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ABSTRACT The advent of computer architecture and processor design in recent years has brought about the
need to design larger register files that can hold more instructions and operands to support faster processors.
This encouraged designers to design wider and deeper register files with multiple read and write ports
to increase their throughput. Nevertheless, larger register files consume higher energy/access, leak more
power, and occupy larger areas on the chip. This portrays a significant issue in the field of chip design
due to the limited energy resources in mobile devices that dominate today’s market. Therefore, it becomes
crucial for chip designers to devise new mechanisms that help them study the effect of increasing the
register file capabilities on those characteristics at an early stage during the design process. Artificial Neural
Network (ANN) techniques, and with a reasonable degree of success have been used to predict the energy
characteristics of a register file based on three parameters: the number of words in the file (D), the number
of bits in one word (W) and the total number of Read and Write Ports (P). In this work, and using the same
attributes, we attempt to predict the values of energy/access, leakage power, and occupied silicon area in
register files using several machine learning algorithms to assess design alternatives and their energy and
area tradeoffs. We compare our best algorithm to the ANN-based model reported in the literature using the
same dataset. Support Vector Machine (SVM)models were able to achieve a correlation coefficient of 0.991,
0.991, and 0.989 when predicting energy/access, leakage power, and silicon area, respectively. On the other
hand, the designed artificial neural network (ANN) achieves correlation coefficients of 0.974, 0.982, and
0.987, while the closest algorithms in performance to SVMachieve 0.917, 0.980, and 0.987, respectively. The
results of the conducted experiments prove that SVM produce superior results when compared to ANN and
other algorithms while maintaining a reasonable model training time and consuming lesser computational
resources in most cases.

INDEX TERMS Register files, power consumption, leakage power, support vector machine.

I. INTRODUCTION
During chip design, to explore design spaces effectively,
designers need options that rely on fast and accurate
pre-silicon performance and power models. Simulation is
commonly used for understanding architectural tradeoffs,
however detailed simulators tend to be prohibitively slow.

In recent years, machine learning techniques have been
experimented with in a variety of applications. Examples of
reported work include [1] where authors discuss the use of an
energy-aware technique based on the polynomial regression
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model to reduce the inefficiencies caused by the excessive
power consumption in a data center. The technique attempts
to predict the number of active physical machines required
to run to reduce the inefficiency. A machine-learning based
method to predict routing congestion for FPGA high-level
synthesis was presented in [2]. After back tracing congestion
metrics to IR operations, informative features were extracted,
and three machine learning models were trained and com-
pared. Experiments show that model can achieve a high pre-
diction accuracy. Based on the model, routing congestion can
be reduced easily, and performance is improved significantly.
On estimation of power consumption during design, neural
networks use has been explored in speeding up the process
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of finding a reliable estimate of power. In [3], the authors
present a framework to select a standard cell library that can
result in near-optimal power consumption while satisfying
targeted frequency. The framework relies on a neural network
model to quickly predict the total power of a block design
associated with a given standard cell library to speed up the
synthesis process. Experimental result based on sample syn-
thesized benchmark circuits demonstrated the effectiveness
of proposed approach.

Optimal register file design is critical to the performance
of modern CPUs. Studies [4]–[6] have shown that register
files, if not optimized can be a serious source of consumption.
To counter this, researchers have continued to seek design
alternatives that optimize their power consumption [6]–[8].
On the prediction side, similar efforts continue to try and
develop techniques that would provide designers with a rea-
sonable estimate of the power consumed by a perceived
design and allow them to fine tune parameters to optimize
the design. For example, in [9], authors present a Radial
Base Function (RBF) Artificial Neural Network model for
the prediction of energy/access and leakage power in standard
cell register files designed using optimized Synopsys Design
Ware components and an UMC130 nm library. In [10],
authors presented a fast and light-weight cost estimation
models for power and area that can be fully integrated in
ASIP (Application Specific Instruction Set Processor) tool-
flows at system level. The cost estimation model gives a
detailed overview of the power and area consumption of all
basic ASIP components including register files. The objective
is to allow designers to speed up the slow iterative design
process without performing time consuming synthesis and
power simulation. Virtual prototyping techniques to estimate
register file power were discussed in [11]; using high level
prototyping tool, researchers explored the methodologies of
multi-port register file design to speed up power estimation
while exploring design alternatives.

The addition of machine learning capabilities to elec-
tronic design automation solutions, and possible oppor-
tunities and challenges for the semiconductor industry is
discussed in [12].

This paper is organized as follow, in section 2 we provide
background information and discuss the source of data upon
which the work presented here is based. In section 3, we illus-
trate themethodological approach andmachine learning tech-
niques experimented with. In sections 4 and 5 we discuss and
assess the results; the paper is concluded in section 5.

II. BACKGROUND
Recent articles in the literature have continued to explore the
power optimization problem in register files. In [13], authors
discussed a gating scheme to reduce the dynamic power
consumption in register files without impacting performance.

The proposed power saving scheme achieved a 19% reduc-
tion in power by taking advantage of the presence of frequent
zero data produced in general purpose applications. Another
technique that uses a power gating method to shut down

unused register sub arrays is introduced in [14]. On average
a 9% reduction in energy consumption is achieved. The use
of latches in place of flip-flops to reduce area and power
in register file design was explored in [15]. Note that flip-
flops use two latches in their design, a master, and a slave.
Hence, using only one latch will lead to reduction in both area
and power. When synthetized using CMOS 45nm process
libraries, the proposed approach produced a 23% reduction
in leakage power.

Another method that reduced the average register file
energy consumption by about 15% after overhead reduction
is presented in [16]. The technique identifies duplicate data
and eliminates it leading to the un-allocation of some of the
register file banks and hence a saving in power.

In [17], researchers carried out a detailed simulation at
the transistor level of various architectures of register files
using optimized Synopsys DesignWare components from the
UMC130 nm library. Layouts were generated for register files
with a varying number of ports (P) ranging from 3 to 12,
a depth that varies from 4 to 64 words (D), and a width
(W) that varies from 8 to 128 bits. All these combinations
of register files were designed; patristic capacitances in the
routing wires and gate capacitances of each transistor were
extracted from the layouts. The extracted netlist was then
simulated using ModelSim with different switching activity
factors to obtain power estimates. After completing over
100 register file design for the 130 nm technology node, the
dynamic and leakage energy of each design was tabulated.
Curve fitting was performed on each variable using register
parameters D, W, and P as well as the activity factor as
independent input variables. Furthermore, silicon area needs
per design is also calculated. For all designs, it is assumed
that each of the ports of the register file is driving a load of
F04.

Equations (1), (2) and (3) below are the derived model
equations, where Energy/Access and Leakage power are the
subjects of the first two equations and silicon area is that of
the third respectively:

E/Access (in : J)= [2.23 ∗ 10−11 − 8.06 ∗ 10−13

∗D− 5.89 ∗ 10−13 ∗W − 3.35
∗ 10−12 ∗ P+ 2.06 ∗ 10−14 ∗ D
∗W + 7.57∗10−14D ∗ P+6.34
∗ 10−14 ∗W ∗ P+2.48 ∗ 10−15

∗D2
+ 9.93 ∗ 10−16 ∗W 2

+ 8.72 ∗ 10−14 ∗ P2] ∗ (HD/P)

(1)

Leakage Power (in : µW )= 5.43 ∗ 101 − 1.76 ∗ D− 1.62

∗W − 8.42 ∗ P+ 8.55 ∗ 10−2

∗D ∗W + 2.15 ∗ 10−1 ∗ D ∗ P

+ 1.61 ∗ 10−1 ∗W ∗ P+ 1.73

∗ 10−3 ∗ D2
+ 4.23 ∗ 10−3

∗W 2
+ 2.10 ∗ 10−1 ∗ P2

(2)
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Area
(
in : µm2

)
= 7.36 ∗ 104 − 2.37 ∗ 103 ∗ D

− 2.12 ∗ 103 ∗W − 1.21 ∗ 104

∗P+ 1.24 ∗ 102 ∗ D ∗W

+ 3.33 ∗ 102 ∗ D ∗ P+ 2.58

∗ 102 ∗W ∗ P− 4.98 ∗ 10−1

∗D2
+ 1.56 ∗W 2

+ 2.71

∗ 102 ∗ P2 (3)

In the above equations HD is the total number of bits that
switch (either from 1 to 0 or from 0 to 1) on the data and
address lines from one read/write cycle to another. Upon
examining the performance of these models, it is observed
that they exhibited on average about 10% error when com-
pared to the values obtained using detailed simulation.

In the work presented here, and to estimate the energy,
leakage power and area, we use the 100 designs data sets
obtained from detailed simulation discussed in [17]. We use
this data set to explore the efficiency of various data mining
techniques in estimating, energy, leakage power, and area
in register files design. We compare our results with those
obtained using the detailed simulation, as well as prediction
estimates based on equations 1, 2, and 3 above [17].

III. METHODOLOGY
The problem at hand has many variables (D, P, W, HD), and
the analytical models derived and given by equations 1, 2,
and 3 above are not quite simple and the detailed simulation
approach is expensive. Furthermore, the analytical models are
only an approximation. Hence, in the work presented here,
is an attempt in usingmachine learning techniques to leverage
on the existing work.

Machine learning algorithms can be divided into four
main categories: classification, regression, association, and
clustering. Classification is the process of associating data
instances with their discrete classes. Regression is also known
as numeric prediction since it predicts a continuous output
value unlike classification. Association learning focuses on
uncovering hidden information in the dataset that was not
previously known to the data scientist. Finally, in clustering
problems the output class is not obvious and hence clustering
algorithms tend to group data instances together based on
some similarity features among instances of the same group.

In this work, we train and test machine learning models
to predict three main parameters or characteristics that are
critical to register file design, namely, the energy/access,
leakage power, and area occupied on the chip. All these target
characteristics are continuous in nature and hence this means
that the problem explored here lends itself more to regression-
based techniques.

One of the most prevalent machine learning tools
is the Waikato Environment for Knowledge Analysis
(Weka) [18]–[20]. Weka is an open-source suite written in
Java that includes several visualization tools and machine
learning algorithms usedmainly for data mining and analysis.

In the work presented here, we use Weka platform to
assess the performance of the following algorithms: Gaussian
process, linear regression, support vector machine (SVM),
k-nearest neighbor (k-NN), KStar, and random forest in pre-
dicting the register file parameters. These algorithms are
used since they support regression problems that can pre-
dict continuous valued output classes like energy/access,
leakage power, and area on the chip. Other algorithms like
naïve Bayes which only support symbolic output classes
were therefore discarded. We use the stratified 10-fold cross-
validation technique that splits the entire dataset into 10 non-
overlapping folds. After that, 9 folds are used for training and
the remaining fold is used for testing the generated model.
The process is repeated until all 10 folds have been used once
for testing.

A brief introduction to the different machine learning algo-
rithms used is provided below. A detailed discussion of these
algorithms is beyond the scope of this paper but can be found
in [21], [22].

A. LINEAR REGRESSION (LR)
Linear regression [23] is a linear technique used to model the
relationship between independent attributes and the depen-
dent outcome. In this paper, the independent attributes are
words (D), width (W), and ports (P), while the outcomes
are the energy/access, leakage power, and area. In fitting the
linear regression model, Weka tends to minimize the squared
error in what is known as least squares approach. The result-
ing linear regression model is described by Equation (4).

y = w0 + w1x1 + w2x2 + · · · + +wnxn (4)

where wi is the weight given to the ith independent variable
xi, n is the number of independent variables considered
in building the regression model, and y is the dependent
response variable. w0 is sometimes referred to as the bias.
Linear regression models s result in a straight line in
2-dimensions, a plane in 3-dimentions, and a hyperplane in
higher dimensions.

Even though the dataset under investigation is non-linear
by nature, we decided to train a linear regression model as
a starting point to our study to raise the baseline classifier
performance compared to a random classifier. Therefore,
we anticipate in advance that the linear regression model
might not yield good results since it is meant for linear data
points. Nevertheless, linear regression is a very easy-to-use
and easy-to-interpret model which further encouraged us to
try it on the register file dataset.

B. GAUSSIAN PROCESS (GP)
A Gaussian process [24] is a group of random variables
such that every finite group of those random variables has a
multivariate normal distribution. This means that every pos-
sible linear combination of those random variables follows
a normal distribution. The Gaussian process distribution is
the joint distribution of all these random variables. Gaussian
processes use the kernel function that computes the similarity
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between instances to predict the value for a new data instance.
A vector-valued random variable x ∈ Rn is said to have a
multivariate Gaussian distribution with mean µ ∈ Rn and
covariance matrix 6 ∈ Sn ++ if it follows Equation (5).

P(x, µ,6) =
1

(2π )
n
2 |6|

1
2

e−
1
2 (x−µ)

T6−1(x−µ) (5)

One of the main advantages of GP is the fact that it enables
the data scientist to incorporate expert knowledge through the
choice of the kernel function. The power prediction problem
is a well-known non-linear problem; hence we opt for a poly-
nomial kernel of 3rd order when fitting the three predictive
models mentioned earlier. Nevertheless, the disadvantage of
GP is its computationally expensive nature.

C. SUPPORT VECTOR MACHINE (SVM)
In classification problems, SVM [25], [26] is an algorithm
that focuses on determining the optimal hyperplane that sep-
arates the classes under investigation through maximizing the
distance between the separating hyperplane and the critical
points at the decision boundary which are known as support
vectors. Therefore, SVM finds the most optimal hyperplane
that segregates the regions belonging to the different classes.
Hence, when a test instance falls in a specific region it is
associated with the class belonging to that region. On the
other hand, in regression problems this hyperplane is not just
a separating entity, but rather the decisive factor that helps us
predict the continuous value of the dependent response vari-
able. This means that the hyperplane is more of an equation
that determines the continuous-valued output class. In this
paper, we build an SVM regression model using a 3rd order
polynomial kernel to account for the non-linear nature of
the register file dataset. The 3rd order polynomial kernel is
characterized by Equation (6).

K (x, y) =
(
xT y+ c

)3
(6)

where x and y are vectors in the input space that resemble
feature vectors computed from training or testing data points
and c is a free parameter trading off the effect of higher-order
versus lower-order terms in the polynomial.

D. K-NEAREST NEIGHBOR (K-NN)
k-NN [27] is one of the simplest yet most popular machine
learning techniques used to build predictive models due to
their power in generalizing well to most datasets. It is known
to be a non-parametric machine learning method that does
not rely on the parametric method of probability distributions.
k-NN is also called as instance-based or lazy learning since
the learnt model simply stores the data points themselves
in memory and tries to find the k neighboring points to the
incoming test instance and hence assigns the majority class
of the neighboring instances to the test instance. In regression
problems, since we do not have discrete classes, the model
calculates the average response variable of the k-nearest
neighbors and assigns it to the new instance. At first, we used

the rule-of-thumb to pick a suitable value of k which says that
k is approximately equal to the square root of the number
of samples in the dataset. The number of samples in our
possession is 80 samples and hence kmust be 9. Nevertheless,
after tuning the value of k we found out that k = 3 yields
the best regression performance. As a result, we use k = 3
to consider only the three nearest neighbors in finding the
predicted values of the data instances. In finding the nearest
neighbors, k-NN usually uses some distance measures like
the Euclidean and the Manhattan distances to find the closest
training points to the incoming test point. Nevertheless, the
Euclidean distance remains the most popular of all distance
measures as it takes reduces the effect of noisy data points
through squaring the difference between two data points.

The Euclidean distance is given by Equation (7):

Euclidean distance =
√
(x2 − x1)2 + (y2 − y1)2 (7)

where x and y are the independent variables belonging to
the two data instances under investigation (test and train
instances).

E. KStar
KStar [28] is very similar to k-NN since it also finds the aver-
age response variable of the k-nearest neighbors. Nonethe-
less, the difference between KStar and k-NN lies in the usage
of an entropy-based distance function instead of the nor-
mal distance functions discussed earlier like Euclidean and
Manhattan distances. The intuition of entropy-based distance
measures is that the distance between data points can be
thought of as the complexity of transforming one data point
to another data point [27].

F. WEIGHTED LEARNING (LWL)
LWL [29], [30] is another instance-based learning that oper-
ates in a very similar fashion to k-Nearest neighbor except
that it weighs the contributions of each training point (nearest
neighbors) according to their distances from the test point.

G. RANDOM FOREST (RF)
The seventh algorithm considered is random forest [31]. It is
an ensemble training method that works through constructing
multiple decorrelated decision trees to improve the regres-
sion performance. In regression problems, the test instance
is routed through all trees simultaneously resulting in a pre-
dicted value at the leaf node of each tree. The final predicted
response variable is then computed as the average of all
leaf node values resulting from all trees in the forest. Deci-
sion trees are usually very good predictors of non-linearly
separable datasets. However, decision trees suffer from the
problem of overfitting if allowed to grow deeply since they
tend to learn uncommon characteristics about data instances
that might simply be noise in the dataset. Therefore, random
forest is a very good solution that minimizes the effect of
overfitting since it builds many uncorrelated trees and hence
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significantly reduces the possibility of overfitting to the train-
ing dataset.

Initially, the data scientist specifies the number of required
trees in the forest (N) and given the number of training
instances (m), the algorithm builds N separate decision trees
by sampling with replacement m training instances from the
entire dataset. This results in trees that are decorrelated since
the training sets used to train each tree are different. To find
out the optimal number of trees in the forest we vary the
number of trees from 10 all the way to 200 and observe
the out-of-bag error. We observe that upon increasing the
number of trees beyond 100 we do not significantly reduce
the out-of-bag error; hence we use 100 trees in our random
forest model. At every node of each decision tree, the algo-
rithm picks randomly several independent variables (usually
one third of the total number of variables for regression
problems) and chooses one variable to split on based on a
specific purity measure. The most famous purity measure is
the entropy-based purity measure which is therefore used in
this work.

IV. RESULTS AND DISCUSSIONS
This section presents and discuss results obtained after run-
ning the algorithms on the dataset. The following perfor-
mance metrics: Correlation coefficient (r), Mean absolute
error (MAE), Root mean squared error (RMSE), Relative
absolute error (%) (RAE), and Root relative squared error (%)
(RRSE) are used to compare the performances of the different
algorithms [32], [33]. Furthermore, we also compare the
results to those obtained using different approaches, namely,
an ANN-based approach in [9], and the empire prediction
methodology discussed in [17].

Table 1 and Fig. 1 show results in terms of the performance
metrics r, RAE, RRSE, and the time taken to build the seven
models to predict energy/access. Note that, MAE and RMSE
are not reported for Energy/Access since they were found out
to be zeros for all the used algorithms. Fig. 1 shows that SVM
surpasses all other algorithms in terms of r, RAE, RRSE, it has
the highest r (0.991) and the least RAE (13.2%) and RRSE
(13.6%). In addition, the correlation coefficient results prove

TABLE 1. Energy per access comparison results.

FIGURE 1. Energy per access comparison.

that instance-based learning could be a potential candidate
for accurately predicting the energy/access in a register file
since they also result in a very high correlation between the
predicted values and the actual values (0.956 using KStar
and 0.917 using k-NN). Nevertheless, when we inspect the
RAE and RRSE results, we can clearly see a huge increase
in the errors of instance-based learning when compared to
SVM. If we were to compare the RAE and RRSE of SVM
and k-NN, for example, we would find that the use of k-NN
increases the RAE and RRSE by approximately 18% and
33.5%, respectively. Moreover, random forest tends to yield
theworst results in terms of all performancemetrics including
the correlation coefficient which shows a very poor relation-
ship between the predicted and the actual results (−0.318),
as well as RAE (99.7%) and RRSE (100%). Another interest-
ing dimension to look at is the time taken to build the seven
models as it highlights the difficulty with which the algorithm
can build a representative model that could generalize to the
dataset in hand. It is observed that instance-based learning
takes negligible amount of time in building their models since
they simply store the instances in memory, whereas Gaussian
process takes a considerable amount of time to build the
model. On the other hand, SVM, the best performer, takes a
slightly longer time to generate its model compared to other
algorithms.

Table 2 and Fig. 2 show the obtained results in terms of the
performance metrics r, MAE, RMSE, RAE, RRSE, and the
time taken to build the seven models mentioned earlier to pre-
dict leakage power. The leakage power models tend to behave
like the models generated for energy/access. Yet again, SVM
outperforms the other six algorithms in all performance met-
rics especially the correlation coefficient (0.991). Similarly,
the instance-based algorithms tend to show very high positive
correlation between the predicted and the actual values of the
response variable (0.980 using KStar and 0.949 using k-NN).
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TABLE 2. Leakage power estimate performance comparison.

FIGURE 2. Leakage power performance.

A noteworthy observation in Fig. 2 is how the random forest
algorithm was able to get close to the performance of SVM
unlike the performance of random forest on the energy/access
variable. In fact, random forest is the second-best algorithm
according to all the performance metrics. Nevertheless, the
time taken to build the random forest algorithm (0.050 s) is
the highest among all other algorithms with SVM taking less
than half the time (0.020 s). Moreover, the worst performer
in case of leakage power is the LWL algorithm based on all
performance metrics.

As mentioned earlier, the root mean squared error tends
to be more useful than the mean absolute error in case the
dataset had lots of outliers as squaring the errors would further
highlight the discrepancies between the predicted and the
actual values. However, we also notice from Fig. 2 that the
mean absolute error results go hand in hand with the root
mean squared error results, which indicates that the dataset
used does not include a noticeable number of outliers. The
same comment could be made using the results of relative
absolute error and the root relative squared error.

Fig. 3 shows results related to the prediction of the required
silicon area to design the register file. Here as well, SVM

FIGURE 3. Area comparison.

demonstrates its superiority in terms of performance com-
pared to the other six algorithms proving that it is the best
algorithm one more time according to the five different
performance metrics used. Similarly, random forest comes
second in accurately predicting the area of the register file on
the chip. Perhaps the worst algorithm in predicting the area
on the chip is the LWL algorithm according to all metrics.
Finally, SVM ensures its strength in one more aspect which
is the time taken to build the model since it takes a reasonable
amount of time to build compared to the random forest and
Gaussian process algorithms.

To further study the results, we compare the correlation
coefficients obtained in the work described here with those
that were acquired using ANN techniques using the same
register file dataset [9]. In their work, the authors used a
multilayer RBFANN that consists of two hidden layers where
the first layer consists of 6 nodes, while the second layer
consists of 4 nodes. Using the same dataset, the authors in [9]
were able to achieve correlation coefficients of 0.97445 and
0.982399 for energy/access and leakage power, respectively.
On the other hand, our SVM algorithm was able to achieve
correlation coefficients of 0.9905 and 0.991 for energy/access
and leakage power, respectively. In addition, and using the
same dataset, the authors in [34] were able to achieve a cor-
relation coefficient of 0.98722 for the area variable, whereas
in our study, the SVM-based approach achieved a higher
correlation of 0.9893. Results show a consistent improvement
in correlation coefficient obtained with SVMwhen compared
to ANN which signifies the power of SVM in predicting
energy/access, leakage power, and area. Therefore, we can
safely conclude that SVM has outperformed ANN in this
domain.

Fig. 4 shows the prediction and accuracy of the SVM
model based on the prediction of the energy/access of each
data instance in the dataset when compared to the detailed
simulation values.
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FIGURE 4. Energy per access.

FIGURE 5. Leakage power.

Fig. 5 shows the prediction and accuracy of the SVM
model based on the prediction of the leakage power of each
data instance in the dataset when compared to the detailed
simulation values.

Fig. 6 shows the prediction and accuracy of the SVM
model based on the prediction of the silicon area of each

TABLE 3. SVM complexity parameter (c) optimization.

FIGURE 6. Area.

data instance in the dataset when compared to the detailed
simulation values.

Now that we have concluded that SVM outperforms the
other algorithms in predicting the three target variables,
we attempt to optimize the complexity parameter c of the
polynomial kernel given by Equation (6). To do so, we used
Weka’s CVParameter Selection meta-classifier [20] to vary c
from 1 to 20 in steps of 1. Table 3 shows the obtained com-
plexity parameter for the energy/access, leakage power, and
silicon area models, in addition to the resulting performance
metrics.

V. PARAMETRIC STUDY
To further compare the performance of the different predic-
tion models, we varied the input parameters (width, ports,
and depth) and computed the resulting outputs. For brevity,
comparative plots are only shown in Fig. 7 for Leakage
Power.

For example, in 7(a) and 7(b), D and P are fixed at 16,9
and 32,12 respectively and W was varied. From Fig. 7(a),
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FIGURE 7. Comparison of leakage power for register files with different
parameters.

Empire [17] seems to underestimate the Leakage Power pre-
diction for wider designs with relatively fewer ports since
from Fig. 7(b), as the Depth and number of Ports have
increased, the estimates of the SVM model have improved.
Similar observations can be made from the rest of the figures.
Evidently, when one takes into consideration the amount of
time and resources to complete a detailed transistor-level
based simulation of these models, SVM prediction succeeds
in providing designers with acceptable estimates in a short
amount of time.

VI. CONCLUSION
In recent years, register files have become crucial compo-
nents to the manufacturing of microprocessors due to their
direct impact on the performance and throughput of commer-
cial processors. The conclusions of the work presented in this
paper can be summarized as follows:

• When designing register files, the number of words in
the file (D), the number of bits in one word (W) and the
total number of Read and Write Ports (P) have a direct
impact on the power consumption. Increasing one or
more of these parameters impacts the power consump-
tion characteristics of mobile devices that are powered
by limited energy resources. Hence, we investigated
alternative register file designs by varying these three
main parameters of the register files to have an insight
before committing to silicon.

• We compared the performance of several machine learn-
ing algorithms in forecasting crucial design parameters

such as energy/access, leakage power, and the area on
the silicon chip of the register file early during the design
process based on the previously mentioned attributes.

• It was evident that the Support vector machine (SVM)
algorithm tends to outperform a variety of high-end
regression models including random forest, and k-NN in
terms of correlation coefficient, relative absolute error,
root relative squared error and others. SVM achieved
the highest correlation coefficient of 0.991, 0.991, and
0.989 when predicting energy/access, leakage power,
and silicon area, respectively.

• On the other hand, the next top performing machine
learning algorithms achieved correlation coefficients of
0.917, 0.980, and 0.987, respectively. This leads to a per-
centage increase of 8.07%, 1.12%, 0.20% in correlation
coefficients, respectively.

• In addition, we also compared the SVM approach to
a previously reported artificial neural network-based
model in the literature. The reported ANN was able to
achieve a correlation coefficient of 0.974, 0.982, and
0.987 when predicting energy/access, leakage power,
and silicon area, respectively, using the same dataset.
This leads to a percentage increase of 1.75%, 0.92%,
0.20% in correlation coefficients, respectively, while
requiring lesser computational resources on average.
This helps us conclude that SVM is still superior to ANN
models.
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