure, yet still can benefit from the
improvement of feature extraction capability. We will further
discuss this point in Section 4.

III. EXPERIMENTS SETTINGS
We conducted a series of comparative experiments to verify
the advancement and robustness of the proposed methods.
This section will also introduce our dataset, experimental
settings and evaluation metrics.

A. DATASET INTRODUCTION
FLIR-ADAS dataset [35] was collected from a vehicle cam-
era view on the streets and roads of Santa Barbara, California.
The dataset, taken at daytime (60%) and night (40%) under
clearly cloudy weather conditions, contains 8862 images for
training and 1366 images for validation. Labeled objects in
the dataset include cars, persons, bicycles and dogs. It needs
to be pointed out that the dataset lack of dog labels, which
may cause the trained model have poor generalization ability
and suffer from overfitting problem. Thus, labels of dogs are
ignored in our experiment. In particular, even after ignor-
ing the dog label, the number of people, cars and bicycles
in the sample is still uneven. Data enhancement strategy
for bicycle class used in some researches is not employed
in our method. Some images in FLIR dataset are shown
in Figure 6.
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FIGURE 5. Structure of YOLOv5s. Modules marked by blue and red rectangles at position 1 and position 2 are replaced by SCMR-SGE Module and JA
Module, respectively.

FIGURE 6. Display of some images in FLIR dataset.

B. DATASET INTRODUCTION
All experiments were implemented on a PC with Intel(R)
Core(R) i7-8700K CPU, NVIDIA RTX 3060(12GB LHR)
GPU, CUDA 11.1, CUDNN 9.1, and the operating system
was Win10. The deep learning framework was Pytorch 1.9.0.
The optimizer used stochastic gradient descent (SGD) and the

learning rate decay strategy was cosine. The initial learning
rate was 0.01, finally decay at rate of 0.001, batch size was
48, warmup 3 epochs, and epochs for training were optimized
to 100. The input image resolution was 640× 512.

C. DATASET INTRODUCTION
To evaluate the performance of the proposed methods,
mAP50, mAP0.5:0.95 and latency were used as metrics.
Average precision (AP) is the area surrounded by the
precision-recall curve and coordinate axis. Mean average
precision (mAP), which is the average of multiple categories
of AP, is the key metric in object detection algorithm. There
are three categories in our experiment, so mAP50 can be
regarded as the average of AP values of these categories.
Generally speaking, the better detection capability, the higher
mAP value. The precision and recall are defined as follows:

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

where TP (True Positive) is the positive sample of correct
detection, and FP (False Positive) is positive sample of error
detection. On the contrary, FP and FN are negative samples
of correct and error detection, respectively. Whether the label
is a positive sample or a negative sample is determined by the
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TABLE 1. Comparison with other mainstream attention mechanisms.

IoU. The IoU is defined as follow:

IoU =
P ∩ T
P ∪ T

(14)

where P and T refer to predicted bounding box and ground
truth. The threshold of IoU is set to 0.5 in most cases, which
means if samples with IoU greater than 0.5 are considered as
positive samples. Then, AP is defined as:

AP =
∫ 1

0
p(r)dr (15)

where r denotes recall, p denotes precision and p(r) is a
function which takes r as parameter. In most cases, mAP50
is the most important metric.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. ABLATION STUDY
1) SCMR-SGE MODULE
In this section, the effectiveness of the proposed spatial
enhancement module is verified. When comparing the meth-
ods, all parameters are set to the same. After a series of
experiments, we choose to divide feature maps into 64 groups
in SGE module for best performance. The latency of method
is evaluated by all video frames attached in datasets.

We choose SE and CBAM Module to compare with our
module since these two modules have been wildly used in
recent object detectionmethods. Original SGEModule is also
employed as control study. All modules here are embedded
into concatenate structure marked by blue rectangle shown in
Figure 5, respectively. The performance of each module is
shown in Table 1.

As seen from the table, compared with SE and CBAM
Module, original SGE module has similar performance but
lower latency. Benefiting from grouping features idea in SGE
module, our modified module can still maintain a relatively
low computational burden. Compared with original SGE
module, Multi-Receptive-field SGE increases the mAP50 by
0.5% at the cost of increasing 0.7ms latency. What’s more,
when it comes to SCMR-SGE Module, the redesigned sliced
concatenate operation only increases 0.1ms latency in return
for 0.2% mAP50 increasing. To verify the increase in per-
formance, we also embed mentioned attention mechanisms

TABLE 2. Comparison with other mainstream attention mechanisms.

in the backbone. It can be seen that mAP of embedding
attention mechanisms in FPN structure is almost the same as
that of embedding in backbone. However, embedding them
in backbone will cause obvious detection speed loss due to
multiple use. In particular, SGE and MR-SGE module show
rather poor performance when they are embedded in back-
bone, which proves they aremore suitable for processing deep
semantic features. The results above indicate SCMR-SGE
Module can improve detection performance with a small
computational cost, which is essential in real-time object
detection task.

2) JA MODULE
In this section, we conducted a series of experiments to
verify the effectiveness of our JA module. We still introduce
YOLOv5s method equipped with SE and CBAM modules as
comparative experiment. All modules here are added to up-
sample structure marked by red rectangle shown in Figure 5,
respectively. The performance of each module is shown in
Table 2.

Three SE modules using three different pooling layers
are employed to embed into initial method. All these mod-
ules improve the performance of the method. In particular,
SE module using average pooling combined with maximum
pooling shows better performance, which is consistent with
what we mentioned in Section 2. It is also noteworthy that,
compared with SEmodules, the performance of CBAMMod-
ule is rather poor. It is likely that as the neural network
gets deeper, channels are getting more and more important,
which makes it inappropriate to employ spatial attention
modules to filter the deep feature maps. What’s more, when
SE module adopts more than two different pooling layers, the
method of directly adding the pooling results is no longer
effective. Compared with all above modules, proposed JA
module increase mAP50 to 81.4%, which is higher than any
of them. The result further confirms that different pooling
layers can gather different salient features to refine channel-
wise attention. At the same time, the loss of our method’s
detection speed is acceptable.

B. INFRARED OBJECT DETECTION IN FLIR-ADAS DATASET
1) EFFECT OF SCMR-SGE AND JA MODULES
We selected several representative detection results to intu-
itively compare our method with the original YOLOv5s. The
confidence threshold for bounding box and IoU in both two
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FIGURE 7. The detection results of FLIR dataset conducted by YOLOv5s and our method, respectively. The first column is ground truth, the second column
is the results of YOLOv5s and the third column is the results of our method. Areas marked by blue circles indicates that YOLOv5s has missed detection
here.

methods are set to the same. Output results are shown in
Figure 7.

Targets missed by the original YOLOv5s method are usu-
ally in clutter, such as bicycles and pedestrians with trees and
other interference objects in the background. These objects

are partially occluded or their own thermal characteristics
are not obvious, which puts forward higher requirements for
the detection capability of the method. Figure 7 shows that
our method can effectively distinguish targets from com-
plex background and reduce missed detection. Targets such
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TABLE 3. The performance of comparative methods is shown in the
table. The best AP is highlighted in bold.

TABLE 4. Comparison with SCMR-SGE after embedding it at another
possible position in FPN.

as bicycles which are largely obscured by the riders, and
pedestrians with characteristics similar to the tree trunk are
successfully detected, which intuitively shows the superior
performance of our method.

2) COMPARISON WITH OTHER METHODS
We also conduct comparative experiments with different
methods to verify the outstanding performance of our
method. The performance of each method is shown in
Table 3.

Compared with original YOLOv5s, our proposed method
gains all-round improvement of detection performance with
negligible performance loss. APs for all three targets have
increased significantly. After adding our two modules,
mAP50 reaches 81.6%, which is 2.2% higher than before
addition. It is worth mentioning that AP for the bicycle
class, which lack of samples and salient features in clutter,
having a 3% increasing, reaches 68.3%. On the other side,
the parameters of the modified method have only increased
by 0.01M, resulting in 15 frame per second performance
loss. This is quite acceptable especially when compared
with YOLOv5m, the widening and deepening version of
YOLOv5s. Our method not only has higher accuracy than the
original YOLOv5m method, but also has great advantages in
detection speed.

C. DISCUSSION
To minimize performance loss, we only use each module
once and embed them into the FPN. Two reasons can be
account for the effectiveness of our arrangement. First, for
SCMR-SGE, in [26], author mentioned that spatial enhance
attention is used to enhance feature maps containing rich
semantic information, which means it should be embedded at
relative deep layers. In order to prove this point, we have also
done experiments that embedded our SCMR-SGE Module at
another concatenate function marked with green rectangle in
Figure 5, which are shown in Table 4.

TABLE 5. Comparison with different channel attention mechanism after
embedding them at another possible position in FPN.

TABLE 6. Comparison with YOLOv5m after embed our modules in FPN.

It can be clearly seen that embedding SCMR-SGE at posi-
tion 3 does not show good results, which proves that it is not
suitable to enhance feature maps generated by shallow layers
because they still contain rough information such as edges
and textures. On the other hand, our JA module is proposed
to filter channel information, which means it should be used
when some channels are not helpful to the task. Thus, the
position of JA module should behind SCMR-SGE Module,
where can not only inherit upstream feature enhancement
effect and filter semantic information, but also transfer the
filtered feature map to each detection head as the network
goes down through PANet. We also investigate different posi-
tions for JA module and employ SE module as comparative
experiments, which are shown in Table 5.
It can be seen from the table that the performance of both

two methods decreases after changing position from 2 to 3.
Similarly, considering that position 3 contains feature maps
processed by shallow layers, which are essential to pinpoint
the location of targets, it is unreasonable to filter the feature
maps when each of them is of value. What’s more, important
factors can be recalibrated with the help of the up-sampling
function at position 2, which cannot be realized in other
positions. Thus, we can draw a conclusion that the embedding
positions of these two modules are reasonable.

To verify the performance of our method, we also embed
our modules at the same positions in YOLOv5mmethod. The
performance of embedding our modules before and after are
shown in Table 6.

It can be seen from the table that mAP for all targets also
have improved. After embedding our modules, the modified
YOLOv5m method is state-of-art on original FLIR dataset.

At the same time, our modules don’t have much impact
on the detection speed of the method, the parameters only
increase 0.01M and the performance loss was only 9 FPS.

Since the only difference between YOLOv5s and
YOLOv5m method is that YOLOv5m double the number of
CSP structure, which is shown in Figure 5, for better feature
extraction capability. It means that effort, trying to improve
the feature extraction capabilities of backbone network, will
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FIGURE 8. Demonstration of proposed modules’ effectiveness. The first row is detection output obtained by YOLOv5s. The second row is detection
output obtained by our method. The third row is the first 32 feature maps processed by SCMR-SGE and JA module. The fourth row is the enlarged
significant feature maps which are marked with red rectangle in the third row.
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TABLE 7. Experiment results on KAIST dataset.

still pay off when they are introduced to our methods. Thus,
we can draw a conclusion that our arrangement of modules is
effective and universal.

We also visualize the effectiveness of our proposed mod-
ules to verify the robustness of our method, which are shown
in Figure 8.

We choose three representative images and visualize the
first 32 feature maps processed by our SCMR-SGE Module
and JA Module. The areas marked with green circles in the
second row indicates that there are objects miss-detected by
the original YOLOv5s method. Feature maps marked with
red rectangles in the third row are those carrying strong
enhanced semantics information which contributes to suc-
cessfully detecting the originally missed targets, and the
fourth row shows the enlarged images of those significant
feature maps for better viewing. It can be clearly seen that
our modules successfully enhanced interested targets where
are missed in original method. All the conducted experiments
show that, for infrared object detection task, our proposed
methods in this article have advantages in both detection
accuracy and detection efficiency.

D. EXPERIMENTS ON THE KAIST DATASET
We also complete a series of comparative experiments on
re-annotated KAIST dataset to demonstrate the robustness
and advantage of our proposed method. KAIST pedes-
trian dataset includes 95328 images in total, containing
103128 dense annotations. Each scene is composed of RGB
color images and corresponding long wave infrared images.
The dataset captured various conventional traffic scenes
including campus, street and countryside during the day and
night, respectively. However, the original dataset suffers from
rather poor annotation quality, Li et al. cleaned up and sam-
pled images every 2 frames from training videos, excluded
heavily occluded, truncated and small (< 50 pixels) pedes-
trian instances, and re-annotate targets to improve the dataset
quality [36], which are chosen as our comparative experiment
dataset. Re-annotatedKAIST dataset has 7601 images andwe
divide them into 6413 images for training and 1188 images
for validation. All labels introduced to our experiments are
set as person since the resolution is too low to distinguish the
difference between person and people in long wave infrared
images.

It can be seen from the Table 7 that compared with base-
line YOLOv5s and YOLOv5m methods, modified methods

equipped with our modules also have significant increase
in AP50 and AP95. In other words, modified methods have
better feature extraction capability than their baselines, which
proves the effectiveness of our modules.

V. CONCLUSION
Aiming at the problem of low contrast and lack of fine-
grained and texture information in infrared images, we pro-
pose two novel attention mechanism to improve the feature
extraction capabilities for infrared object detection methods.
SCMR-SGE module can simultaneously enhance high-order
semantic information and suppress possible background
noise. At the same time, JA module can selectively enhance
or suppress channel information to improve detection per-
formance. Moreover, our proposed method is different from
other methods that embed attention mechanism to each mod-
ule of the backbone network, which only utilizes SCMR-SGE
and JA modules at two essential positions at FPN network to
filter spatial and channel information, respectively.

Experimental results on the FLIR-ADAS and KAIST
datasets show that proposed method can effectively improve
the detection performance for infrared targets with low cost.
Our proposed method can maintain the detection speed at
around 60fps while the mAP of FLIR dataset reaches 82.7%
basing on YOLOv5m only, which is higher than other state-
of-art methods, such as RefineDet and ThermalDet. But it
also needs to be noted that, although our method can gain
all-round improvement on mAP of all categories, the mAP
of bicycle class is still not high, and the problem of poor
generalization ability caused by the imbalanced of dataset
samples still exists, which deserves further research.
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