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ABSTRACT Home energy management (HEM) systems optimize electricity demand of appliances accord-
ing to the price-based demand response (DR) programs. Undoubtedly, customer satisfaction is of such
importance that if not taken into consideration, it prevents customers from participating in the DR. HEM
systems suffer from high nonlinearity due to the variety of smart appliances and different criteria for
customer satisfaction. In this paper, an advanced satisfaction-based HEM system using deep reinforcement
learning is proposed to hourly schedule the controllable and time-shiftable appliances, including electric
vehicle, air conditioner, and lighting system as controllable loads and washing machine, and dishwasher
as time-shiftable loads. The proposed framework deploys a Deep Q-Network (DQN) method. Regarding
customer dissatisfaction, this paper takes into consideration nonlinear precise functions. The Kano model
for EV departure SoC, charging duration and lighting system satisfaction, desired temperature span for air
conditioner, and the desirable operation period, waiting time, and consecutive mode of dishwasher and
washing machine are taken into account. The proposed HEM system is applied to a smart home, and the
results are compared with those of the Q-Learning algorithm. Numerical results prove the effectiveness of
the proposed HEM system in reducing electricity cost and customer dissatisfaction, as well as the superiority
of DQN over Q-Learning as well.

INDEX TERMS Deep reinforcement learning, demand response, home energy management, customer
dissatisfaction.

I. INTRODUCTION
In modern societies, residential customers use advanced
and technological appliances. Home appliances account for
around 41% of the total residential energy consumption in the
United States [1]. Development of the smart grids and signif-
icant advances in smart household appliances and the internet
of things have paved the way for home energy management
(HEM) to schedule controllable appliances. An optimal HEM
strategy yields the optimum time and amount of energy
consumption under a price-based demand response (DR)
program [2].

An in-depth review of the relevant literature reveals the
considerable efforts devoted to optimizing the HEM problem.
In this respect, a wide range of classic optimization methods
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such as heuristic-based [3], fuzzy methods [4], MINLP [5] or
commercial optimization solvers such as Scheduler [6] have
been put forward. However, as the environment with which
a HEM system interacts changes dynamically, solving the
HEM problem with a fixed environment and set of scenarios
via conventional optimization methods fails to yield a prag-
matic solution [7].

In contrast to traditional methods, machine learning is
able to tackle this handicap through a learning process.
A machine-learning algorithm solves the problem by con-
structing a generalized description of the input data rather
than memorizing the data. Reinforcement learning (RL) [8],
one of the main subcategories of machine learning, has
recently been used to implement energy management and
accomplish the DR program. A review of the RL approaches
for the HEM is provided in [9]. In [7] and [10], [11],
researchers deal with residential energy management via
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Q-Learning, a prevalent model-free algorithm. In [7], authors
apply Q-Learning to solve the HEM problem, where user
dissatisfaction is considered by calculating the deviation of
energy consumption from the maximum power ratings of
appliances. It should be mentioned that electric vehicle (EV)
is not considered in [7]. The authors in [10] develop this
field by applying a multi-agent Q-Learning to the DR for
a smart home, where EV is also considered. However, the
battery degradation and the customer dissatisfaction caused
by waiting to reach the desired state of charge (SoC) are
not taken into account. Authors in [10] take advantage of
fuzzy reasoning to consider human preferences and make
use of Q-Learning to implement DR. Researchers in [12] put
forth an incentive-based DR in which Q-Learning is adopted,
where dissatisfaction is formulated in the light of minimizing
the load curtailment. In [13], the authors use the fitted-Q
iteration algorithm to apply RL to an electric water heater.
In contrast to previous works, thermal comfort is included in
[13], precisely. More recently, authors in [14] made use of
Q-Learning for an HVAC control system.

Despite all the advantages, Q-Learning suffers from a
variety of shortcomings such as the curse of dimension-
ality and using Q-table with a fixed size. To tackle these
downsides, the combination of RL with deep learning has
recently proved promising [15]. Deep Q-Network (DQN)
[16], which is the combination of a deep neural network
(DNN) and Q-Learning, has solved complex problems such
as playingAtari2600 games. In [17], [18], DQN is adopted for
the optimal EV charging and navigation, respectively. Deep
reinforcement learning (DRL) has also been used in studies
that are more recent to optimize the indoor temperature [19],
[20]. A HEM system based on the deep deterministic pol-
icy gradient is developed in [21], aiming to fulfill thermal
comfort. Authors in [22] propose an optimization strategy
for time-shiftable and controllable appliances where they
suggest that customer dissatisfaction is only responsive to
usage periods. Similar to [22], authors in [23]model customer
dissatisfaction. Furthermore, some controllable loads such as
the air conditioner are considered non-responsive in [23] or
time-shiftable in [24], which are not realistic assumptions.
The air conditioner is modeled precisely regarding thermal
comfort in [25] via DRL, where the scheduling of other
controllable and shiftable appliances is ignored. In summary,
the following gaps are identified in the existing literature:

1) HEM is involved with an unstable environment.
Hence, using conventional optimization methods is
challenging.

2) Precise modeling of customer dissatisfaction has been
considered only in the case of modeling an individual
appliance (commonly air conditioner or EV). When
it comes to considering various appliances, dissatis-
faction is disregarded or, at best, is simply modeled
by calculating the deviation from the maximum power
rating of appliances.

3) Most of the previous works which made use of DRL
have focused on scheduling one or a limited number

of appliances owing to the hardship of deploying this
algorithm.

In this paper, we propose an advanced satisfaction-based
HEM system using DRL. The proposed model, aiming
at reducing the electricity cost, takes into account con-
trollable loads (EV, air conditioner, and lighting system),
time-shiftable loads (dishwasher and washing machine), and
non-responsive loads (TV and refrigerator). The proposed
HEM system is equipped with the Kano model (a non-
linear model to quantify the dissatisfaction) to estimate
and minimize the dissatisfaction caused by departure SoC
and battery charging duration of EV. Furthermore, Kano
model is deployed to quantify the lighting system satis-
faction, as well. A nonlinear thermal comfort model based
upon precise temperature calculating is employed for the air
conditioner to preserve the temperature within the desired
temperature span. Moreover, consecutive operation mode,
waiting time dissatisfaction, and desirable operation period
are considered for time-shiftable appliances. Deploying DRL
is reasonable when the problem suffers from nonlinearity.
Hence, it is imperative to model customer dissatisfaction
precisely through nonlinear functions and solve this prob-
lem using DRL. To the best of the authors’ knowledge,
this paper, for the first time, proposes such an advanced
satisfaction-based HEM system using DQN. Accordingly,
we propose an advanced HEM system comprising the follow-
ing contributions:

1) Putting forward an advanced hourly day-ahead HEM
system equipped with DQN to reduce the electricity
cost of a smart home possessing EV, air conditioner,
and lighting system as controllable loads, and dish-
washer and washing machine as time-shiftable loads.

2) Proposing a precise satisfaction-based framework
including the Kanomodel for departure SoC and charg-
ing duration of EV and lighting system satisfaction.
Furthermore, desirable temperature span for air condi-
tioner, favorable operation time span, and consecutive
operation mode for washing machine and dishwasher
are taken into account.

3) Benchmarking the proposed DQN approach against the
Q-Learning to prove the superiority of the developed
HEM system in terms of reducing electricity cost and
more importantly, improving customer satisfaction.

II. DEEP REINFORCEMENT LEARNING
In recent years, RL has shown remarkable progress and super-
human level performance in optimizing decision-making
problems [16]. The fundamental elements of an RL algorithm
are as follows: agent, environment, agent’s action, reward,
and state. The agent, as the decision-maker of RL, takes
the actions. The environment is composed of appliances of
the smart home and their relevant parameters. Each action
executed by the agent leads to some changes in the environ-
ment. The information of the environment is monitored as
state observation. In addition to the state, the agent receives
a scaler reward corresponding to the action. RL methodology
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can be modeled using the Markov decision process (MDP)
[7]. MDP can solve a long-term optimal decision-making
problem. Each MDP is defined by a tuple consisting of <S,
A, P, R, γ >. In this tuple, S is the environment state. A
stands for the action that is taken by the agent. P denotes the
transition probability matrix, R is the reward signal, and γ
is the discount factor. Q-Learning [26] is a model-free RL
algorithm that solves nonlinear problems by estimating the
maximum cumulative reward. The fundamental idea of this
algorithm is to find the optimal state-action pair values in
an iterative procedure. The Bellman equation describes this
algorithm by:

Qnew(St , at )← Qold (St , at )

+ θ

(
r + γ.max

a′t
Qold (St+1, a′t )− Qold (St , at )

)
(1)

whereQ(St , at ) is the state-action pair value, St stands for the
state at time-step t , at and a′t are actions taken by the agent,
based on target policy and behavior policy, respectively. r
is the current reward of the taken action, γ represents the
discount factor, and θ denotes the learning rate.

DQN, which is a combination of the Q-Learning algo-
rithm and a DNN, has been developed [16] to address the
Q-Learning shortcomings. The idea of DQN is to use a
DNN instead of a Q-table to estimate the state-action pair
values. By doing so, deep sequential layers as processing
units are deployed to perform a nonlinear transformation and
abstract latent features from input data. The main advantage
of utilizing a DNN for estimating the state-action pair value
can be attributed to two main reasons. First, according to
Cover’s theorem, nonlinearly separable data can be trans-
formed into linearly separable data with higher-dimensional
space by means of a nonlinear transformation. Given that a
neuron, with a nonlinear activation function, is a nonlinear
transformation of its input, a DNN can be used to estimate
a nonlinear Q-function. Second, using a DNN, rather than
a Q-table with a fixed size, enables the algorithm to avoid
discretizing the environment. Hence, any possible state which
is not considered in a Q-table can be fed into the DNN.
Algorithm 1 explains the training of the agent with DNN.

III. PROPOSED HEM SYSTEM
As discussed above, this paper aims to provide an hourly
day-ahead energy consumption strategy for a smart home.
It is accomplished through determining the 24-hour ahead
energy consumption of each appliance, aiming to reduce
the electricity cost and user dissatisfaction. In this respect,
it is assumed that the smart home is equipped with a HEM
system consisting of an agent for each appliance. Also, smart
meters are installed on appliances to monitor the situation
and receive the command signals from the relevant agents
regarding the electricity price at each hour. Appliances can be
divided into three categories, non-responsive, time-shiftable,
and controllable loads. In the remainder of this section,

Algorithm 1 Training Deep Q-Network
1. Initialization:

1.1 Setting hyperparameters of the algorithm (e.g., ε, batch-size, and
experience-size)
1.2 initializing agent’s memory and agent’s experience
1.3 Initializing the DNN with random weights and biases
1.4 Initializing the environment (smart home)

2. Repeat for each 24-hour episode:
2.1 Start with an initial state Sinit
2.2 Observe the state information
2.3 Predict the state-action pair value
2.4 implement the ε-greedy policy:

2.4.1 Generate a random number
2.4.2 If the generated number is less than ε: Select a random
action and memorize the action index
2.4.3 Else: Select the action with the maximum predicted value
by DNN and memorize the action index

2.5. Calculate the current reward and obtain the next state
2.6. Append [state, action index, reward, next state] to the agent’s
memory
2.7 Denote the next state as the current state
2.8 If the length of the agent’ experience is greater than the batch size:

2.8.1 Randomly select a batch of experiences of a length equal
to the batch size
2.8.2 Train the DNN agent based on selected batch

2.9 Append the memory to the agent’s experiences
3. Adopt the greedy policy at each time-step

we explain the formulations for electricity consumption and
customer dissatisfaction.

A. ENEGY CONSUMPTION MODELING
1) NON-RESPONSIVE APPLIANCES
Non-shiftable loads are appliances that cannot be turned off
once they begin the operation, like a refrigerator [7], [10],
[11]. Also, appliances such as TV are extremely reliant on
user behavior and cannot be scheduled due to user priorities.
Hence, the energy consumption of this kind of appliance at
each hour is equal to their nominal energy consumption rate:

EN−R,t = ERated (2)

where EN−R,t is the amount of energy consumption of the
non-responsive load. Also, ERated is the nominal electricity
consumption of the appliance. Therefore, the electricity cost
related to these appliances, CN−R,t , is calculated by:

CN−R, t = Ct .EN−R, t (3)

where Ct is the electricity price at hour t .

2) TIME-SHIFTABLE APPLIANCES
Time-shiftable loads have some flexibilities, which can be
used to achieve a specific objective. For instance, they can
be shifted to the off-peak hours with lower electricity prices
to reduce the cost. In this paper, we develop a multiple
decision model for time-shiftable appliances. Assuming that
the nominal energy usage of a time-shiftable load in one hour
is ERated , and it can normally finish its task in one hour [23],
the multiple energy consumption modes can be derived as:

operationt ∈ {0, 1, 2, 3} (4)
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where operationt = 0 corresponds with the turned-off state
at time step t . operationt = 1 indicates that the appliance is
turned on at t and operating with normal energy consumption.
operationt = 2 implies operating in two consecutive hours
(t and t + 1), consuming ERated /2 electricity power. In the
same way, operationt = 3 designates operating in three
consecutive hours (t , t + 1, and t + 2), consuming ERated /3
energy at each hour. Regarding the above description, the
electricity cost of time-shiftable loads can be derived as:

CShiftable, t = Ct ERated/operationt (5)

3) CONTROLLABLE APPLIANCES
In contrast to non-responsive and time-shiftable loads, con-
trollable loads are able to operate flexibly in different levels of
energy consumption. In this paper, a set of actions represent-
ing the different levels of EV charging is taken into consid-
eration. Most of the previous works in the existing literature
of HEM consider a binary-state model (i.e., charging mode
and off mode) for the EV agent [22], [24]. But in this work,
a quadruplet action level is taken into account:

actionEV , t ∈ {0,EEV1 ,EEV2 ,EEV3 } (6)

The arrival time, departure time, and SoC at arrival time
adhere to normal distribution [17]. Accordingly, in this
research, the agent will be trained based on various arrival
and departure times and SoC at arrival time. Furthermore,
EV discharging is not considered in this paper due to the
damaging effect and shortening of the battery life [27].

A lighting system is another essential appliance that can be
modeled as a controllable load [7]. Similar to the EV agent,
a set of action levels is taken into account to formulate the
lighting system as a controllable load.

actionLighting,t ∈ {EL1 ,E
L
2 ,E

L
3 ,E

L
4 ,E

L
5 ,E

L
6 ,E

L
7 } (7)

Eventually, the action levels of the air conditioner are consid-
ered as below:

actionAC,t ∈ {0,EAC1 ,EAC2 ,EAC3 ,EAC4 } (8)

B. DISSATISFACTION MODELING
Although electricity cost reduction can make the price-based
DR attractive for customers, user dissatisfaction is typically
considered a significant barrier to participate in the DR pro-
grams. Thus, customers’ dissatisfaction should be considered
to pragmatically account for the customer participation in the
DR programs [28]. In the following, elements of the proposed
framework for dissatisfaction modeling are presented.

1) QUANTITATIVE KANO MODEL
Kano model is a helpful tool that seeks to give a map
between customer satisfaction/dissatisfaction and require-
ment fulfillment [29]. Kanomodel characterizes the customer
requirements (CRs) based on their impact on user satisfac-
tion/dissatisfaction. Accordingly, CR is categorized into three
main types, namely attractive, one-dimensional, and must-
be attributes [29]. This categorizing is in line with how

well different CRs can influence customer satisfaction. One-
dimensional attributes are the general form of the relation
between CR and customer satisfaction. These attributes lead
to gratification when they are fulfilled and to displeasure
when they are not. However, it should be noted that fulfilling
the CRs more than expectation does not necessarily result
in higher satisfaction. Attractive attributes, which follow
exponential form, are the requirements whose absence does
not result in dissatisfaction, whereas their presence leads to
customer satisfaction. Must-be attributes are the ones whose
shortagemakes the user dissatisfied. Nonetheless, when these
attributes are satisfied, the customer is neutral. Based upon
the above description, a quantitative presentation of customer
satisfaction/dissatisfaction can be provided.

In this paper, EV owner dissatisfaction is modeled in
accordance with the above description. The deviation from
desirable departure SoC and charging duration to achieve
desirable SoC are foremost leading factors causing EV
owner’s dissatisfaction [30]. As an example, in the case of
time limitation, when the optimal charging time is equal to the
duration of charging the battery with maximum charging rate
(uncontrolled manner), the customer is not dissatisfied. How-
ever, when the charging strategy lasts more than the uncon-
trolled manner, the customer will be dissatisfied. Therefore,
EV owner dissatisfaction is a must-be attribute and is defined
by:

DissatisfactionEV ,t = a e−RFEV ,t + b (9)

The RFEV ,t stands for requirement fulfillment and is in the
range of [0-1]. In order to scale the dissatisfaction of each
time step in the interval [−1, 0], the constants a and b are
adjusted to−1.582 and 0.582, respectively, according to (10).
Algorithm 2 illustrates the RFEV ,t calculation procedure.

a =
e(1)

1− e(1)
, b =

1
e(1)− 1

(10)

where tarr and tdep stand for arrival and departure times obey-
ing normal distribution,ψ and λt denote the minimum charg-
ing duration and normalized deviation from the desired SoC,
Capbatt represents the maximum battery capacity, Chmax
and ηch are maximum rating and efficiency of the charger,
respectively.

Algorithm 2 EV Requirement Fulfillment
if tarr < t < tarr + ψ :

RFEV ,t = 1 − λt
else:

if tarr + ψ ≤ t ≤ 23:
t = t – (tarr + ψ)

else:
t = (t + 24) – (tarr + ψ)

if SoCt < desirable SoC:
RFEV ,t =

((24− tarr )+(tdep)−t)
(24− tarr )+(tdep)

× (1− λt )
else:

RFEV ,t = 1
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In addition to dissatisfaction caused by charging duration
and deviation from desired departure SoC, battery degrada-
tion is also regarded in this work. According to [31], battery
degradation is calculated by:

degradationEV ,t =
costbatt MK actionEV ,t

Capbatt
(11)

whereMk stands for the slope of the linear approximation of
battery life, costbatt represents the battery cost.
In addition to EV, the lighting system obeys the same

modeling. In the existing literature, lighting system dissat-
isfaction is ignored or formulated based on simple devia-
tion from maximum energy consumption. Similar to EV, the
requirement fulfillment of lighting system is a fundamental
expectation of the customer. When it is fulfilled, the user
is neutral, whereas the user will be dissatisfied when it is
not provided. Consistent with the Kano model, the lighting
system belongs to the must-be category through the following
nonlinear equation:

DissatisfactionLighting,t = a e−RFL,t + b (12)

where RFL,t stands for requirement fulfillment of the lighting
system. As done for DissatisfactionEV ,t , the constants a and
b are adjusted to −1.582 and 0.582, respectively, in order to
normalize the dissatisfaction. The RFL,t in (12) is derived by:

RFL,t =
actionLighting,t

EMax
(13)

where EMax represents the maximum possible energy con-
sumption, i.e., maximum brightness.

2) THERMAL COMFORT
Reducing the electricity cost for an air conditioner without
considering thermal comfort might not be convincing for the
customers due to the thermal dissatisfaction. As stated in [32],
it is possible to reduce energy consumption and electricity
cost and preserve user satisfaction at a satisfactory balance,
concurrently. In this work, we aim tomaintain the smart home
temperature in the desired interval [T1, T2], according to:

if tempt > tempmax or tempt < tempmin :

TDt = min{|tempt − tempmax |, |tempt − tempmin|}

else : TDt = 0 (14)

where temperature at hour t is derived by [33]:

tempt = εair .tempt−1
+ (1−εair ).(tempoutdoor,t−1+ηac.actionAC,t/Kair ) (15)

where tempt denotes the current indoor temperature, and
tempmax and tempmin are the maximum and minimum admis-
sible temperature, respectively. TDt is the thermal discomfort,
εair represents air inertia factor, tempoutdoor,t stands for cur-
rent outdoor temperature, ηac is the coefficient performance,
and Kair is thermal conductivity.

3) WAITING TIME
Operating in consecutive hours can lead to a lower electricity
cost, but it brings about more dissatisfaction than operating in
one hour (normal mode). Regarding desirable starting time,
time-shiftable load dissatisfaction can be derived as:

dissatisfactiontime−shiftable=
n∑
i=1

|set timei − Tdesirable| (16)

where set time, Tdesirable and n stand for current operating
time (on mode), the customer desirable starting time, and the
number of consecutive hours, respectively. The intention of
using the absolute value operator is to appropriately calculate
the dissatisfaction for a set time before Tdesirable.

C. DRL IMPLEMENTATION
After determining the electricity cost and user dissatisfaction,
the reward signal related to each agent can be modeled as
follows:

R = −(B1Cappliance + B2Dissatisfactionappliance) (17)

whereCappliance andDissatisfactionappliance stand for electric-
ity cost and dissatisfaction associatedwith an appliance. Also,
B1 and B2 denote the weighting factors for electricity cost and
dissatisfaction, respectively. It should be noted that weighting
factors might vary for each smart home, owing to the fact
that they depend on user preference [7]. As discussed in the
previous subsections, we have considered several constraints
such as desirable operation time for shiftable loads, desired
SoC, arrival time and departure time for EV, favorable tem-
perature span for air conditioner, and requirement fulfillment
for the lighting system. Hence, the weighting factors are
determined through trial and error [24] in such a manner that
constraints are satisfied, and cost and dissatisfaction are min-
imized, as well. Moreover, the effect of manipulating them is
investigated by designing a case study in Section IV.C.4.

It is should be noted that maximum energy consumption
at each time step cannot exceed a threshold value due to
the practical aspects of HEM system implementation. In the
light of consecutive operating modes for time-shiftable loads,
an additional constraint is formulated based on time-shiftable
appliances to ensure that energy consumption does not exceed
irrationally:

Na∑
i=1

Eappliance,i + Etime−shiftable load ≤ Ethreshold (18)

where Na represents the number of non-responsive and con-
trollable appliances.

Afterward, each agent learns the optimal policy through
maximizing the cumulative reward, separately. Consistent
with the inherent nature of RL, agents pursue the optimal
policy out of dynamic interaction with the environment. Due
to the lack of experience of the agents at the beginning,
the learning process commences with trial and error. Tak-
ing various actions and estimating the cumulative reward in
cooperation with DNNwhich facilitates the learning process.
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FIGURE 1. Hourly electricity price.

Gradually, agents learn to take the posterior actions, aiming
to gather higher reward.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, the performance of the proposed DRL
approach is validated by applying it to smart home and com-
paring it with different scenarios.

A. SIMULATION SETTINGS
The electricity price for the price-based DR program is taken
from [34]. Fig. 1 shows the hourly price for 24-hours. The
simulated smart home consists of a TV and refrigerator as
non-responsive loads, washing machine, and dishwasher as
time-shiftable loads, and EV, lighting system, and air condi-
tioner as controllable loads.

Table 1 lists the appliances considered in this research,
where specification are taken from [7], [10], [17]. The
non-responsive appliances affect (18) related to maximum
power usage. Operation time for refrigerator and TV are
24-hour and three random hours, respectively. The desired
operating period for the washing machine is assumed to be
[13:00–19:00]. Similarly, for the dishwasher, an interval of
[20:00–23:00] is taken into account as a desirable operating
period. The power rating of the washing machine and dish-
washer are 1.5 and 1.6 kWh, and these appliances can operate
in consecutive hours, consuming a fraction of the power
rating. In addition, the Ethreshold to adjust the time-shiftable
loads is assumed 8 kWh. The desired indoor temperature
interval for the air conditioner is assumed to be 20-22 degrees
Celsius. Air conditioner corresponding parameters, namely
inertia factor, coefficient performance, and thermal conduc-
tivity, are 0.7, 2.5, and 0.14, respectively [35]. The lighting
system starts operating from 06:00 until 23:00 [10], [11].
Regarding EV parameters, a Nissan Leaf battery with 24 kWh
capacity and 6 kW as maximum charging rate is considered.
Charger efficiency is assumed to be 93% [30], and the desired
SoC is 90%. As discussed before, the arrival time, departure
time, and the initial SoC adhere to normal distribution [17].

TABLE 1. Appliances specifications.

In this research, a normal probability distribution function
with mean and standard deviation equal to 20% and 10%, i.e.,
N (20%, 10%), is considered for the initial SoC. Arrival time
obeys a normal distribution function with mean and standard
deviation equal to 16:00 and 1 hour, i.e., N (16:00, 1 hour).
Similarly, for departure time, 8:00 and 1 hour are the mean
and standard deviation, respectively. Accordingly, random
episodes are created to train the agents. An episode repre-
sents a whole day in the HEM problem. After the training
phase, a new random episode is created to test the agents.
The simulation is implemented in Python 3.6 programming
language. Regarding the hyperparameters, the DNN of agents
is composed of 3 hidden layers. The First, second, and third
hidden layers are composed of 64, 128, and 64 neurons,
respectively. The batch size is 64, and the experience-size is
200. To execute ε-greedy policy as behavior policy, ε is set
to 0.05.

B. SCENARIO DEFINITION
1) SCENARIO 1: APPLYING Q-LEARNING TO THE HEM
SYSTEM
In this scenario, a Q-Learning-based HEM is deployed, aim-
ing to minimize electricity cost and customer dissatisfaction.
The Kano model for lighting system and EV, thermal comfort
through nonlinear thermal comfort model, and time-shiftable
dissatisfaction function are applied to the agents to achieve
the optimal policy.

2) SCENARIO 2: PROPOSED HEM SYSTEM BASED ON DQN
This scenario is to test the effectiveness of the proposed
approach. It is similar to the previous scenario, except that it
makes use of DQN rather than conventional RL. As discussed
before, RL algorithms can solve nonlinear problems. How-
ever, implementing a DNN rather than a fixed size Q-Table
enables the HEM system to reach better policy. Therefore,
DRL is expected to outperform Q-Learning.

C. RESUTLS AND DISCUSSION
1) LEARNING PROCESS
The cumulative negative reward gathered at each episode is
shown in Fig. 2 to visualize the convergence of agents. Agents
learn the optimal policy through dynamic interactions with
the environment. As they are not equipped with prior knowl-
edge, the learning process starts with trial and error rather
than experience. As illustrated in Fig. 2, in the beginning,
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FIGURE 2. Agents’ convergence in scenario 2.

TABLE 2. Electricity cost results.

agents are not aware of the environment and the consequences
of their actions. Gradually, during the learning process, agents
acquire foresight vision and learn to minimize the subsequent
penalties.

2) ELECTRICITY COST
The results obtained from the described scenarios are listed
in Table 2, where the energy consumption of appliances and
their share in the electricity cost are provided. Comparing
the electricity cost reduction in Scenarios 1 (Q-Learning)
and scenario 2 (DQN) implies that DRL outperforms regu-
lar RL due to solving the problem continuously rather than
discretely.

Fig. 3 shows the disaggregated energy consumption of all
appliances during 24 hours. Regarding Fig. 1, the electricity
price at 06:00 and 07:00 is low, hence, controllable loads con-
sume more energy at these hours compared to the other hours
of daylight. After daylight, the electricity price increases
and peaks twice at 16:00 and 22:00. Therefore, agents have
learned to consume energy within 16:00 and 22:00, rather
than these two peaks, to decrease the electricity cost. Turning
off the appliances in this period leads to high dissatisfaction,
which is discussed in the next section. It should be pointed

FIGURE 3. Disaggregated presentation of energy consumption in
scenario 2.

TABLE 3. EV and lighting quantitative dissatisfaction based on Kano
model.

that the peak of consumption at 17:00 is due to EV arrival
time.

In both Scenarios 1 and 2, the agent of thewashingmachine
decided to operate consecutively at 18:00, 19:00, and 20:00
to reduce the electricity cost and dissatisfaction. If the maxi-
mum energy consumption constraint (18) is disregarded, the
time-shiftable load scheduling may change. Therefore, the
proposed approach in Scenario 2 was executed once again,
ignoring equation (18). In this case, the agent decided to turn
on the washing machine one hour earlier, at 17:00, due to a
lower electricity price and more closeness to the desired start-
ing time. This decision led to exceeding the constraint (18) by
0.9 kWh.

3) DISSATISFACTION
Besides the electricity cost, customer dissatisfaction reduc-
tion is an objective of the agents. Table 3 shows the quantita-
tive dissatisfaction related to EV and lighting systems based
on the Kano model.

Considering Table 3, DQN outperforms Q-Learning by a
14% reduction in customer dissatisfaction. Although accord-
ing to the inherent nature of RL, Q-Learning is capable of
solving nonlinear problems, the superiority of DQN over
Q-Learning is due to the extreme nonlinearity of the Kano
model and the ability of DNN to solve nonlinear problems.
Consequently, DQN has achieved a better policy to satisfy
customer comfort concurrent with decreasing the electricity
cost.
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FIGURE 4. Thermal comfort in scenarios 1 and 2.

Air conditioner operation affecting the thermal comfort is
illustrated in Fig. 4. In this figure, the hourly temperature of
the smart home resulting from the implementation of DQN
and Q-Learning on the air conditioner is presented.

To test the agent of the air conditioner, the initial tempera-
ture of the house is assumed to be 25 degrees Celsius, which
is 3 degrees higher than the maximum acceptable customer
temperature. As can be seen, DQN and Q-Learning have
tried to decrease the temperature very quickly within the
admissible temperature interval. Discussing Fig. 4, the tem-
perature pattern in both algorithms is approximately similar,
and none of them exceed the acceptable temperature interval,
i.e., 20-22 degrees Celsius. However, with regard to DQN,
the agent has identified the hours that can reduce energy
consumption without exceeding the highest acceptable tem-
perature. Consequently, thermal comfort is satisfied in both
Q-Learning and DQN, but DQN has succeeded in satisfying
thermal comfort simultaneous with leading to less electricity
cost.

Discussing the acceptable operating period, the agent of the
washing machine has decided to operate in three consecutive
hours, starting at 18:00. By doing so, not only the electricity
cost is reduced, but also customer satisfaction is met. Explain-
ing dishwasher operation, the agent has decided to operate
regularly at 21:00. It is worth mentioning that operating at
22:00 in the form of 3 consecutive hours was one of the
attractive alternative decisions found by the agent. But this
policy led to less reward and was overlooked by the agent.

4) EVALUATING CUSTOMER DISSATISFACTION
As this paper takes into account both electricity cost and
customer dissatisfaction, it is evident that there are tradeoff
solutions for HEM, depending on user sensitivity to comfort
[7], [25]. A plausible case in point is where the customer
has more inclination towards plunging the electricity cost
rather than being comfortable. In this case, the electricity
cost is expected to witness a decrease, whereas customer
dissatisfaction is expected to experience a soar. Hence, a new
case is studied to investigate the effect of customer comfort
on the electricity cost in which the dissatisfaction factor is
decreased. The results obtained for the new case (decreased
sensitivity to the user comfort) are presented in the following.

TABLE 4. Numerical results – impact of customer dissatisfaction.

a: ELECTRICITY COST
Table 4 shows the performance of the agents in the case
of decreased sensitivity to user comfort. The results for
Scenario 2 are also listed to facilitate the comparison.
According to Table 4, in the decreased sensitivity to user
comfort case, the electricity cost has decreased by 21.30%,
compared to Scenario 2. As expected, the electricity cost has
significantly plunged in the new case. However, the user dis-
satisfaction has been notably jeopardized, which is discussed
in the following.

b: DISSATISFACTION
Given the decreased sensitivity of the agents to the user
dissatisfaction, both the dishwasher and washing machine are
turned on at 06:00. This policy does not satisfy the customer
due to the high deviation from the desired starting times but
reduces the electricity cost notably due to low electricity price
at 06:00.

Table 5 shows the quantified dissatisfaction in the
decreased sensitivity to user comfort case. To ease the com-
parison, Scenario 2 is also listed in this Table. To have a fair
comparison, EV arrival and departure times and initial SoC
are the same. As can be seen in Table 5, dissatisfaction is
extremely increased. It is worth noting that the electricity
consumption of EV in Table 4 for both Scenarios 2 and
the new case is 10 kWh. But according to Table 5, dissat-
isfaction has increased remarkably. The reason for paying
less electricity cost with equal energy consumption in the
decreased sensitivity to user comfort case is that the agent
of EV has decided to postpone the charging to the late hours
in the midnight when the electricity price is low. This policy
decreased the electricity cost, but dissatisfaction increased
dramatically.

Fig. 5 shows the performance of the air conditioner in
the decreased sensitivity to user comfort case. Similar to the
two discussed scenarios, the initial temperature is assumed
to be 25 degrees Celsius, whereas the maximum customer
admissible temperature is considered 22 degrees Celsius.
According to Fig. 5, in the decreased sensitivity to user
comfort case, the agent of the air conditioner responds to this
discomfort (high initial temperature) slowly, aiming to reduce
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TABLE 5. EV and lighting dissatisfaction for decreased sensitivity to user
comfort case.

FIGURE 5. Thermal comfort discomfort case.

the electricity cost. Furthermore, the agent failed to maintain
the temperature within the acceptable temperature range in
several time-steps, indicated in red points.

V. CONCLUSION
This paper proposed an advanced satisfaction-based HEM
system using DQN, in which a smart home including EV, air
conditioner, lighting system, washing machine, dishwasher,
refrigerator, and TV was simulated to test the proposed
HEM system. Customer dissatisfaction was modeled pre-
cisely through the quantified Kano model, nonlinear ther-
mal comfort, desirable operation period, waiting time, and
consecutive operation mode. The proposed HEM succeeded
in lowering the electricity cost, where customer dissatis-
faction was also satisfied. In addition, the superiority of a
DQN-basedHEM system over aQ-Learning-basedHEMwas
shown in this research. The results demonstrated that the
proposed advanced satisfaction-based HEM approach out-
performed the Q-Learning, especially in terms of customer
dissatisfaction.

For future works, the authors plan to equip the proposed
framework with recurrent neural networks such as gated
recurrent unit model to forecast the EV owner behavior.
Additionally, developing a satisfaction-based approach using
DQN to investigate a smart grid including a number of smart
homes to participate in the electricity market, is a further step
to expand this field.
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