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ABSTRACT The recent proposed divergence method is used for investigation of an exponential stability of
autonomous dynamical systems. New necessary conditions are derived by using Divergence theorem. Taking
into account the relation between gradient and divergence of the vector field, novel sufficient conditions
are obtained. These sufficient conditions are applied for design the state-feedback control laws ensuring
exponential stability of the closed-loop system. Examples illustrate the efficiency of the proposed methods.

INDEX TERMS Autonomous system, sufficient condition, divergence theorem, control, divergence of the
vector field, exponential stability.

I. INTRODUCTION
The paper is devoted to the development of divergence
method for stability study of dynamical systems. Interest
of this method is associated with its relationship to many
problems in physics and mechanics, in particular to processes
that are described by the continuity equation [1]–[4].

First results of stability study of dynamical systems by
using a divergence and flow of the vector field were pro-
posed in [5]–[8] for second order dynamical systems. These
results were improved in [9]–[13] for arbitrary order systems.
An overview of these and others corresponding methods is
described in more detail in [14]–[17]. Also, in [14]–[17]
new necessary and sufficient stability conditions were pro-
posed. Differently from [9]–[13] methods [14]–[17] allow
one to extend the class of investigated systems. Additionally,
in [14]–[17] the relation between necessary and sufficient
conditions as well as continuity equation in electromag-
netism, fluid dynamics, energy and heat, probability distri-
butions, and quantum mechanics is established. However, all
of these methods are proposed for investigation of stability or
asymptotic stability, but not exponential one.

There are many tasks where stability and asymptotic sta-
bility is not enough. For example, the exponentially stable
systems are more robust under parametric uncertainty and
external disturbances, than stable or asymptotically stable
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systems [18], [19]. Also, if continuous system is an exponen-
tially stable, then it remains stable under discrete control [20].
Currently, tasks with discrete controls are widespread, e.g.,
networked control [21]–[23], security control [24], event-
triggered control [25], [26], sampled-data control [27], etc.

Therefore, the main contribution of the present paper is a
generalization of results [14]–[17] to solution of the following
problems:

i) design new necessary and sufficient exponential stabil-
ity conditions;

ii) design new method of control law design ensuring
exponential stability of the closed-loop systems.

The paper is organized as follows. Section II describes
problem formulation. Section III proposes necessary and suf-
ficient exponential stability conditions. Section IV describes
application of the proposed results to linear systems.
Section V proposes methods for designing the state feedback
control laws. All proposed theoretical results are illustrated
by numerical examples. Finally, Section VI collects some
conclusions.
Notations. In the paper the superscript T stands for

matrix or vector transposition; Rn denotes the n dimensional
Euclidean spacewith the vector norm |·|;Rn×m is the set of all

n×m real matrices;∇{W (x)} =
[
∂W
∂x1
, . . . , ∂W

∂xn

]T
is a gradient

of the scalar function W (x); ∇ · {h(x)} = ∂h1
∂x1
+ . . . + ∂hn

∂xn
is

a divergence of the vector field h(x) = [h1(x), . . . , hn(x)]T ;
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int{ϒ̄} is the set of interior points in ϒ̄ . We mean that the
equilibrium point is stable if it is Lyapunov stable [28].

II. PROBLEM FORMULATION
In the paper we consider autonomous systems.
An autonomous systems (or time-invariant systems) are
described by autonomous differential equations which do not
explicitly depend on time, i.e.

ẋ(t) = f (x(t)). (1)

Here x = [x1, . . . , xn]T is the state, f = [f1, . . . , fn]T :
D → Rn is the continuously differentiable function in
D ⊂ Rn. The set D contains the origin and f (0) = 0. Assume
that the domain of attraction DA of the equilibrium point
x = 0 coincides with the domain D. However, all obtained
results is valid if DA ⊂ D or DA = Rn.
It is required to design new exponential stability conditions

in the divergence form. The proposed results will be obtained
by using resent methods [14]–[17].

III. STABILITY CONDITIONS
In [14]–[17] new necessary asymptotic stability conditions
were obtained. Now, we generalize these results for getting
new necessary exponential stability conditions.

Denote by ϒ = {x ∈ D : µ(x) = C,C > 0} and
V = ϒ ∪ int{ϒ}, as well as denote by ϒ̄ = {x ∈ D :
µ−1(x) = C,C > 0} and V̄ = ϒ̄ ∪ int{ϒ̄}.
Theorem 1: If the equilibrium point x = 0 of (1) is an

exponentially stable, then there exists twice differentiable
function µ(x) > 0 in x ∈ D \ {0}, µ(0) ≥ 0 and
|∇{µ(x)}| 6= 0 for any x ∈ D \ {0} such that one of the
following conditions holds:

(iT1)
∫
V ∇ ·

{
|∇{µ(x)}|f (x)+α µ(x)

|∇{µ(x)}|∇{µ(x)}
}
dV ≤ 0,

(iiT1)
∫
V̄ ∇ ·

{
|∇{µ−1(x)}|f (x)− α µ−1(x)

|∇{µ−1(x)}|
∇{µ−1(x)}

}
dV̄ ≥ 0,

where α > 0.
Proof 1: Since the equilibrium point x = 0 of (1) is

an exponentially stable, then, according to [28, Corollary
3.4] and taking µ(x) as Lyapunov function, the following
inequality holds

µ̇(x) ≤ −αµ(x). (2)

Considering µ̇(x) = ∇{µ(x)}f (x), integrate (2) as follows∮
ϒ

[∇µ(x)f (x)+ αµ(x)] dϒ ≤ 0. (3)

By using Divergence theorem, rewrite (3) in the form (iT1).
Considering ∇{µ−1(x)} = −µ−2(x)∇{µ(x)}, rewrite (2)

as follows

∇{µ−1(x)}f (x) ≥ αµ−1(x). (4)

Integrating (4), we have∮
ϒ̄

[
∇µ−1(x)f (x)− αµ−1(x)

]
dϒ̄ ≥ 0. (5)

FIGURE 1. Phase portrait of (6).

By using Divergence theorem, rewrite (5) in the form (iiT1).
Theorem 1 is proved.
Remark 1: The conditions (iT1) and (iiT1) are presented

in the integral forms. However, it can be rewritten in the
corresponding differential forms if

(iR1) ∇ ·
{
|∇{µ(x)}|f (x)+ α µ(x)

|∇{µ(x)}|∇{µ(x)} ≤ 0,

(iiR1) ∇ ·
{
|∇{µ−1(x)}|f (x)− α µ−1(x)

|∇{µ−1(x)}|
∇{µ−1(x)} ≥ 0.

Illustrate the result of Theorem 1 in the following example.
Example 1: Consider the system

ẋ1 = −x1 − x1x22 − x
3
1 ,

ẋ2 = −2x2 − x2x21 − x
3
2 , (6)

with the equilibrium point (0, 0). The phase portrait of (6) is
shown in Fig. 1. Here and below, phase trajectory has its own
colour for appropriate initial point.

Investigate the equilibrium point of (6). Introduce

µ(x) = |x|2β , (7)

whereβ is a positive integer. Calculate the following auxiliary
expressions:

∇{µ(x)} = 2β(x21 + x
2
2 )
β−1x,

∇{µ−1(x)} = −2β(x21 + x
2
2 )
−β−1x,

|∇{µ(x)}| = 2β(x21 + x
2
2 )
β−0.5,

|∇{µ−1(x)}| = 2β(x21 + x
2
2 )
−β−0.5,

µ(x)
|∇{µ(x)}|

∇{µ(x)} = (x21 + x
2
2 )
β−0.5x,

µ−1(x)
|∇{µ−1(x)}|

∇{µ−1(x)} = −(x21 + x
2
2 )
−β−0.5x,

∇ · {|∇{µ(x)}|f (x)} ≤ −2β(x21 + x
2
2 )
β−0.5

×[2β+2+(2β + 3)(x21 + x
2
2 )],

∇ · {|∇{µ−1(x)}|f (x)} ≥ 2β(x21 + x
2
2 )
−β−0.5

×[2β − 2+(2β−3)(x21 + x
2
2 )],

∇ ·

{
µ(x)
|∇{µ(x)}|

∇{µ(x)}
}
= (2β + 1)(x21 + x

2
2 )
β−0.5,

VOLUME 10, 2022 49089



I. B. Furtat, P. A. Gushchin: Divergence Method for Exponential Stability Study of Autonomous Dynamical Systems

∇ ·

{
µ−1(x)
|∇{µ−1(x)}|

∇{µ−1(x)}
}

= (2β − 1)(x21 + x
2
2 )
−β−0.5.

Using the last relations, verify the conditions (iT1)
and (iiT1):

∇ ·

{
|∇{µ(x)}|f (x)+ α

µ(x)
|∇{µ(x)}|

∇{µ(x)}
}

≤ −(x21 + x
2
2 )
β−0.5[4β2 + 4β − 2αβ − α

+2β(2β + 3)(x21 + x
2
2 )
]
< 0 for α <

4β(β + 1)
2β + 1

,

∇ ·

{
|∇{µ−1(x)}|f (x)− α

µ−1(x)
|∇{µ−1(x)}|

∇{µ−1(x)}
}

≥ (x21 + x
2
2 )
β−0.5[4β2 − 4β − 2αβ + α + 2β(2β − 3)

×(x21 + x
2
2 )
]
> 0 for β ≥ 2 and α <

4β(β − 1)
2β − 1

.

As a result, the equilibrium point x = 0 is an exponentially
stable.

In the next theorem we will introduce new auxiliary func-
tion ξ (x) that allows one to extend the class of investigated
systems in comparison with Theorem 1.
Theorem 2: If the equilibrium point x = 0 of (1) is an

exponentially stable, then there exists twice differentiable
function µ(x) > 0 and differentiable function ξ (x) > 0 in
x ∈ D \ {0}, µ(0) ≥ 0 and |∇{µ(x)}| 6= 0 for any x ∈ D \ {0}
such that one of the following conditions holds:

(iT2)
∫
V ∇ ·

{
ξ (x)f (x)+ α µ(x)ξ (x)

|∇{µ(x)}|2
∇{µ(x)}

}
dV ≤ 0,

(iT2)
∫
V̄ ∇ ·

{
ξ−1(x)f (x)− α µ

−1(x)ξ−1(x)
|∇{µ−1(x)}|2

∇{µ−1(x)}
}

dV̄ ≥ 0,
where α > 0.

In particular, choosing ξ (x) = |∇{µ(x)}|, we have the
condition of Theorem 1.
Remark 2: The conditions (iT2) and (iiT2) can be rewritten

in the corresponding differential forms if

(iR2) ∇ ·
{
|∇{µ(x)}|f (x)+ α µ(x)

|∇{µ(x)}|∇{µ(x)} ≤ 0,

(iiR2) ∇ ·
{
|∇{µ−1(x)}|f (x)− α µ−1(x)

|∇{µ−1(x)}|
∇{µ−1(x)} ≥ 0.

Let us show in the following example, that Theorems 1
and 2 ensure only necessary conditions.
Example 2: Choose ξ (x) = 1 and µ(x) = |x|2β .

Thus, ∇{µ(x)} = 2β|x|β−2x, |∇{µ(x)}| = 2β|x|2β−1, and
µ(x)ξ (x)
|∇{µ(x)}|2

∇{µ(x)} = n
2β . Taking into account condition (iR2),

we have

∇ · {f (x)} ≤ −
nα
2β

< 0.

Note, that the necessary stability condition [5]–[10] looks like
∇ · {f (x)} < 0.

The next theorem generalises the sufficient stability condi-
tion [14]–[17] to exponential one.
Theorem 3: Let µ(x) be a positive definite continuously

differentiable function in D, α > 0 and x = 0 be an
equilibrium point of the system (1). If one of the following
inequalities

(iT2) ∇ · {µ(x)f (x)} ≤ −µ(x)[α −∇ · {f (x)}],
(iiT2) ∇ · {µ−1(x)f (x)} ≥ αµ−1(x) and ∇ · {f (x)} ≤ 0,
(iiiT2) ∇ · {µ(x)f (x)} ≤ −αµ(x) and ∇ · {µ−1(x)f (x)} ≥

αµ−1(x),
holds for x ∈ D \ {0}, then x = 0 is an exponentially stable.

Proof 2: Consider each case (iT2)-(iiiT2) separately.
Rewrite inequality (iT2) as follows

∇ · {µ(x)f (x)} − ∇ · {f (x)}µ(x) ≤ −αµ(x). (8)

Taking into account well-known relation [3]

∇{µ(x)}T f (x) = ∇ · {µ(x)f (x)} − ∇ · {f (x)}µ(x), (9)

represent the left-hand side of (8) in the form (2), i.e., x = 0 is
an exponentially stable.
From (iiT2) we have

∇ · {µ−1(x)f (x)} − ∇ · {f (x)}µ−1(x) ≥ αµ−1(x). (10)

Taking into account the first expression in (9), rewrite (10) as
follows

∇{µ−1(x)}f (x) ≥ αµ−1(x).

Considering ∇{µ−1(x)}f (x) = −µ−2∇{µ(x)}f (x),
we get (2).
From (iiiT2), one gets

∇ · {µ(x)f (x)} − µ2(x) ∇ · {µ−1(x)f (x)} ≤ −2αµ(x)

or in the form

∇ · {µ(x)f (x)} − ∇ · {f (x)}µ(x)

−µ2(x) ∇ · {µ−1(x)f (x)} + ∇ · {f (x)}µ(x)

≤ −2αµ(x). (11)

Taking into account ∇{µ(x)}T f (x) = −µ2(x)∇ ·
{µ−1(x)f (x)} + ∇ · {f (x)}µ(x) derived from (9), we get (2)
from (11). Theorem 3 is proved.
Example 3: Consider the system

ẋ1 = −x1 + x2 − x1x22 − x
3
1 ,

ẋ2 = −x1 − x2 − x2x21 − x
3
2 , (12)

with the equilibrium point (0, 0). The phase portrait of (12) is
shown in Fig. 2.

Investigate the equilibrium point of (12). According to
Theorem 3, introduce µ(x) in the form (7). Calculate the
following auxiliary expressions:

∇ · {f (x)} = −2− 4x21 − 4x22 , (13)

∇ · {µ(x)f (x)} = −2β(x21 + x
2
2 )
β−1[x21 + x22

+2x21x
2
2 + x

4
1 + x

4
2
]

−2(x21 + x
2
2 )
β
(
1+ 2x21 + 2x22

)
, (14)

∇ · {µ−1(x)f (x)} = (x21 + x
2
2 )
−β [−2+ 2β

+(2β − 4)(x21 + x
2
2 )]. (15)

Taking into account (14), verify the condition (iT2)

∇ · {µ(x)f (x)} ≤ −|x|2β [2β − (−2− 4x21 − 4x22 )].
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FIGURE 2. Phase portrait of (12).

FIGURE 3. Phase portrait of (17).

Considering (13) and (15), verify the condition (iiT2)

∇ · {f (x)} < 0,

∇ · {µ−1(x)f (x)} ≥ |x|−2β [−2+ 2β] for β ≥ 2. (16)

Using (14), one gets∇ ·{µ(x)f (x)} ≤ −2(β+1)(x21+x
2
2 )
β .

Considering (16), the condition (iiiT2) holds.
Example 4: Consider the system

ẋ1 = −x1 + 0.5 sin(x2),

ẋ2 = −x2 + 0.5 sin(x1), (17)

with the equilibrium point (0, 0). The phase portrait of (17) is
shown in Fig. 3.

Introduce µ(x) as in (7). Calculate the following expres-
sions

∇ · {f (x)} = −2, (18)

∇ · {µ(x)f (x)} = −2β(x21 + x
2
2 )
β−1

× [x1 sin(x1)+ x2 sin(x2)]

−2(β + 1)(x21 + x
2
2 )
β , (19)

∇ · {µ−1(x)f (x)} = 2(β − 1)(x21 + x
2
2 )
−β

−β(x21 + x
2
2 )
−β−1

×(x1 sin(x1)+ x2 sin(x2)). (20)

FIGURE 4. The pendulum.

Taking into account (19), verify the condition (iT2)

∇ · {µ(x)f (x)}

≤ β(x21 + x
2
2 )
β−1

[
x21 + x

2
2

]
−2(β + 1)(x21 + x

2
2 )
β
= −(β + 2)(x21 + x

2
2 )
β . (21)

Considering (18) and (20), verify the condition (iiT2)

∇ · {µ−1(x)f (x)}

≥ 2(β − 1)(x21 + x
2
2 )
−β

−0.5β(x21 + x
2
2 )
−β−1(x21 + x

2
2 )

= (1.5β − 2)(x21 + x
2
2 )
−β
≥ 0 for β ≥ 2. (22)

Using (21) and (22), the condition (iiiT2) holds.
Example 5: Consider the pendulum (see Fig. 4 [28]) which

is described by the following equation

ẋ1 = x2,

ẋ2 = −
g
l
sin(x1)−

k
m
x2, (23)

where x1 is the deflection angle of the rod from the vertical
axis, x2 is the angular velocity, g is the acceleration of gravity,
l is the rod length, k is the friction coefficient, m is the cargo
mass. Let us investigate the equilibrium point (0, 0). The
phase portrait of (23) in the vicinity of (0, 0) is shown in Fig. 5
for gl = 1 and k

m = 1.
Denote by a = g

l and b =
k
m . Introduce µ(x) as follows

µ(x) = a[1− cos(x1)]+ 0.5x22 .

Calculate the following expressions:

∇ · {f (x)} = −b, (24)

∇ · {µ(x)f (x)} = −b(x22 + a[1− cos(x1)]

+0.5x22 ), (25)

∇ · {µ−1(x)f (x)} =
b(0.5x22 − a[1− cos(x1)])

(a[1− cos(x1)]+ 0.5x22 )
2
. (26)

Taking into account (25), verify the condition (iT2)

∇ · {µ(x)f (x)} ≤ −b(a[1− cos(x1)]+ 0.5x22 ).

According with (iT2), we have α = 0. Following [14]–[17],
the equilibrium point (0, 0) is an asymptotically stable.
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FIGURE 5. Phase portrait of (23) in the vicinity of the point (0, 0).

Considering (24) and (26), verify condition (iiT2)

∇ · {µ−1(x)f (x)} ≥
b

a[1− cos(x1)]+ 0.5x22
.

According with (iiT2), one gets α = b. Therefore, the equilib-
rium point (0, 0) is an exponentially stable. Also, following to
(iiiT2), the equilibrium point (0, 0) is an exponentially stable
for α = b.

Consider Lyapunov function V = a[1−cos(x1)]+0.5x22 in
the form of total system energy [28]. Taking time derivative
of V along the trajectories of (23), one gets V̇ = −abx22 [28].
Thus, only asymptotic stability of the equilibrium point (0, 0)
can be established by using Lyapunov method for the same V
and µ.

IV. STABILITY OF LINEAR SYSTEMS
Consider the linear system

ẋ = Ax, (27)

where x ∈ Rn, A ∈ Rn×n. Introduce µ(x) = (xTQx)β with
Q = QT > 0 and β ≥ 1. Calculate the following relations

∇ · {µ(x)f (x)}

= β(xTQx)β−1xT [QA+ ATQ+
trace(A)
β

Q]x,

∇ · {µ−1(x)f (x)}

= −β(xTQx)−β−1

×xT
[
QA+ ATQ−

trace(A)
β

Q
]
x. (28)

According to condition (iT2) and (28), the linear system
(27) is an exponentially stable if ∇ · {µ(x)f (x)} + µ(x)[α −
∇ · {f (x)}] = β(xTQx)β−1xT [QA+ ATQ+ α

β
Q]x ≤ 0 or

QA+ ATQ+
α

β
Q ≤ 0. (29)

The inequality (29) is the well-known linear matrix inequality
for exponential stability of linear system (27) [29].

According to condition (iiT2) and (28), the linear system
is exponential stable if ∇ · {µ−1(x)f (x)} − αµ−1(x) =
β(xTQx)β−1xT [QA+ ATQ+ α

β
Q]x ≥ 0 or

QA+ ATQ+
α − trace(A)

β
Q ≤ 0,

trace(A) ≤ 0. (30)

The result (30) is similar to (29).
According to condition (iiiT2) and (28), the linear sys-

tem is exponential stable if ∇ · {µ(x)f (x)} + αµ(x) =
β(xTQx)β−1xT [QA+ ATQ+ 2α

β
Q]x ≤ 0 or

QA+ ATQ+
2α
β
Q ≤ 0,

QA+ ATQ+
α − trace(A)

β
Q ≤ 0,

trace(A) ≤ 0. (31)

The results (31) are similar to (29).

V. CONTROL LAW DESIGN
Consider a dynamical system in the form

ẋ = ψ(x, u), (32)

where x ∈ D ⊂ Rn, u(x) ∈ Rm is the control signal,
ψ(x, u) = ξ (x) + g(x)u(x), the functions ξ (x), g(x) and u(x)
are continuously differentiable in D, ψ(0, u(0)) = 0 and the
system (32) is stabilizable in D.
Theorem 4: Let µ(x) be a positive definite continuously

differentiable function in x ∈ D. The closed-loop system is
an exponentially stable if the control law u(x) is chosen such
that one of the following conditions
(iT3) ∇ · {µ(x)ψ(x, u)} ≤ −µ(x)[α −∇ · {ψ(x, u)}];
(iiT3) ∇ · {µ−1(x)ψ(x, u)} ≥ αµ−1(x) and

∇ · {ψ(x, u)} ≤ 0;
(iiiT3) ∇ · {µ(x)ψ(x, u)} ≤ −αµ(x) and

∇ · {µ−1(x)ψ(x, u)} ≥ αµ−1(x),
holds for any x ∈ D \ {0}, where α > 0.
Since the system (32) is stabilizable in D, then the proof of

Theorem 4 is similar to the proof of Theorem 3 (denoting by
f (x) = ψ(x, u(x)).
Example 6: Consider the system

ẋ1 = −x1 + x2 − x31 − x1x
2
2 ,

ẋ2 = u. (33)

The phase trajectories under u = 0 are presented in Fig. 7. It is
required to design the control law ensuring the exponential
stability of the closed-loop system.

Choose µ(x) in the form (7). Find the following relations

∇ · {µ(x)ψ(x, u)}

= 2β(x21 + x
2
2 )
β−1

×(−x21 + x1x2 − x
4
1 − x

2
1x

2
2 + x2u)

×(x21 + x
2
2 )
β (−1− 3x21 − x

2
2 +

∂u
∂x2

),
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FIGURE 6. Phase portrait of (33).

FIGURE 7. Phase portrait of the closed-loop system.

∇ · {µ−1(x)ψ(x, u)}

= β(x21 + x
2
2 )
−β−1

×[(x21 + x
2
2 )(−1− 3x21 − x

2
2 +

∂u
∂x2

)

+2β(x21 − x1x2 + x
4
1 + x

2
1x

2
2 − x2u)], (34)

Introducing

u = −x1 − x2 − x2x21 − x
3
2 ,

rewrite (34) as follows

∇ · {µ(x)ψ(x, u)}

= −(x21 + x
2
2 )
β

×(2β + 2β(x21 + x
2
2 ))− (2− 4x21 − 4x22 ))

≤ −(x21 + x
2
2 )
β

×(2β − (−2− 4x21 − 4x22 )),

∇ · {µ−1(x)ψ(x, u)}

= (x21 + x
2
2 )
−β

×2[β − 1+ (β − 2)x21 + (β − 2)x22 ]

≥ 2[β − 1](x21 + x
2
2 )
−β for β ≥ 3. (35)

Thus, the conditions (iT3) and (iiT3) hold. Additionally
estimating

∇ · {µ(x)ψ(x, u)}

≤ −(x21 + x
2
2 )
β (2β − (−2− 4x21 − 4x22 ))

≤ −2β(x21 + x
2
2 )
β ,

we have fulfilment of the condition (iiiT3).

VI. CONCLUSION
In this paper the recent divergence method [14]–[17] is used
for investigation of an exponential stability of autonomous
dynamical systems. The property of exponential stability
makes it possible to increase system robustness to cer-
tain types of perturbations and uncertainties. New necessary
and sufficient exponential stability conditions are derived
from [14]–[17]. Examples illustrate the efficiency of the pro-
posed method by the simulations.

The advantage of the proposed method is that the formu-
lated necessary and sufficient conditions have the form of a
continuity equation, which is widely used in mechanics and
physics, as well as in some industrial tasks [30]. The diffi-
culties are in the selection of the density function (auxiliary
function µ(x)) such that the obtained conditions hold. This
problem is equivalent to the problem of finding the Lyapunov
function.
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