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ABSTRACT Due to its high spectral resolution, Hyperspectral remote sensing data can provide practically
continuous spectral curves for target objects and fully reflect the detailed characteristics of ground objects.
However, the data redundancy generated by a large number of bands poses challenges to the feature
extraction of target objects. Hence, the spectral data are processed by wavelet transform to reduce the
influence of intra-class spectral variation on classification. The multi-scale image data were collected
by Gaussian pyramid multi-scale transformation. Then the multi-scale spatial information was captured
through the feature extraction network to improve the classification accuracy. We propose a dual-branch
feature extraction network. The first branch adopts Gaussian pyramid multi-scale transformation to obtain
multi-scale images and then applies the feature extraction module to gain multi-scale spatial features. The
second branch employs wavelet transform to process spectral data to reduce the impact of abnormal spectral
data on classification and then applies a feature extraction module to acquire spectral features. Finally, the
spectral and spatial features obtained by the two branches are fused in the full connection layer to achieve
an accurate classification. This method can effectively capture the fine features of hyperspectral images
by combining spectral features and spatial features of different scales. Simultaneously, it can capture the
interaction between spectral and spatial features by combining spatial and spectral features through joint
learning. Experimental results on hyperspectral image datasets indicate that the method outperforms other
traditional deep learning-based and other advanced classifiers.

INDEX TERMS Hyperspectral image, Gaussian pyramid, wavelet transforms, hyperspectral image
classification.

I. INTRODUCTION
Hyperspectral image (HSI) is a three-dimensional image
captured by an aerospace vehicle carrying a hyperspectral
imager, and each pixel in the image contains hundreds of dif-
ferent wavelengths of reflection information, which makes it
suitable formany practical applications such asmilitary target
detection, mineral exploration, environmental monitoring,
and agricultural production. In recent years, hyperspectral
remote sensing techniques have received great attention in
various applications of Earth observation [1]–[6]. Hyperspec-
tral imagery (HSI) provides hundreds of continuous narrow
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spectral bands [7]–[10], which can distinguish different sub-
stances more accurately than conventional panchromatic and
multispectral remote sensing images. With its high spectral
resolution, HSI is uniquely advantageous for finer classifi-
cation [11], [12], as it can detect subtle spectral features that
cannot be resolved by conventional images. In the early stages
of HSI classification, many machine learning-based methods
have been applied, such as the nearest neighbor, decision
tree, and linear function algorithms. Among these methods,
k-nearest neighbor (K-NN) [13] can be considered as the
simplest classifier, which uses the nearest neighbor algorithm
and is the simplest classifier that employs the Euclidean dis-
tance to measure the similarity between the test and training
samples. Support vector machine (SVM) [14] hyperspace
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images (HSI) can classify data in high-dimensional space
by dividing hyperplanes based on different spatial structures
and spectral features of different materials. Some popular
classifiers, such as support vector machine (SVM) [14] and
correlation vector machines, have been widely used for HSI
analysis.

Recently, sparse representation (SR) has been applied to
HSI classification as a powerful image processing tool [15].
Sparse representation relies on the assumption that pixels in
the same class should have similar spectral features. Test
samples can be linearly represented by a small number
of training samples from the same class. However, tradi-
tional SR methods consider only the spectral information of
the test pixels and ignore the spatial neighbors around the
test pixels. Based on the assumption that pixels in a local
region usually have similar spectral materials and features,
Chen [16] proposed a JSR-based classification (JSRC) algo-
rithm, which considers spatial information by jointly repre-
senting pixels in a local window to obtain better classification
performance. In [17] and [18], some space-based classifiers,
such as kernel-based SR and l2-norm regularized sparse sub-
space clustering, were proposed, and these classifiers showed
better performance.

However, these local window-based methods have a sin-
gle limitation. A common limitation of the methods is that
the narrow windows may include different classes of pixels.
In other words, pixels in the edge regions are appropriate for
small-sized windows, while large-sized windows are suitable
for smooth regions. To solve this problem, Fang [19] pro-
posed the multi-scale adaptive SR (MASR) method, which
obtained better performance. Other advanced tools, such as
the adaptive mean shift analysis method [20], are also effec-
tive ways to solve this problem.

The main contributions of this paper are as follows:
1) Compared with the traditional feature extraction

method, the multi-scale spatial feature extraction
method proposed in this paper pays more attention to
the detailed information and local information of HSI
in the model. And the local information can effectively
preserve the local structure inherited from the original
data, reducing the loss of key information. The spectral
feature extraction method proposed in this paper uses
wavelet transform to process spectral data, which can
reduce the impact of abnormal data on the overall
classification results.

2) This paper uses the method of double-branch feature
extraction and fusion. The spatial features and spectral
features are extracted by different feature extraction
networks, and then the feature fusion is performed to
obtain the classification results.

II. RELATED WORK
HSI not only contains abundant ground image informa-
tion but also has rich spectral information. Therefore,
various spatial-spectral classification methods have been
developed [21]–[23]. For example, Kang et al. proposed

a spectral-spatial classification-based method of edge-
preserving filtering (EPF) [24].EPF is a hot research topic in
the field of image processing and computer vision in recent
years. In recent years, EPF is a research hotspot in image
processing and computer vision, which not only holds the
function of image smoothing but also can import spatial
structure information into the input image. Peng et al. pro-
posed a region kernel to measure region-to-region distance
similarity for HSI classification [25]. The region kernel was
designed as a linear combination of multiscale box kernels,
which can handle HSI regions with arbitrary shapes and sizes.
These methods consider information about the spatial envi-
ronment of the pixel and the surrounding pixels while using
the spectral information of ground objects for classification.
Therefore, they can effectively reduce the influence of the
phenomenon of the same object with different spectra and
distinct objects with the same spectrum on the classification
accuracy. At the same time, the classification accuracy can be
significantly improved.

With the advancement of artificial intelligence and deep
learning, various CNN-based HSIC methods have attracted a
lot of attention in solving the nonlinear structure of hyper-
spectral data [8], [26]–[32]. Convolutional networks with
multilayer CNN for HSIC were first designed [33] to extract
spectral features. Yu [34] proposed a CNN structure embed-
ded with extracted hash features to improve the accuracy of
HSIC. In [35], a recurrent neural network (RNN) was pro-
posed to process spectral data using the following information
of the spectral correlation and band variability.

Nonetheless, the range of variation in spectral magnitude
or pixel shape can vary widely within the same ground level.
Therefore, foreign objects may have similar spectra, while
objects within a class may have discrete spectra. This is
the bottleneck hindering the improvement of classification
accuracy. In addition, spectral variations complicate the sta-
tistical distribution of sample points and exacerbate problems
associated with small sample sizes. Therefore, reducing the
effects of spectral changes is one of the key issues for HSI
classification. To address this problem, various HSI classifi-
cation methods have been proposed.

Xue et al. [36] proposed a completely different approach
from the perspective of sub-pixel target detection. They used
band selection followed by nonlinear expansion (BSNE) and
iterative constrained energy minimization to classify HSIs.
It is not difficult to implement and has advantages over
other methods. Meanwhile, with the development of remote
sensing imaging technology, the spatial resolution of HSI has
been increased. The joint spectral-spatial features have also
attracted more attention [37]. For example, many features
in [38], such as multiple features, texture features, grayscale
coexistence features and statistical features are used as com-
putational parameters to obtain better classification results.
Moreover, inspired by tensor learning, spatial and spectral
features can also be fused to the 3-D tensor [39]. It can narrow
the loss of structural information intrinsic to HSI. Guo [40]
proposed a tensor-based technique for HSI classification and
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used multilinear principal component analysis to preprocess
the tensor. However, most of these tensor methods build the
tensor physically and ignore those features that follow a pre-
determined logical arrangement. In [41], a novel generalized
tensor regression (GTR) method extended from a simple but
effective classifier, was used for HSI classification.

Currently, convolutional neural network (CNN) has shown
excellent performance in HSI classification [8], [32]. This
is because it can naturally deal with the problem that HSIs
are often in a nonlinear and complex feature space [42].
Some researchers have proposed multi-stream CNN for HSI
classification. Another aspect [43], [44]. Inmost of CNN, fea-
ture extraction and classifier training are separated. To over-
come this drawback [45], a spectral-spatial unified network
(SSUN) [45] was designed and combined with shallow and
deep convolutional layers to deal with the information loss
problem. In [46],a dual-channel deep CNN is proposed. Dis-
criminative information is captured by the spectral domain
and deep convolutional layer, respectively. The information is
available from the spectral and spatial domains respectively
and can be efficiently utilized and fused. Xu [47] proposed
a novel two-branch CNN (MS-CNN) based on multi-source
data for the classification and fusion of HSI and data from
multiple other sensors. data frommultiple other sensors, such
as Light Detection and Ranging (LIDAR) [48] data. They
help the two networks to place emphasis on different features
separately and obtain excellent classification performance.
Cao [49] proposed integrate active learning and deep learning
into a unified framework and leverage Markov random fields
(MRF [50]) to enhance the smoothness of class labels to
further improve classification performance(CNN-AL-MRF).
Han [51] proposed a method to select pixel blocks of different
scales around the central pixel as the basic unit for processing.
Then, a spatial augmentation strategy is intended to obtain
various spatial location information under limited training
samples through spatial rotation and row-column transforma-
tion to obtain better accuracy. Dong [52] propose weighting
feature fusion based on convolutional neural network and
graph attention network (WFCG) for HSI classification. The
GAT is first built with the help of superpixel-based encoder
and decoder modules, and then coupled with the attention
mechanism to build the CNN. Finally, features are weighted
and fused with the features of the two neural network models.
Ortac [53] proposed to using 1D, 2D and 3D convolutional
neural networks to classify samples from widely used hyper-
spectral datasets by extracting spatial, spectral and spatial-
spectral features.

The research of hyperspectral image classification faces
some challenges, each pixel of the hyperspectral image
contains hundreds of different bands of reflection infor-
mation, the number of bands and the correlation between
adjacent bands of the hyperspectral image is large, there is
high information redundancy, as well as a large amount of
hyperspectral image data, needs a lot of operations, using
data dimensionality reduction algorithm can not only reduce
data redundancy but also reduce the number of operations.

PCA (Principal Component Analysis) [54] is a principal
component analysis method, which is a technique to ana-
lyze and simplify data sets. The principal component anal-
ysis is often reduce the dimensionality of a dataset while
maintaining the features in the dataset that contribute the
most to each other’s variance. This is achieved by retaining
lower-order principal components and ignoring higher-order
principal components so that the lower-order components
tend to retain the most important aspects of the data. It is
particularly suitable for dimensionality reduction processing
in hyperspectral images, thus achieving a reduction in data
redundancy and computational effort. Moreover, there is a
strong correlation between similar neighboring pixel points in
hyperspectral images, and the small size or low contrast of a
certain type of object in the image requires a higher resolution
to be observed, while on the contrary the strong contrast or
large size of a certain type of object in the image requires just
a lower resolution, and both situations exist in hyperspectral
images, which then require multi-resolution processing. The
bottom of the Gaussian pyramid [55] is a high-resolution
representation of the image to be processed, while the top is a
low-resolution representation, and as the pyramid moves up
the pyramid, both size, and resolution decrease. In this way,
a multi-resolution and multi-size image can be calculated by
Gaussian pyramid, and a better performance can be obtained
for its feature extraction and classification.

With the efforts of scientists, wavelet transform has been
well developed in various fields. Discrete wavelet transform
(DWT) [56] is a time-frequency analysis method in sig-
nal processing improved based on Fourier transform, which
can represent local features in both time and frequency
domains, and is an important algorithm in image coding.
Barzegar [57] improved the model’s prediction accuracy on
the dataset by combining boundary correction (BC) [58]
and maximum overlap discrete wavelet transform (MODWT)
[59] preprocessing data with a hybrid convolutional neural
network (CNN). The current hyperspectral remote sensing
image classification method does not apply to all types of
images. The hyperspectral remote sensing image data can
be regarded as three-dimensional cube data, and we adopt
multi-scale and multi-resolution feature extraction for the
hyperspectral image in pixel space feature to get more accu-
rate classification features and in spectral feature, we try
to process the image spectral curve of hyperspectral remote
sensing image and then introduce Fourier transform and
wavelet transform in signal processing to realize the image
processing. The processed image spectral data are put into
LSTMneural network for classification, while themulti-scale
and multi-resolution images are put into the resNet [60]
network for classification, and the two network output layers
are connected together into a fully connected network for
classification to obtain the final results.

III. METHODOLOGY
Our HSI classification method consists of two networks
whose overall architecture is shown in Fig.1 The upper part
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is processed by PCA for dimensionality reduction, and then
the dimensionality-reduced data is downsampled through the
Gaussian pyramid to obtain images of three scales, which
are divided into two resNet networks with different layers
for feature extraction, as shown in Fig.2 and Fig.3. Each
module in turn consists of two different residual blocks as
shown in Fig. 4 and Fig. 5. Use a shallow network for
small-sized images and a deep network for large-sized images
to prevent overfitting. The following part performs discrete
wavelet processing on the spectral data of each pixel point,
and obtains the spectral data after denoising and de-anomaly,
which is input to the LSTM network for spectral feature
extraction. The first network LSTM requires discrete wavelet
processing of the data to obtain finer denoised data. The
second network resNet needs to segment the data, place each
pixel to be classified in the center of a rectangular area, and
then perform PCA data down scaling and Gaussian pyramid
processing on the segmented image to obtain a multi-scale
and multi-resolution image. Using two separate networks to
extract spatial features and spectral features respectively, and
finally combining the two parts of the network through a fully
connected network to obtain the classification results. Details
are described in Section IV-A-IV-B-IV-C.

A. REGION MULTI-SCALE SPATIAL FEATURE EXTRACTION
Based on the above analysis, hyperspectral data are prone
to dimensional disasters because of their data redundancy as
well as a large number of operations and the high-dimensional
features involved. As the dimensionality of the dataset
increases, the number of samples required for algorithm
learning increases exponentially. In hyperspectral classifi-
cation, it is very disadvantageous to encounter such large
data because redundant data and certain unimportant fea-
tures reduce the classification accuracy, and more mem-
ory and processing power are required to learn from large
datasets. In addition, the sparsity of the data increases as
the level. It is very difficult to explore the same dataset in
a high-dimensional vector space than in an equally sparse
dataset. Therefore, this paper first uses PCA to reduce the
dimensionality of HIS data to alleviate the dimensional catas-
trophe and data redundancy. PCA algorithm can make the
samplesmore spatially relevant after rounding off some infor-
mation to remove some noise and data that affect the classi-
fication effect. The PCA algorithm is utilized to partition the
data into regions, and the pixels to be classified are placed
at the center of the partitioned region. The segmented data
are then down sampled using the Gaussian pyramid algo-
rithm to obtain multi-scale and multi-resolution image data.
The Gaussian pyramid is used for down sampling. First, the
original image is used as the bottom image G0 (layer 0 of
the Gaussian pyramid), and the gaussian kernel is used to
convolve it, and then the convolved image is down sampled
to get the upper-layer image G1, and this image is used as the
input, and the convolution and down sampling operations are
repeated to get the upper-layer image, iterating several times
to form a pyramid-shaped image data structure as shown

in Fig.6. L1 indicates the upper layer to be generated, and
Ll−1 indicates the lower layer of the pyramid to obtain the
upper layer by F-function calculation. The image is continu-
ously computed by iterating through the following equation:

L1 (m, n) =
c∑

u=−c

c∑
v=−c

F (u, v)

∗Ll−1 (2m− 1− u, 2n− 1− v) (1)

The * is the convolution operation. X ∈ {1,2,3, · · ·, l},
l is the total number of layers of the Gaussian pyramid.
F (u, v) is (2c+ 1)× (2c+ 1) Gaussian window, which can
be defined as:

F (u, v) =
1

2πϒ2 e
−
(
u2+v2

)/
2ϒ2 (2)

where ϒ is the variance of the Gaussian filter. The Gaussian
pyramid consists of a series of images {L1,L2,L3, · · ·,Ll},
which is generated by the above equation.

Put the data processed by dimensionality reduction and
Gaussian pyramid into the resNet network for feature extrac-
tion. The resNet [60] network can extract deep-level features
and networks that can deepen the number of network layers
without affecting the effect. It is especially suitable to use it to
extract hyperspectral image features, because hyperspectral
images have many dimensions, even after the PCA algorithm
reduces the layer. The number is not low, so use the resNet
network to extract its spatial features.

The overall structure of the image is achieved by perform-
ing the same steps for down-sampling to obtain the processed
image. The same processing is applied to the HIS image so
that the HSI can be analyzed at multiple scales, and different
spatial features can be available at different scales. It clas-
sifies with distinct layers of the resNet [60] network. Each
layer of the pyramid is obtained by the following formula.
L1 represents the upper layer that needs to be generated, and
Ll−1 means the lower layer of the pyramid is calculated by
the F function to obtain the upper layer representation. Itera-
tively calculate the value of the image pixel by the following
formula.

B. SPECTRAL FEATURE EXTRACTION
For spectral features, we sample wavelet transform for
each image element of the hyperspectral image, because of
weather, atmosphere, light or satellite sensor imaging pro-
cess, the uncompensated atmosphere, uncompensated error
of the sensor and the angle of the sun relative to the zenith and
other objective factors may cause the spectral curve of similar
image elements of the hyperspectral image will be different
so that the spectral curve of similar image elements is very
different, resulting in The recognition rate is reduced, and
the image elements cannot be correctly classified by spectral
curves alone. Therefore, this paper uses wavelet transform
to reduce the gap of spectral curves as well as to decrease
the noise points. The processed spectral data are put into
the LSTM network to learn and extract the spectral features.
The wavelet transformed spectral curve data are used as
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FIGURE 1. The overall flowchart of the proposed GWJ-Net.

FIGURE 2. The overall flowchart of the BResNet(11).

FIGURE 3. The overall flowchart of the BResNet(7).

sequence data and then used to train the LSTM network,
which can remember the previous input data and influence
the next input, so that it can learn the long-term dependency.
Moreover, the forgetting gate can determinewhat information
we will discard from the cell state, and discarding some
unimportant data can improve the accuracy of the model.

C. THE PROPOSED MODEL
The models we use are residual network and long-short mem-
ory neural network, which perform region segmentation on
the data after PCA dimensionality reduction and segment the
pixel points to be classified into a rectangular block, whichwe

FIGURE 4. The BResNet residual block1 structure.

segment into 11×11 rectangular blocks. Then the rectangular
block data are processed by a Gaussian pyramid to get multi-
scale multi-resolution hyperspectral region image data and
use the residual network for spatial feature extraction. Data
normalization is performed before in putting into the network
so that each batch of data is similarly distributed and gradient
vanishing can be avoided. We use the following formula
to make the mean of the data close to 0 and the standard
deviation close to 1. The formula is as follows:

Z = γ
Z − E (Z )
√
Var (Z )+ ξ

+ β (3)
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FIGURE 5. The BResNet residual block2 structure.

FIGURE 6. The Gaussian pyramid structure.

Where Z denotes the output of samples in the batch after
applying batch normalization, E(Z) and Var(Z) represent the
expectation and variance of Z, respectively, and γ and β
are hyper parameters to be learned. We down sampled the
data three times to obtain four different scales of images
and trained the network with four residual networks without
layers to prevent overfitting. The wavelet-transformed spec-
tral data are constituted into the long-short memory neural
network for feature extraction.

IV. EXPERIMENTAL RESULTS
In this section, we establish the effectiveness of the proposed
method on three datasets and compare it with current state-of-
the-art methods. All programs in the experiments are run on
Python, and the network models are built using the PyTorch
deep learning framework, an open-source Python machine
learning library that allows custom deep learning models that
can be trained and used flexibly. The networks used as well
as the dataset processing procedures are implemented using
the Python language.The computer configuration used in our

FIGURE 7. For three experimental datasets: (a) False-color image of the
Indian Pines data, (b) Ground truth of the Indian Pines data,
(c) False-color image of the Salinas data, (d) Ground truth of the Salinas
data, (e) False-color image of the University of Pavia data, and (f) Ground
truth of the University of Pavia data.

TABLE 1. The numbers of training and testing samples for the Indian
Pines dataset.

experiment is as follows: CPU AMD3990X, GPU3090 and
computer memory are 64G.
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TABLE 2. The numbers of training and testing samples for the Salinas
dataset.

TABLE 3. The numbers of training and testing samples for the university
of Pavia dataset.

A. EXPERIMENTAL DATA
To evaluate the usability of our method, the performance of
our proposed dual-branch feature network is evaluated on
three commonly used datasets, namely Indian Pines dataset,
Salinas dataset and University of Pavia dataset. The classifi-
cation results are shown in Fig.7. For each dataset, we ran-
domly selected 200 labeled pixels of each class for training
and all other pixels in the ground truth graph for testing.
The Indian Pine dataset consists of 145 × 145 pixels and
was collected by an airborne visible infrared imaging spec-
trometer (VIRIS) located in northwest Indiana. 220 spectral
channels are covering 0.4 ∼ 2.5 µm with a spatial resolution
of 20 m. The Indian Pine dataset initially has 16 different
land cover classes. However, from a statistical point of view,
we did not select classes with a low number of samples and
selected eight classes with a high number of samples. The
numbers of training and test samples are listed in Table 1. are
shown in Fig. 7. Three experimental data sets: (a) pseudo-
color image data of Indian pine trees, (b) ground truth data
of Indian pine trees, (c) pseudo-color image data of Salinas,
(d) ground truth data of Salinas, (e) pseudo-color image
data of Pavia University, and (f) ground truth data of Pavia
University. The second dataset is the Salinas dataset collected
by the sensor on AVIRIS consists of 512 × 217 pixels, the
image contains 224 spectral bands with a spatial resolution

FIGURE 8. Varying window size performances.

of 3.7 m. In total, there are 16 classes and the number of
training and test samples are listed in Table 2.

The third dataset is that of the University of Pavia (con-
taining 610 × 340 pixels) was collected by the Reflective
Optics System Imaging Spectrometer covering the city of
Pavia, Italy. The dataset consists of 103 spectral bands cov-
ering 0.43∼0.865 µm with a spatial resolution of 1.3 m.
Approximately 42776 pixels in the ground truth map have
been labeled and divided into 9 categories, and the number of
training and test samples is shown in Table 3.

B. LEARNING THE PROPOSED METHOD
For each training pixel, we use the surrounding 11× 11 pix-
els, and diverse regions are extracted from the square-based
region and then pour into a sequence of convolutional layers.
Note that the proposed diverse-region strategy can be viewed
as a flexible representation of the square-shaped region,
hence the region size affects the ultimate performance of
the proposed GWJ-Net. Here, we empirically set the global
region size to be 11× 11.

The Adam algorithm is different from the traditional
stochastic gradient descent, which maintains a single learn-
ing rate to update all weights, and the learning rate does
not change during the training process, while Adam designs
independent adaptive learning rates for different parame-
ters by calculating the first-order moment estimates and the
second-order moment estimates of the gradients. Authors of
the Adam algorithm describe it as a collection of the advan-
tages of two stochastic gradient descent extensions by cal-
culating the first-order moment estimates and second-order
moment estimates of the gradient to design independent adap-
tive learning rates for different parameters. In this paper,
we set the initial learning rate to 0.001 and the batch size
to 200. Fig.8 shows the classification performance of the
rectangular region for different window sizes, from 3 × 3 to
15 × 15. The performance tends to be satisfactory when the
window size is 11× 11. When the window size is 11× 11 is
not the optimal window size for all experimental datasets.
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TABLE 4. Comparison of the classification accuracy(%) among the proposed method and the baselines using the Indian Pines data.

TABLE 5. Comparison of the classification accuracy(%) among the proposed method and the baselines using the Salinas data.

TABLE 6. Comparison of the classification accuracy(%) among the proposed method and the baselines using the university of Pavia data.

For example, the red curve indicates that the square area
11 × 11 is the best window size for the Pavia University
dataset, the blue curve indicates that the best window size
for the Indian Pines dataset is 11 × 11, and the best window
size for the Salinas dataset is 11×11, while when converting
spectral data to images, the best image size for the Indian

Pines dataset is, Therefore, we choose a relatively large size
among the allowed hardware resources to prevent wasting
hardware resources and exceeding hardware usage.

Different initial learning rates are tested on the Indian Pines
dataset as showed in Table 8. It can be observed that a larger
learning rate may degrade the classification performance; the
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FIGURE 9. Classification maps from the proposed GWJ-NET and the baselines on the Indian Pines Data, (a) CNN:97.01%,
(b) CNN-PPF:93.9%, (c) CD-CNN:94.24%, (d) GWJ-NET:99.06%.

FIGURE 10. Classification maps from the proposed GWJ-NET and the baselines on the University of Pavia Data, (a) CNN:89.28%,
(b) CNN-PPF:94.8%, (c) CD-CNN:95.42%, (d) GWJ-NET:99.74%.

best performance is achieved when the rate of learning is
around 0.001. In follow-up experiments, we set the learning
rate as 0.001 for GWJ-Net.

C. CLASSIFICATION PERFORMANCE
Our proposed GWJ-NET method is compared with cur-
rent advanced hyperspectral image classification methods,
such as SVM-RBF (SVM using radial basis function) and
SVM-RF (SVM based on the random selection of features),
as well as CD-CNN, SS-CNN, CNN-PPF, CNN, SVM-MRF,
and R-PCA CNN. in Tables 4-6 Accuracy, OA, and AA
indicate the classification performance of different methods
on several datasets. We use a random selection method for
dataset segmentation, for each category of data we randomly
select 200 data for training and the remaining data for testing.
The experimental results obtained from us show that the clas-
sification accuracy based on spatial-spectral features is higher
than that using only one of the features, and our proposed
GWJ-NET model is higher than other classifiers in terms of
classification accuracy. In Table 5, we can obtain the accuracy
of our proposed GWJ-NET as 99.74%, which is 7.35% higher

than the accuracy of R-PCA CNN (92.39%) compared to the
table, and about 4% higher compared to CD-CNN (95.42%).
A similar performance also exists for experiments conducted
on other datasets. The classification performance of our pro-
posedmethod on the University of Pavia dataset, Indian Pines
dataset, and Salinas dataset is approximately 2%, 1%, and 1%
better than the other classification methods compared to the
other methods. Fig. 9-11 show the graphs of the classification
results for each classifier, and the graphs show that the classi-
fication results are consistent with the classification results in
Tables 4-6. By the presentation of the images, we can visually
see that compared with the CNN, CNN-PPP, and CD-CNN
in the table, our proposed GWJ-NET classification result
graph has significantly fewer points of classification errors in
many regions, such as the Bare soil region in Fig. 11 and the
Soybean-clean region in Fig. 9, so we can conclude that our
GWJ-NET classification method performs better than other
classification methods.

Table 7 lists the classification performance with dif-
ferent numbers of training samples per class increasing
from 50 to 200 with an interval of 50. Obviously, for all
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FIGURE 11. Classification maps from the proposed GWJ-NET and the baselines on the Salinas Data, (a) CNN:92.27%,
(b) CNN-PPF:96.48%, (c) CD-CNN:96.73%, (d) GWJ-NET:99.45%.

TABLE 7. Classification accuracy (%) of different methods in the Pavia
data set over different numbers of training samples.

TABLE 8. Classification performance (%) of different initial learning rate
for GWJ-NET on the Indian Pines data.

methods the accuracy can increase with the number of train-
ing samples. From the results, the proposed GWJ-NET still
outperforms other methods, namely CNN, CNN-PPF and
CD-CNN. Even with a small amount of training data, such
as 50 or 100, our proposed network continues to have good
classification performance.

Table 9 lists the computational complexity of training and
testing for GWJ-NET, CNN, and CNN-PPF. During training,

TABLE 9. Elapsed time (h: Hours, s: Seconds) of training and testing for
GWJ-Net method on three data.

TABLE 10. Overall accuracy (%) of resnet networks with different layers
on Indian Pine data.

CNN is faster than the other two because the network size and
input size of CNN is smaller than the other two. In the testing
process, GWJ-NET will be more time-consuming due to the
increased computational burden of using multi-scale feature
extraction methods.

In particular, we compare the classification performance
by randomly selecting 10% of each class of training sam-
ples and ResNet networks with different layers on Indian
Pines data. As showed in Table 10, GWJ-NET achieves
the highest accuracy due to the combination of spec-
tral feature extraction and ‘‘multi-scale’’ module feature
extraction.
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V. CONCLUSION
In this paper, we propose a new multi-branch network for
hyperspectral image classification based on a multiscale
region Gaussian pyramid and a wavelet transform of the
spectrum with resNet combined with LSTM. First, the image
is segmented so that the image elements to be classified are
placed in the center of the rectangle, and then the segmented
region is subjected to Gaussian pyramid processing to extract
multi-scale features, where multi-scale spatial information
and contextual interaction features in specific directions can
be obtained to improve the model recognition rate. For
spectral data, we perform wavelet transform to reduce the
influence of some anomalous spectral segments on the clas-
sification and remove some noise that affects the recognition
effect, so that finer spectral information can be captured. The
advantages of our method come from two aspects: regional
multi-scale feature extraction and wavelet transformation of
the spectral information to reduce the influence of anomalous
spectral values on the classification. Experimental results
show that the proposed method based on regional Gaussian
pyramid multiscale and spectral information wavelet trans-
form outperforms other recent methods on three datasets.

REFERENCES
[1] Y. Yuan, Y. Feng, and X. Lu, ‘‘Projection-based NMF for hyperspectral

unmixing,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8,
no. 6, pp. 2632–2643, Jun. 2015.

[2] W. Li, Q. Du, and B. Zhang, ‘‘Combined sparse and collaborative repre-
sentation for hyperspectral target detection,’’ Pattern Recognit., vol. 48,
no. 12, pp. 3904–3916, 2015.

[3] X. Huang and L. Zhang, ‘‘An SVMensemble approach combining spectral,
structural, and semantic features for the classification of high-resolution
remotely sensed imagery,’’ IEEE Trans. Geosci. Remote Sens., vol. 51,
no. 1, pp. 257–272, Jan. 2012.

[4] H. Goldberg, H. Kwon, and N. M. Nasrabadi, ‘‘Kernel eigenspace separa-
tion transform for subspace anomaly detection in hyperspectral imagery,’’
IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 581–585, Oct. 2007.

[5] V. Sharma, A. Diba, T. Tuytelaars, and L. Van Gool, ‘‘Hyperspec-
tral CNN for image classification & band selection, with appli-
cation to face recognition,’’ KU Leuven, ESAT, Leuven, Belgium,
Tech. Rep. KUL/ESAT/PSI/1604, 2016.

[6] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis,
‘‘Tensor-based classification models for hyperspectral data analysis,’’
IEEE Trans. Geosci. Remote Sens., vol. 56, no. 12, pp. 6884–6898,
Dec. 2018.

[7] D. Landgrebe, ‘‘Hyperspectral image data analysis,’’ IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 17–28, Jan. 2002.

[8] Y. Li, W. Xie, and H. Li, ‘‘Hyperspectral image reconstruction by deep
convolutional neural network for classification,’’Pattern Recognit., vol. 63,
pp. 371–383, Mar. 2017.

[9] X. Zheng, Y. Yuan, and X. Lu, ‘‘Dimensionality reduction by spatial–
spectral preservation in selected bands,’’ IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 9, pp. 5185–5197, Sep. 2017.

[10] L. Lin and X. Song, ‘‘Using CNN to classify hyperspectral data based
on spatial–spectral information,’’ in Advances in Intelligent Information
Hiding and Multimedia Signal Processing. Cham, Switzerland: Springer,
2017, pp. 61–68.

[11] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. A. Chanussot, and
J. C. Tilton, ‘‘Advances in spectral-spatial classification of hyperspectral
images,’’ Proc. IEEE, vol. 101, no. 3, pp. 652–675, Sep. 2012.

[12] J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias, and J. A. Benediktsson,
‘‘Generalized composite kernel framework for hyperspectral image
classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9,
pp. 4816–4829, Sep. 2013.

[13] E. Blanzieri and F. Melgani, ‘‘Nearest neighbor classification of remote
sensing images with the maximal margin principle,’’ IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 6, pp. 1804–1811, Jun. 2008.

[14] F. Melgani and L. Bruzzone, ‘‘Classification of hyperspectral remote sens-
ing images with support vector machines,’’ IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[15] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, ‘‘Robust face
recognition via sparse representation,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[16] Y. Chen, N. M. Nasrabadi, and T. D. Tran, ‘‘Hyperspectral image classifi-
cation using dictionary-based sparse representation,’’ IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.

[17] Y. Chen, N. M. Nasrabadi, and T. D. Tran, ‘‘Hyperspectral image clas-
sification via kernel sparse representation,’’ IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 1, pp. 217–231, Jan. 2013.

[18] H. Zhai, H. Zhang, L. Zhang, P. Li, and A. Plaza, ‘‘A new sparse subspace
clustering algorithm for hyperspectral remote sensing imagery,’’ IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 1, pp. 43–47, Jan. 2017.

[19] L. Fang, S. Li, X. Kang, and J. A. Benediktsson, ‘‘Spectral–spatial hyper-
spectral image classification via multiscale adaptive sparse representa-
tion,’’ IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7738–7749,
Dec. 2014.

[20] X. Huang and L. Zhang, ‘‘An adaptive mean-shift analysis approach for
object extraction and classification from urban hyperspectral imagery,’’
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173–4185,
Dec. 2008.

[21] B. Tu, X. Zhang, J. Wang, G. Zhang, and X. Ou, ‘‘Spectral–spatial
hyperspectral image classification via non-local means filtering feature
extraction,’’ Sens. Imag., vol. 19, no. 1, pp. 1–25, Dec. 2018.

[22] B. Tu, X. Zhang, X. Kang, G. Zhang, J. Wang, and J. Wu, ‘‘Hyperspectral
image classification via fusing correlation coefficient and joint sparse rep-
resentation,’’ IEEE Geosci. Remote Sens. Lett., vol. 15, no. 3, pp. 340–344,
Mar. 2018.

[23] X. Kang, S. Li, and J. A. Benediktsson, ‘‘Feature extraction of hyperspec-
tral images with image fusion and recursive filtering,’’ IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 6, pp. 3742–3752, Jun. 2014.

[24] X. Kang, S. Li, and J. A. Benediktsson, ‘‘Spectral–spatial hyperspectral
image classification with edge-preserving filtering,’’ IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 5, pp. 2666–2677, May 2014.

[25] J. Peng, Y. Zhou, and C. L. P. Chen, ‘‘Region-kernel-based support vector
machines for hyperspectral image classification,’’ IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 9, pp. 4810–4824, Sep. 2015.

[26] K. Zhang, W. Zuo, and L. Zhang, ‘‘FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,’’ IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

[27] X. Lu, X. Zheng, and Y. Yuan, ‘‘Remote sensing scene classification by
unsupervised representation learning,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 9, pp. 5148–5157, Sep. 2017.

[28] X. Ma, H. Wang, and J. Geng, ‘‘Spectral–spatial classification of
hyperspectral image based on deep auto-encoder,’’ IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4073–4085,
Feb. 2016.

[29] W. Song, S. Li, L. Fang, and T. Lu, ‘‘Hyperspectral image classification
with deep feature fusion network,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 6, pp. 3173–3184, Jun. 2018.

[30] H. Huang andK.Xu, ‘‘Combing triple-part features of convolutional neural
networks for scene classification in remote sensing,’’Remote Sens., vol. 11,
no. 14, p. 1687, Jul. 2019.

[31] Y. Chen, K. Zhu, L. Zhu, X. He, P. Ghamisi, and J. A. Benediktsson,
‘‘Automatic design of convolutional neural network for hyperspectral
image classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9,
pp. 7048–7066, Apr. 2019.

[32] H. Huang, Y. Duan, H. He, and G. Shi, ‘‘Local linear spatial–
spectral probabilistic distribution for hyperspectral image classification,’’
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 1259–1272,
Feb. 2020.

[33] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, ‘‘Deep convolutional neural
networks for hyperspectral image classification,’’ J. Sensors, vol. 2015,
pp. 1–12, Jan. 2015.

[34] C. Yu, M. Zhao, M. Song, Y. Wang, F. Li, R. Han, and C.-I. Chang,
‘‘Hyperspectral image classification method based on CNN architecture
embeddingwith hashing semantic feature,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 6, pp. 1866–1881, Jun. 2019.

[35] L. Mou, P. Ghamisi, and X. X. Zhu, ‘‘Deep recurrent neural networks for
hyperspectral image classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639–3655, Jul. 2017.

56886 VOLUME 10, 2022



Y. Tang et al.: Hyperspectral Classification of Two-Branch Joint Networks

[36] B. Xue, C. Yu, Y. Wang, M. Song, S. Li, L. Wang, H.-M. Chen, and
C.-I. Chang, ‘‘A subpixel target detection approach to hyperspectral
image classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9,
pp. 5093–5114, Sep. 2017.

[37] N. Falco, J. A. Benediktsson, and L. Bruzzone, ‘‘Spectral and spatial classi-
fication of hyperspectral images based on ICA and reduced morphological
attribute profiles,’’ IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11,
pp. 6223–6240, Nov. 2015.

[38] K. Kavitha and S. Arivazhagan, ‘‘A novel feature derivation technique for
SVM based hyper spectral image classification,’’ Int. J. Comput. Appl.,
vol. 1, no. 15, pp. 25–31, 2010.

[39] H. Zhang, L. Liu, W. He, and L. Zhang, ‘‘Hyperspectral image denoising
with total variation regularization and nonlocal low-rank tensor decompo-
sition,’’ IEEE Trans. Geosci. Remote Sens., vol. 58, no. 5, pp. 3071–3084,
May 2019.

[40] X. Guo, X. Huang, L. Zhang, L. Zhang, A. Plaza, and J. A. Benediktsson,
‘‘Support tensor machines for classification of hyperspectral remote
sensing imagery,’’ IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6,
pp. 3248–3264, Jun. 2016.

[41] J. Liu, Z. Wu, L. Xiao, J. Sun, and H. Yan, ‘‘Generalized tensor regression
for hyperspectral image classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 2, pp. 1244–1258, Feb. 2020.

[42] V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, and
R. Van de Walle, ‘‘Hyperspectral image classification with convolutional
neural networks,’’ in Proc. 23rd ACM Int. Conf. Multimedia, 2015,
pp. 1159–1162.

[43] H. Gao, Y. Yang, S. Lei, C. Li, H. Zhou, and X. Qu, ‘‘Multi-branch
fusion network for hyperspectral image classification,’’ Knowl.-Based
Syst., vol. 167, pp. 11–25, Mar. 2019.

[44] W. Ma, Q. Yang, Y. Wu, W. Zhao, and X. Zhang, ‘‘Double-branch multi-
attention mechanism network for hyperspectral image classification,’’
Remote Sens., vol. 11, no. 11, p. 1307, Jun. 2019.

[45] Y. Xu, L. Zhang, B. Du, and F. Zhang, ‘‘Spectral–spatial unified networks
for hyperspectral image classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 10, pp. 5893–5909, Oct. 2018.

[46] J. Yang, Y. Zhao, J. C.-W. Chan, and C. Yi, ‘‘Hyperspectral image
classification using two-channel deep convolutional neural network,’’
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016,
pp. 5079–5082.

[47] B. Waske, S. van der Linden, J. Benediktsson, A. Rabe, and P. Hostert,
‘‘Sensitivity of support vector machines to random feature selection in
classification of hyperspectral data,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 7, pp. 2880–2889, Jul. 2010.

[48] I. Kim, R. J. Martins, J. Jang, T. Badloe, S. Khadir, H.-Y. Jung, H. Kim,
J. Kim, P. Genevet, and J. Rho, ‘‘Nanophotonics for light detection and
ranging technology,’’ Nature Nanotechnol., vol. 16, no. 5, pp. 508–524,
May 2021.

[49] X. Cao, J. Yao, Z. Xu, and D. Meng, ‘‘Hyperspectral image classifica-
tion with convolutional neural network and active learning,’’ IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 7, pp. 4604–4616, Jul. 2020.

[50] T.Wu, M. H. Bae, M. Zhang, R. Pan, and A. Badea, ‘‘A prior feature SVM-
MRF based method for mouse brain segmentation,’’ Neuroimage, vol. 59,
no. 3, pp. 2298–2306, Feb. 2012.

[51] M. Han, R. Cong, X. Li, H. Fu, and J. Lei, ‘‘Joint spatial–spectral hyper-
spectral image classification based on convolutional neural network,’’
Pattern Recognit. Lett., vol. 130, pp. 38–45, Feb. 2020.

[52] Y. Dong, Q. Liu, B. Du, and L. Zhang, ‘‘Weighted feature fusion of
convolutional neural network and graph attention network for hyper-
spectral image classification,’’ IEEE Trans. Image Process., vol. 31,
pp. 1559–1572, 2022.

[53] G. Ortac and G. Ozcan, ‘‘Comparative study of hyperspectral image clas-
sification by multidimensional convolutional neural network approaches
to improve accuracy,’’ Expert Syst. Appl., vol. 182, Nov. 2021,
Art. no. 115280.

[54] S. Prasad and L. M. Bruce, ‘‘Limitations of principal components analysis
for hyperspectral target recognition,’’ IEEE Geosci. Remote Sens. Lett.,
vol. 5, no. 4, pp. 625–629, Oct. 2008.

[55] S. Li, Q. Hao, X. Kang, and J. A. Benediktsson, ‘‘Gaussian pyramid
based multiscale feature fusion for hyperspectral image classification,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 9,
pp. 3312–3324, Sep. 2018.

[56] A. Osadchiy, A. Kamenev, V. Saharov, and S. Chernyi, ‘‘Signal processing
algorithm based on discrete wavelet transform,’’ Designs, vol. 5, no. 3,
p. 41, Jul. 2021.

[57] R. Barzegar, M. T. Aalami, and J. Adamowski, ‘‘Coupling a hybrid CNN-
LSTM deep learning model with a boundary corrected maximal overlap
discrete wavelet transform for multiscale lake water level forecasting,’’
J. Hydrol., vol. 598, Jul. 2021, Art. no. 126196.

[58] C. Cook, J. L. McKinley, and G. J. O. Beran, ‘‘Modeling the α- and β-
resorcinol phase boundary via combination of density functional theory
and density functional tight-binding,’’ J. Chem. Phys., vol. 154, no. 13,
Apr. 2021, Art. no. 134109.

[59] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, ‘‘MODWT-XGBoost
based smart energy solution for fault detection and classification in a smart
microgrid,’’ Appl. Energy, vol. 285, Mar. 2021, Art. no. 116457.

[60] Z. Zhong, J. Li, L. Ma, H. Jiang, and H. Zhao, ‘‘Deep residual networks
for hyperspectral image classification,’’ in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2017, pp. 1824–1827.

[61] A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, ‘‘Clas-
sification of tweets data based on polarity using improved RBF kernel of
SVM,’’ Int. J. Inf. Technol., pp. 1–16, Jan. 2020.

[62] W. Li, G. Wu, F. Zhang, and Q. Du, ‘‘Hyperspectral image classification
using deep pixel-pair features,’’ IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 2, pp. 844–853, Feb. 2017.

[63] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, ‘‘Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2015, pp. 4959–4962.

[64] H. Lee and H. Kwon, ‘‘Going deeper with contextual CNN for hyperspec-
tral image classification,’’ IEEE Trans. Image Process., vol. 26, no. 10,
pp. 4843–4855, Oct. 2017.

[65] S. Mei, J. Ji, J. Hou, X. Li, and Q. Du, ‘‘Learning sensor-specific spatial–
spectral features of hyperspectral images via convolutional neural net-
works,’’ IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4520–4533,
Aug. 2017.

YIGANG TANG received the B.E. degree from the
Guilin University of Technology, Guilin, China,
in 2020, where he is currently pursuing the
M.S. degree. His research interests include remote
sensing image process and hyperspectral image
classification.

XIAOLAN XIE (Member, IEEE) received the
M.S. degree in computer science from Shanghai
MaritimeUniversity, in 2001, and the Ph.D. degree
in mechanical manufacturing and automation from
Xidian University, China, in 2009. She is currently
a Senior Visiting Scholar at Middlesex Univer-
sity, U.K. She is also the Deputy Director of the
Guangxi Key Laboratory of Embedded Technol-
ogy and Intelligent System and the Dean of the
School of Information Science and Engineering,

Guilin University of Technology. She has published more than 100 sci-
entific research articles, including more than 50 SCI/EI papers and more
than 20 Chinese core journals. Her research interests include cloud comput-
ing, big data, intelligent computing, and manufacturing informatization. She
is a fellow of the American Computer Society (ACM), the Chinese Computer
Society (CCF), the Cloud Computing Expert Committee of the Chinese Insti-
tute of Communications (CIC), the High Performance Computing Expert
Committee of CCF, and the Collaborative Computing, Distributed Comput-
ing and Processing Expert Committee of CCF. She is also the Director of the
International Institute of Engineering and Technology (IETI).

YOUHUA YU (Member, IEEE) received the
B.E. degree in digital media technology from
the Guilin University of Electronic Technology,
Guilin, China, in 2019. He is currently pursuing
the master’s degree in computer science and tech-
nology with the Guilin University of Technology,
Guilin. His main research interests include hyper-
spectral image processing and cross-scene hyper-
spectral image classification.

VOLUME 10, 2022 56887


