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ABSTRACT Gastric cancer (GC) is one of the most common cancers in the world. In cancer detection,
liquid biopsy, as a noninvasive and rapid method, is growing in importance. Different from traditional liquid
biopsy using a single biomarker, this study integrated a variety of blood biochemical indices and established
an identification system by means of deep learning under the H2O framework method. Based on data from
2951 samples, 58 routine blood biochemical indices, age and gender were collected as comprehensive indices
to establish the identification model. Then, the number of indices was reduced to simplify the model, and
33 indices were utilized to build the final identification tool. A tenfold cross-validation technique was
used to evaluate the performance of the proposed method. The sensitivity, specificity, accuracy, and area
under the ROC curve on the cross-validation set were 85.44%, 83.82%, 84.54% and 0.9165, respectively.
The identification tool is built free online at http://www.cppdd.cn/GC2. The proposed system provides a
new approach to identify GC with advantages of being efficient, noninvasive and economical. The deep
learning of the integration of these blood biochemical indices will bring insights into the comprehensive
understanding of GC pathology, as well as the prevention, screening, diagnosis, and prognosis of GC.

INDEX TERMS Clinical available blood indices, deep learning, gastric cancer, identification, online server.

I. INTRODUCTION
Gastric cancer (GC) was responsible for over 1.08 million
new cancer cases in 2020 and more than 768,000 deaths
worldwide [1]. Although the incidence and mortality of GC
have declined, it is still the fifth most commonly diagnosed
cancer and ranks fourth in the mortality rate globally [2].
The high prevalence of GC, poor prognosis [3], and limited
treatment options have resulted in a heavymedical burden [4].

The development of GC is a multistage, multistep, and
multimechanism process that is highly heterogeneous in
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terms of structural growth, cell differentiation, molecular
pathogenesis, and stages [4]. Therefore, the diagnosis of GC
is difficult, especially early GC. Meanwhile, the 5-year sur-
vival rate of patients with early GC after undergoing surgery
exceeds 90%. In contrast, the 5-year survival rate of patients
with stage IV GC is less than 5% [5]. The earlier a patient
with GC is diagnosed, the easier it can be cured [6]. However,
due to nonspecific symptoms of early patients, less than 25%
of patients with GC are detected at an early stage [3]. There-
fore, a fast and low-cost detection tool is urgently needed to
detect GC.

Endoscopy and image examination are the gold stan-
dard diagnostic methods for GC [7]. However, the detection
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accuracy of conventional endoscopy is only 69% to 79% [8],
and image examination has difficulty identifying early
lesions with high accuracy [9]. In addition, endoscopy may
cause gastric bleeding, gastric perforation, and bacterial
infections [10]. Imaging examination should be combined
with pathological examination to make a final diagno-
sis [11]. Doctors are required to have experience in
endoscopy and image examination [8]. There is a severe
shortage of endoscopists and large-scale endoscopy cen-
ters in poverty-stricken areas [12]. Therefore, endoscopy
and imaging examinations are not suitable for large-scale
screening.

As a minimally invasive method, liquid biopsy can pro-
vide information for cancer diagnosis, tumor monitoring,
and clinical prognosis [13]. Here, blood is the most impor-
tant body fluid [14], and plasma is excellent at reflect-
ing gastrointestinal diseases [15]. Experts believe that GC
tissue releases tumor markers into the peripheral blood,
such as circulating tumor DNA (ctDNA), cell-free DNA
(cfDNA), tumor-associated RNA, protein, and circulating
tumor cells (CTCs) [16]. With the progress of genomics and
proteomics and the development of PCR detection technol-
ogy, an increasing number of blood biomarkers have been
found and applied to the diagnosis and prognosis of can-
cer [17]. Traditional serum markers, such as carcinoembry-
onic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9),
have been applied to diagnose GC [18]. Studies have shown
that the comprehensive sensitivity of blood DNAmethylation
as a diagnostic marker of GC is 57% (95% CI, 50-63%) [19].
CtDNA is affected by tumor type and stage, which needs
further study [13]. CfDNA is more sensitive than conven-
tional tumor markers, but it is insufficient to distinguish other
diseases, such as inflammatory diseases and infection [16].
MicroRNA (miRNA) [20], long noncoding RNA (lncRNA)
[6], and circular RNA (circRNA) [21] play a key role in
the occurrence and development of tumors. However, the
chemical instability of RNA prevents it from becoming a
good biomarker [19]. The count of circulating tumor cells
is considered to be less than 5 in 7.5 ml of blood, which
makes detection difficult [13]. The combined detection of
multiple biomarkers can avoid the interference of blood
mutation template molecules and reduce sampling devia-
tion and individual differences [17], [22]. Various organs,
tissues, blood exchange substances, and blood indices are
in a state of dynamic balance. This balance is likely to
be disrupted due to body diseases, resulting in abnormal
blood indices [23]. Wu et al. showed that the neutrophil-
lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR)
were significantly different between GC patients with dif-
ferent stages. The combination of PLR and CEA is better
than CEA alone (AUC=0.671) for the diagnosis of gastric
cancer (AUC=0.780) [10]. The deep learning method with
excellent self-learning ability can deal with multidimensional
nonlinear statistical relationships better than traditional meth-
ods [24]. The Clinical available blood indices based on deep
learning provide a new idea for the differentiation of GC.

In this work, an identificationmodel of GCwas established
based on blood indices through a deep learning algorithm.
GC and other diseases could be effectively distinguished in
this model.

II. MATERIALS AND METHODS
A. SOURCE OF MATERIALS
The total number of samples was 2951, including 1836 nega-
tive samples and 1115 positive samples. A total of 2682 sam-
ples were collected for cross-validation, and 269 samples
were collected for external validation. The positive sam-
ples were from GC patients, while the negative samples
were from 559 healthy people, 229 gastric ulcer patients,
158 gastric polyps patients, 174 gastritis patients, 124 liver
cancer patients, 203 lung cancer patients, 124 pancre-
atic cancer patients, 136 breast cancer patients, and 129 colon
cancer patients. To avoid diagnostic errors, the diagnostic
results of the above samples were confirmed by several
experts. Each sample contains age, gender, and 26 routine
blood indices from Sysmex XE-5000 and 32 biochemical
indices from Ortho VITROS 5600. The details of the dataset
are listed in Table 1, and detailed information can be shown
in supplementary table S1. This study met the ethical require-
ments with the consent of all patients and healthy volunteers
and was reviewed and approved by the ethics committee of
the Second Hospital of Lanzhou University.

B. MACHINE LEARNING METHOD
Deep learning utilizes multiple neural network layers to
obtain more important information from multidimensional
data [8]. The artificial neural network can effectively reflect
the nonlinear process of tumor development and metasta-
sis [24]. The H2O framework includes an advanced artificial
neural network [25]. Deep learning algorithms are embedded
in the H2O framework. The deep learning algorithm is similar
to the classical multilayer perceptron (MLP) [26], which is
optimized through continuous iteration. Stochastic gradient
descent was used for training the model, and backpropa-
gation was used for optimization. The performance of the
identificationmodel can be further optimized by adjusting the
hyperparameters of the neural network.

The principle of layered sampling was followed to divide
the total data into the training set (2682 samples) and test
set (269 samples). The initial H2O classification prediction
model was evaluated by tenfold cross-validation on the train-
ing set, and the test set was used for external validation and
did not participate in the construction of the model. The first
was the choice of the number of hidden layers. In the initial
experiment, we set the number of neurons in each hidden
layer to 50 and then increased the number of hidden layers
to obtain the AUC and logloss of the training set and tenfold
cross-validation, as shown in Fig. 1. As shown in Fig. 1a,
with the increase in the hidden layer, the AUC of the training
set continued to increase, but the AUC of the tenfold cross-
validation increased first and then oscillated. The logloss of
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TABLE 1. Details of the cross-validation sets and external validation sets.

tenfold cross-validation tended to increase as the hidden layer
increased, as shown in Fig. 1b. Experiments showed that as
the number of hidden layers increased, the performance of the
model improved, but tenfold cross-validation showed that the
model tended to fall into overfitting. To avoid overfitting and
underfitting, three hidden layers were selected as the basic
structure of the neural network. Then, the grid search method
was applied to adjust the hyperparameters of the h2o.deeping
function, including ‘‘input dropout ratio’’, ‘‘activation’’, ‘‘ini-
tial weight distribution’’, ‘‘loss’’, ‘‘distribution’’, etc. Mul-
tiple hyperparameters were combined to determine the best
solution. The specific settings are shown in Table 2. Finally,
the number of iterations and the size of the hidden layer
were adjusted. The final iterations were set to 1000, and the
three hidden layers were 80, 80, and 110. At first, all the
features, including age, gender, 26 routine blood indices and
32 biochemical indices were used as the input layer of the
neural network, constructing model-1. To simplify the blood
detection process and reduce the model noise, the built-in
function of the H2O package (h2o.varimp) was applied to cal-
culate the importance of indices. The value of the calculated
importance were listed in table 3 as importance percentage.
Then, the number of indices was reduced to establish the final
model (model-2).

The deep learning neural network was executed by the
H2O package (version 3.32.0.1) in R (version 3.2.4). The
H2O package is a parallel machine learning package that
provides fast, scalable machine learning algorithms.

C. ASSESSMENT METHOD
The generalization capability of the model can be evaluated
by cross-validation, thereby avoiding excessive fit [27]. Ten-
fold cross-validation divided the training set into 10 parts, 9 of
which were used to build the model, and the remaining one
was used as the internal test set to verify the performance
of the model. Ten models were established by repeating
10 times to detect the accuracy and reliability of the model.
The external test set did not participate in the establishment

of the model and was only for verifying the performance of
the model.

The visual effect of the model is presented with a
confusion matrix [28]. Sensitivity (Sens, (1)), specificity
(Spec, (2)), and accuracy (ACC, (3)) were calculated by
true-positive (TP), false-positive (FP), true-negative (TN) and
false-negative (FN).

Spec =
TN

TN + FP
(1)

Spec =
TN

TN + FP
(2)

Acc =
TP+ TN

TP+ TN + FP+ FN
(3)

The receiver operating characteristic curve (ROC) was
drawn by using sensitivity as the y-axis and 1-specificity as
the x-axis. The area under the curve (AUC) was obtained by
calculating the area under the ROC curve. The closer the AUC
is to 1, the better classification of the model.

III. RESULTS
A. GOOD IDENTIFICATION PERFORMANCE
Model-1 is based on 60 features, with excellent classifi-
cation and prediction performance. For the external test
set, the AUC of model-1 was 0.9152, the sensitivity was
80.20%, the specificity was 91.07%, and the accuracy was
86.99%. The ROC curve of the external test set is shown
in Fig. 2a.

As shown in Fig. 3, with the increase in features involved
in modeling, the performance of the model increases. Finally,
we selected 33 features to build the final model (model-2).
Model-2 has good performance, with a sensitivity, specificity,
total accuracy and area under the curve of 85.44%, 83.82%,
84.54% and 0.9165 for the cross-validation set, respectively.
The selected features are shown in Table 3. For the external
test set, the sensitivity, specificity, and accuracy of model-2
were 85.15%, 81.55%, and 82.90%, respectively. The ROC
curve of the test set is shown in Fig. 2b, and the AUC was
0.9126.
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FIGURE 1. Changes in AUC and logloss values for the training set and
tenfold cross-validation on the training set as the number of hidden
layers increased. (a) The AUC of the training set increased first and then
flattened, while the AUC of the tenfold cross-validation first increased
and then oscillated. (b) The logloss of the training set first decreased and
then oscillated, and the logloss of the tenfold cross-validation tended to
increase.

B. USER-ORIENTED ONLINE DIAGNOSTIC TOOL
Wehave designed an online identificationwebsite for patients
and medical workers at http://www.cppdd.cn/GC2. The user
can input the corresponding blood test data in the text box
according to the prompt and obtain the corresponding identi-
fication results. The homepage of this website is shown in
Fig. 4. Users should use the same equipment as the blood
testing equipment used in this study. The system deviation
caused by using other blood testing equipment might affect
the accuracy of this identification.

IV. DISCUSSION
A. ADVANTAGES OF THIS STUDY
A comprehensive comparison of previous works and our
method is given in Table 4. In general, the identification

FIGURE 2. Identification performance of this method. (a) ROC curve and
identification performance of the external validation set of model-1.
(b) ROC curve and identification performance of the external validation
set of model-2.

method for GC presented in this study is suitable for the
screening of GC on a large scale compared with previous
methods, especially in regions that lack medical resources,
with the advantages listed below.

First, the blood indices on which this method were built
were all collected from a Clinical available blood biochem-
ical detector. These data are inexpensive and easy to obtain.
Traditional methods for the detection of gastric cancer always
rely on the detection of characteristics in gastric tissue. For
example, Lu et al. detected the content of hsa_circ_0005758
(circRNA) in gastric tissue, and the sensitivity and specificity
were 75.0% and 67.7%, respectively [30]. Pang et al. detected
the content of LINC00152 (lncRNA) in gastric tissue; the
sensitivity was 62.5%, and the specificity was 68.1% [31].
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TABLE 2. Neural network hyperparameter settings.

FIGURE 3. The performance of the model varies with the top-ranking
number of features involved.

In addition, spectral-based methods on tissue images were
also discovered and achieved outstanding results. For exam-
ple, Li et al. analyzed the spectral characteristics of gas-
tric mucosa tissue to diagnose GC through a deep learning
method and achieved good results, with a specificity of 96.7%
and a sensitivity of 96.6% [9]. The above studies using gastric
tissue require experienced gastroscopic doctors to accurately
extract gastric mucosa samples, which is not suitable for
screening GC on a large scale. The sensitivity of the tradi-
tional GC biomarker pepsinogen was 69% [32]. Lin et al.
used urinary surface-enhanced Raman spectroscopy (SERS)
to diagnose GC from healthy sample based on gold nanopar-
ticles, with a sensitivity of 90% and specificity of 93.8% [33].
However, Lin’s study was not efficient at distinguishing
between GC and breast cancer, with specificity of 81.4% and
a lower sensitivity of 62.0%. Cui et al. measured the content
of mir-106a in gastric juice samples, and the sensitivity and
specificity were 73.8% and 89.3%, respectively [20]. The
sampling of gastric juice is more complicated than that of
blood. Research on blood markers is extensive. Hu et al.

conducted a meta-analysis of DNA methylation in serum
and plasma, and the results showed high specificity and
low sensitivity [19]. Li et al. and Zhao et al. analyzed the
content of circular RNA in plasma, and the results were not
ideal [15], [18]. The use of plasma markers, such as protein
P08493, MYC (cfDNA), and miR-20a (MiRNA), did not
achieve good results [5], [34], [35]. Comprehensive multiple
indices can achieve better results in the diagnosis of GC. Sim-
ilar to this work, Zhu et al. used the gradient boosting decision
tree (GBDT) method to analyze clinical blood indices, such
as hemoglobin, and biomarkers, such as carcinoembryonic
antigen (CEA), to establish a gastric cancer identification
model and achieved good results [36]. Su et al. used machine
learning to analyze the mass spectra of various proteins in
serum and obtained good results [37]. Mass spectrometers
are costly and have high requirements for operators, so this
method is not suitable for large-scale screening.

Second, this method was developed based on a large
and comprehensive dataset, including not only gastric can-
cer samples and healthy samples but also other major
cancer samples and other gastric diseases with symptoms
similar to gastric cancer. These samples included sam-
ples that are likely to be confused in mass screening of
GC. Most of the previous work was only deduced on
a small sample size [9], [33], [37]. Only a few works
were studied on a large dataset with thousands of samples,
as in this work, such as in works by Hu et al. [19] and
Huang et al. [32].

Third, this method presents a better identification perfor-
mance than previous works, especially for the test set, which
implies that this method has a better generalization ability and
stronger robustness, even than our previous work [29], with a
better AUC value.

B. ANALYSIS OF KEY FEATURES
Cancer is associatedwith dysregulation ofmultiple biological
processes, and the analysis of key features facilitates the dis-
covery and validation of biomarkers that contribute to under-
standing cancer pathogenesis and developing drugs [38].
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TABLE 3. Ranking of important features and results of correlation test.

To discover insights into key features in different populations,
all samples were categorized into four population groups:
the GC group, normal group, other cancer group, and other
gastric disease group. We selected features with significant
differences and drew a boxplot between groups, as shown
in Fig. 5. In Fig. 5a, the levels of PCT in the normal group

were higher than those in the GC group. Current studies
have shown that tumor cells can indirectly promote platelet
production and activation. Activated platelets can also pro-
tect and even promote the growth and metastasis of tumor
cells [39], [40]. Our statistics may show that the hematopoi-
etic function of bone marrow in some patients with gastric
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FIGURE 4. Main web page of this GC identification tool.

cancer is affected by chemotherapy drugs or radiotherapy,
resulting in the suppression of hematopoietic function and
thrombocytopenia [41], [42].

As shown in Fig. 5b, the levels of potassium in the nor-
mal group were higher than those in other groups. Cancer
and gastric diseases may lead to disordered homeostasis and
potassium ion balance. Wu et al. showed that the potassium

content in GC tissue was higher than that in normal tis-
sue [43]. Ding et al. proved that the Eag1 potassium channel
was overexpressed in GC tissue [44]. In this experiment, the
low levels of potassium in the blood of GC patients may be
related to this, which requires further study.

In Fig. 5c, the basophil count of the normal group is shown
to be higher and more concentrated than that of the other
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TABLE 4. Performance comparison of this work with other methods for identifying GC. (N/A: not applicable).

groups, which is also confirmed by the higher basophil ratio
in Fig. 5d. Tumor-infiltrating basophils are considered to be
a poor prognostic factor for GC, but there is no significant
correlation between blood basophils and tumor-infiltrating
basophils [45]. The higher percentage of basophils in the
normal group may be due to the increase in white blood cells
in the other groups.

As shown in Fig. 5e, the calcium content in the normal
group was higher than that in the GC group. Studies have
shown that calcium may inhibit the damage of salt to gas-
tric mucosa, thereby reducing the risk of GC [46]. How-
ever, the work of Xie et al. indicated that serum calcium
concentration was positively correlated with the expression
of calcium-sensing receptor (CaSR). Calcium can activate
the overexpression of CaSR to promote the proliferation of
GC cells [47]. These contradictory conclusions need further
study.

Monocytes (Mo) are believed to promote tumor growth and
proliferation [48]. High levels of monocytes are thought to
confer poor prognosis in GC patients [49]. Figure 5f shows
that the Mo% of the normal group is significantly higher than
that of the other groups, but there is no significant difference
in the Mo content among the groups. The results show that
the count of white blood cells in all groups except the normal
group increased significantly.

A low concentration of creatine kinase (CK) in GC tissue
has been demonstrated [50]. This is similar to the results
shown in Fig. 5g. CK is very important for ATP homeostasis
in cells. Abnormal CK levels may lead to apoptosis [51].

The increase in eosinophils in the tissue can improve
the prognosis of patients with GC. It has been proven that
eosinophils have a good anticancer effect on colorectal can-
cer [52]. In Fig. 5h, the EO% of the normal group is sig-
nificantly lower than that of the GC group. Eosinophils
in cancer patients may increase due to autoimmune
responses.

The red blood cell distribution width-SD (RDW-SD) in
the normal group was lower than that in the other groups,
as shown in Fig. 5i. Wei et al. showed that the red blood
cell distribution width of GC patients is significantly higher
than that of the normal group and further increases with the
development of tumors. This phenomenon may be related
to the decrease in hemoglobin caused by malnutrition in
GC patients and may be related to inflammation [53].
Chang et al. showed that the ratio of CK-MB to total CK
in hematological malignancies was higher in patients with
colorectal cancer, lung cancer, and hepatocellular carci-
noma [54]. This conclusion is roughly the same as the dis-
tribution of CK-MB and CK in this study and provides a
direction for distinguishing patients with gastric diseases
from patients with gastric cancer.

One should note that there were some features that are
not statistically significant (with high p-value) between
gastric cancer sample group and whole negative sample
group, such as Mg and DBil in table 3, but they were at
least had significant difference (p-value <0.05) with one
of the 3 negative sub-groups (normal group, other can-
cer group and other gastric cancer group). This is just the
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FIGURE 5. Features with significant differences in different patient groups. In the figure, A, B, C, and D represent the GC group, normal group, other
cancer group, and other gastric disease group, respectively. PCT(a), plateletcrit; K(b), potassium; BASO#(c), basophil count; BASO%(d), basophil ratio;
Ca(e), calcium; MO%(f), monocyte ratio; CK(g), creatine kinase; EO%(h), eosinophil ratio; RDW-SD(i), red blood cell distribution width-SD. (p-value=

0.05-0.01, one star; p-value=0.01-0.001, two stars; p-value<0.001, three stars.)

reason why that deep learning is utilized here. Deep learn-
ing methods with excellent self-learning ability can handle
multi-dimensional nonlinear statistical relationships better
than traditional statistical methods [24]. Therefore, these
features were also included as key features in the final
model since their relationship with gastric cancer is in a
multi-dimensional nonlinear way instead of linear statistical
way.

V. CONCLUSION
We utilized an artificial neural network under the H2O frame-
work method to process routine blood data and blood bio-
chemical data, extracted 33 important indices as biomark-
ers for the identification of GC, and established an iden-
tification model and user-friendly web testing terminal.
These biomarkers are considered to have great value in the
physiological research of GC. Compared with conventional
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diagnostic methods, the diagnostic model established in this
study has the advantages of higher accuracy, noninvasiveness,
and inexpensive detection. It has the potential to screen awide
range of people and effectively reduces the pressure on the
medical system. With the further collection and learning of
blood test data, the performance of this diagnostic model can
be further improved.

APPENDIX
The original data of the samples for modeling and validation
are provided in supplementary table S1.

The detailed statistical method and results for difference
of selected features between gastric cancer group and other
sub-groups are provides in supplementary table S2.

The box plots for all 33 selected features are provided in
supplementary file S3.
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