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ABSTRACT In this paper we revisit the long-standing problem of peak-to-average power ratio minimization
in MIMO-OFDM systems, with a new angle of approach on a well-known scheme. Utilizing the principles of
tone reservation, we place dummy symbols, i.e., complex coefficients, on unused space-frequency resources
with the aim of jointly minimizing the transmit signal PAPR and the self-power consumption of the dummy
symbols. To solve this joint minimization, we propose three different algorithms exhibiting varying degrees
of computational complexity and PAPR reduction performance. Our proposed framework utilizes the strict
PAPR expression, i.e., we take into account the average transmit power of the antenna, to simultaneously
reduce the PAPR on all antennas while keeping the self-power consumption of the scheme minimal. Our
simulation results show that this optimization objective provides better worst-case PAPR reduction and
dummy symbol power consumption performance compared to the peak power minimization objective
widely utilized in the tone reservation literature. Finally, we propose a novel take on a well-known block-
diagonalization algorithm by exploiting knowledge on dummy symbol allocations, resulting in high-gain
data streams in downlink transmission.

INDEX TERMS ADMM, alternating directions method of multipliers, convex optimization, low complexity,

MIMO-OFDM, PAPR, peak-to-average power ratio, tone reservation.

I. INTRODUCTION

Technologies leveraging multiple transmit and receive anten-
nas (MIMO, multiple-input multiple-output) and orthogonal
frequency division multiplexing (OFDM) have become a
staple in the state-of-the-art cellular technologies. MIMO
offers high data rates through beamforming and spatial mul-
tiplexing, along with increased diversity by better exploiting
multipath propagation. Similarly, the frequency diversity of
OFDM provides robustness against frequency selectivity, as it
leverages high bandwidths that are divided into independent,
narrow-band subcarriers [1]. This multiplexing of frequency
resources also makes OFDM a very efficient multiple access
scheme, which is one reason it has been adopted in the
3rd Generation Partnership Project 5G New Radio (NR)
standard as a basis for both downlink (DL) and uplink (UL)
communications [2].
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OFDM, however, has a major drawback. Due to the con-
structive and destructive combining of complex-valued trans-
mit data and beamformers with the inverse Fourier transform,
the time-domain transmit waveform is known to exhibit a
high dynamic range in signal power. Thus, the transmit sig-
nal suffers from high peak-to-average power ratio (PAPR),
which causes problems especially in the design of radio
frequency (RF) components [1].

High PAPR is detrimental to power amplifiers (PA)
through high power consumption and low drain efficiency
(ratio of RF output power to direct current input power [3]).
To avoid distortions in the transmit signal, such as spectral
broadening, the PA must have highly linear (i.e., low effi-
ciency) amplification characteristics, and a back-off on the
operating point is required to prevent the high signal peaks
from being distorted by the PA saturation. Furthermore, high
PAPR increases the power consumption of digital-to-analog
converters [4]. Due to the adoption of OFDM as the basis
for communications in the 5G NR standard [2], PAPR reduc-
tion is still considered a highly relevant problem, especially
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in scenarios where power efficiency and consumption are
important factors.

To combat the effects of PAPR, a rich body of research
has accumulated over the years, and it is still an active
research topic [1]. One of the best-known methods is ampli-
tude clipping [5]-[7], a simple method which unfortunately
causes clipping noise and signal distortions. The schemes for
selected mapping [8], [9] and partial transmit sequences [10],
[11] create low-PAPR permutations of the transmit signal but
require transmission of side information or changes in the
receiver structure. Active constellation extension (ACE), see
for example [12], considers a distorted constellation for data
symbols to obtain a low-PAPR signal.

Tone reservation (TR) [13]-[19] is a PAPR reduction
scheme where subcarriers (tones) are reserved to transmit
a peak-reducing signal along the data signal. The scheme
does not induce distortions in the data signal but reduces
spectral efficiency due to the reserved subcarriers. Many of
the referenced TR techniques are single-antenna peak power
minimization schemes, and do not translate well to MIMO
systems as they ignore the antenna-specific average transmit
power. This causes some antennas with lower average trans-
mit power to have higher signal PAPR, as the peak reduction
signal only targets the highest absolute peaks.

Methods similar to tone reservation but which optimize
the whole transmit signal are proposed in [20], [21]. In [20],
the average power is also considered (i.e., the strict PAPR,
not just the peak power) through an error vector magni-
tude (EVM) based linear lower bound. The authors also
propose an interior-point method -based algorithm, which
requires computationally intensive Newton steps to be solved.
The latter reference, [21], exploits the degrees of freedom
of a massive MIMO system to jointly optimize precoding,
modulation and peak reduction. Under a general MIMO
setting, however, the scheme neglects antennas with lower
average transmit power, which can still exhibit high PAPR.
Furthermore, in [21], multiple system parameters (modula-
tion, beamforming, PAPR) are optimized at once. For this
reason, application of the scheme might require a significant
overhaul of already existing systems.

For other PAPR reduction methods leveraging the spatial
domain for signal shaping, see for example [22], [23], where
the former considers a PAPR constrained power allocation
strategy in single-carrier frequency division multiple access
systems. The method provides good PAPR performance at
high signal-to-noise ratio (SNR) but has prohibitively high
computational complexity. The latter reference exploits left-
over spatial modes from waterfilling for peak reduction, simi-
lar to our proposed case. However, their approach follows the
peak power minimization principle, solved with both highly
complex interior point methods and slow to converge descent
methods.

In this article, we consider a PAPR reduction scheme that
operates on the tone reservation principles. However, we uti-
lize the term ’dummy symbols’ instead of reserved tones, for
two reasons. First, a reserved tone can be misunderstood to
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mean that a whole subcarrier is reserved, which is misleading,
as some spatial streams on the subcarrier could still carry
data. Second, we argue the term ’dummy symbol’ better
describes the scheme’s operating principle: use of optimized
complex coefficients (symbols) that carry no information
(dummy), applied on unused resources to affect the time-
domain waveform.

Contributions: We propose a PAPR reduction frame-
work that uses the principles of tone reservation to mini-
mize the strict PAPR of all transmit antennas jointly with
the self-power consumption of the scheme, which we call
’”dummy symbol power reserve’ (or ‘power reserved for the
dummy symbols’). Our approach has significant differences
to the general peak power minimization used in the TR liter-
ature, as we also optimize the antenna-wise average transmit
power. Thus, instead of using the /,-norm as the objective,
we minimize the ratio between /o, and /; norms for all
antennas, which improves the overall PAPR performance of
a general MIMO-OFDM system by not only focusing on
the absolute highest power peaks. This approach also makes
the problem more difficult to solve due to its non-convexity.
The prior art also does not consider the self-power consump-
tion of the schemes explicitly, with the exception of [20],
where it is proposed as an additional constraint. Implicitly,
however, minimizing power peaks can be done by lowering
the average transmit power, which has an effect on the self-
power consumption. However, from the results it can be seen
that considering the self-power consumption jointly with the
PAPR is very beneficial in our approach.

Furthermore, unlike the prior art (see for example [21]), our
approach is modular, i.e., it can operate on any given beam-
formers and frequency-domain symbol allocation, as long
as there are some unused space-frequency resources (empty
subcarriers on some streams) to exploit. The modularity of
our scheme is beneficial in terms of implementation, as it can
easily be applied over existing system configurations.

We derive three different algorithms with varying lev-
els of PAPR reduction capability and computational com-
plexity to minimize the proposed joint objective of strict
PAPR and dummy symbol power reserve. We derive one
baseline algorithm using successive convex approximation
(SCA), solved via interior point methods, and two more
computationally tractable low-complexity iterative schemes
that are solved via the alternating directions method of
multipliers (ADMM).

Our proposed PAPR reduction framework generalizes our
previous work, see [24], [25]. As we previously applied the
framework in uplink systems, in this article we consider a
downlink scheme instead. However, it should be emphasized
that the proposed PAPR reduction framework is specific
to neither UL nor DL. We propose a novel approach on
the well-known iterative block-diagonalization scheme [26],
[27], that leverages knowledge about the dummy symbol
placements to jointly optimize the data beamformers within
a larger interference-free space. This leaves low-gain spatial
modes for dummy symbol allocations, but as the dummy
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symbols carry no information, this does not affect the rate
performance.

Finally, we propose a simple rate maximization search
algorithm to better observe the additional benefits obtained
by our PAPR reduction scheme. The search algorithm finds,
utilizing a MIMO-modification for the well-known Hughes-
Hartogs bit and power loading algorithm (HH) [28], [29], the
highest possible rate that can be achieved under a fixed peak
power constraint over the antennas, symbol realization, and
given system parameters. This search algorithm is novel but
very straightforward, and we consider the main contribution
of this paper to be in the low-complexity joint PAPR and
dummy symbol power reserve minimization algorithm.

In summary, our contributions are as follows:

o We propose a novel PAPR reduction framework based
on tone reservation principles, which minimizes the
strict PAPR of the transmit signal instead of only the
highest peak power. The proposed scheme is formulated
as an optimization problem to find a PAPR reducing
dummy symbol allocation. Our proposed scheme also
jointly minimizes the dummy symbol power reserve,
i.e., the self-power consumption of the scheme. Through
simulations, our proposed scheme is shown to outper-
form the classical approach of peak power minimization
in terms of worst-case PAPR across all antennas.

o We derive three algorithms to solve the optimization
problem, with varying degrees of PAPR reduction capa-
bility and computational complexity.

+ We propose a novel take on the well-known iterative
block-diagonalization algorithm to provide high-gain
streams for data, and low-gain streams for the dummy
symbol allocation.

Organization: This article can be considered in two parts.
First, in Sections II-IV we derive our proposed PAPR reduc-
tion framework in a general form. We begin with the time
domain transmit signal for a generic MIMO-OFDM transmit-
ter in Section II, including the dummy symbols, after which
we define the joint PAPR and power reserve minimization
problem in Section III. The algorithms to solve this problem
are derived in Section I'V. In the second part (Sections V-VII),
we first propose a beamformer design in Section V that
leverages a pre-determined dummy symbol resource allo-
cation mask to jointly optimize the data beamformers and
find the dummy symbol beamformers. Then, in Section VI
we derive a simple rate maximization search algorithm that
finds the highest transmit power possible (benefiting from
reduced PAPR), subject to a given peak power constraint.
Finally, the performance of the PAPR reduction framework is
investigated through Monte Carlo simulations in Section VII.

Notation: We use general vector notation: a,a and A
denote a scalar, a vector and a matrix, respectively. We use
R and C to denote the real and complex sets. (-)T, (-) and
(-)* denote the transpose, Hermitian transpose and complex
conjugate, respectively, while || - ||, denotes the /,-norm and
diag(a) denotes a diagonal matrix with the elements of a on
the diagonal. Re[-] denotes the real part, and (-); = max(-, 0).
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Finally, we denote iteration indices with bracketed super-
scripts.

Il. TRANSMIT SIGNAL MODEL

We consider a generic MIMO-OFDM system where the
transmitter is equipped with Nt antennas and transmits data
(possibly to multiple users) on L parallel spatial streams.
We assume that a total of Nc subcarriers are available. Let
pel = 0and V. € CNrx1 denote the power and direction
of transmit precoder associated with /-th data stream on
subcarrier c. Then, the transmitted frequency-domain signal
vector in c-th subcarrier can be expressed as

1
x. = V.P2d,, (D

where matrix Vo = [Vc1,..., Vo] € CVM*L s the trans-
mit precoding matrix associated with c-th subcarrier, P, =
diag(pe.1, - - -, Pe.r) 1s the power allocation matrix of L data
streams on subcarrier ¢, and vector d. = [d. 1, ..., dc,L]T
stacks the stream-wise data symbols transmitted on subcar-
rier ¢, normalized such that E[|d, ; |2] =1,Ve,l.

To define the transmit waveform PAPR of the OFDM
system, we need to find the time domain representation of
transmitted signal (1). To do this, first let us compactly

denote frequency-domain signal vectors {X;}¢=1,...nc as X =
[x1,..., XNC]T € CNexNt “and equivalently express (1) as
L IO R
X =) PDV, 2)

=1

where we use the notation V; € CN¢*NT tg denote a matrix
obtained by stacking the stream-wise transmit precoders
associated with [-th data stream over Nc subcarriers, i.e.,

Vi =1[Vis, Vau, ..., Vo] Similarly,
Dy = diag(dy 1, oy, - -, dne.1),
P; = diag(p1,1, p2,1, - - - » PN.D-

Then, by defining the discrete Fourier transform (DFT)
matrix, with o-times oversampling,' as F € CNcx@Ne [5] the
time domain representation of the considered MIMO-OFDM
system can be expressed as

L 1
s% = pHX = FHY P2 DV (€)
=1

Note that the size of matrix S92 is @ Nc x N, and hence each
column of S92 represents the samples of the time-domain
transmit waveform from a single antenna.

To minimize the PAPR of the transmitted waveform,
we shape the transmit waveform (3) by exploiting the unused
space-frequency resources (i.e, any stream [ on subcar-
rier ¢ with no scheduled data). That is, dummy symbols
(complex coefficients) are placed on empty subcarriers or

TAn oversampling factor of « > 4 should be used to provide sufficiently
accurate discrete approximation of the continuous transmit signal [30].
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non-interfering spatial modes.” This transmit waveform shap-
ing mechanism can be achieved by updating expression (3) as

L
§ = 5% 4 FUY “diagmy 1. ....mye )V, (4)
=1

where m.; € C is a dummy symbol that is placed on c-th
subcarrier of data stream /. Note that dummy symbols {m ;}
are applied in the frequency domain, which are precoded with
matrix {\71} and then transformed to time domain represent-
ing using the DFT matrix F in expression (4) (i.e., by follow-
ing the same steps as in the case of data symbols {D;}).

For a compact representation of expression (4), let m; =
[mig, ..., mNC,l]T foralll = 1,..., L, and also denote the
n-th column of \71 by \71,,,, then the n-th column (i.e., antenna
n waveform) of S can be equivalently expressed as

L
sn = sy + FY "diag(V, ,)my, )
=1

where s34 is the n-th column of $%. We assume that the
data-carrying resource indices are known, and by corollary
the indices (c, [) for which p.; = 0 are also known. This lets
us obtain a compact reformulation of (5) where we consider
only the indices of the resources for which it is possible to
place non-zero dummy symbols. To do this, let us use m €
CMox1 to denote a vector obtained by stacking {rm,;}, among
alc=1,...,Ncand! =1,...,L, for whichp.; =0, i.e.,
avector of Np possible dummy symbols. Then, expression (5)
can be compactly expressed as

sy = s34 A, (6)

where the matrix A, is obtained by concatenating the columns
of matrix FH [diag(\?l,n), ey diag(VL,n)] that correspond to
indices (c, [) for which p. ; = 0. Note that indices (c, /) select
the ¢-th column of matrix FHdiag(V;,,).

lll. PROBLEM FORMULATION
Our objective is to minimize the PAPR of an existing
time-domain transmit signal in a power-efficient manner.
This is done by minimizing the ratio between the transmit
signal power peak and the average transmit power, given by
||s,1||§O and (1 /och)||s,,||%, respectively, for each antenna n.
The PAPR minimization is achieved by exploiting unused
subcarriers to transmit dummy symbols, which affect the final
transmit waveform s,, Vn, but which also require additional
power. Therefore, in addition to finding dummy symbols that
reduce the PAPR of the transmitted waveforms, we also aim
to jointly minimize the power reserved for these symbols.
With expression (6), the crest factor (cf, i.e., linear domain
equivalent of PAPR) of the signal transmitted by the n-th

2The non-interference consideration only needs to apply for possible
dummy symbols interfering with the data transmission. As the dummy
symbols do not carry information, they can still be interfered by the data
signal. This can be exploited in beamformer optimization, see Section V.
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antenna element can be expressed as
aNclsnll3
llsn3
The allocation of dummy symbols requires increased trans-
mit power, similar to the data symbols. We call this additional
power increase the dummy symbol power reserve, defined
as a factor by which the already allocated data power is

increased to enable the dummy symbols. To this end, let pdata
denote the total allocated data power (see expression (1)), i.e,

(s = @)

Nc L

PEE=30D ped @®)

c=1 I=1
Then, the factor of increase is given by

s e n PR (I3 M]3
prm) = — G =
)4

®

where ||1i1||% is the total extra transmission power due to the
placement of dummy symbols.

Using (7) and (9) the joint PAPR and power reserve mini-
mization can be cast as the following optimization problem:

log(max,(p©i(s,))) + log(p™ (1))
sy = sda@ 4+ A, Vn

minimize

(10a)

subject to (10b)

with variables {m,s,—1,.n;}. We use the max-operator in
the objective to consider the worst-case PAPR among all
antennas. We also utilize the log-transformation in the objec-
tive since power amplifier input-output characteristics are
usually analyzed in logarithmic domain, where the PAPR can
be straightforwardly summed to the input power. Similarly,
the factor of increase on the power allocation, caused by
the dummy symbols, can be summed on the input power,
provided that the power reserve is translated into log-domain.
This power summation objective is illustrated in Figure 1 for
ideal amplifiers. In practice, the amplification curve is not
linear (i.e., signals with low mean power but high PAPR get
distorted even in the linear region), and the saturation happens
gradually.

IV. ALGORITHM DERIVATION
By substituting the expressions (7) and (9) for pCf(sn) and
p'(m), problem (10) can be written equivalently as

minimize log(t) + log(r) (11a)
subject to M < t,Vn,
llsnll
sy=sd L A, m, Vn, 1+ Iﬁ”ﬁl”% <r,
(11b)

with variables {m,?t,r, s,=1,. . n;}. Problem (11) is non-
convex due to the concave objective (1la) and the
convex-over-convex PAPR constraint (11b). In this section,
we propose and derive three different algorithms, with vary-
ing PAPR reduction performance and computational com-
plexity, to find (sub-optimal) solutions for (11).

47909



IEEE Access

A. Arvola et al.: PAPR Reduction in MIMO-OFDM via Power Efficient Transmit Waveform Shaping

Pout[dB]
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=
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Average antenna  10log;,(p™*(m))

input power (data)

FIGURE 1. Illustration of the goal of problem (10), presented in terms of ideal power amplifier characteristics. The average
antenna input power includes the effect of beamforming. Left: Unoptimized input signal with high PAPR, where sufficient
back-off is taken that no saturation occurs. Right: Optimized input with some additional power allocated for dummy symbols;

due to the low PAPR, back-off could be reduced.

The first algorithm utilizes first-order Taylor series
approximations for the non-convex expressions of (11) and
solves a linearized problem iteratively using successive con-
vex approximation. The second algorithm ignores average
antenna transmit powers and replaces the logarithmic rela-
tionship in (10a) with a trade-off coefficient. This solution
structure corresponds to many tone reservation algorithms in
the literature [13]-[19], [21], but our approach includes also
the dummy symbol power reserve function in the objective,
and the solution is obtained via ADMM. The last proposed
algorithm combines the two approaches to find an iterative
heuristic solution.

A. ITERATIVE ALGORITHM VIA SUCCESSIVE CONVEX
APPROXIMATION

Problem (11) is non-convex due to the concave objective
function (11a) and non-convex constraint (11b), which makes
solving (11) computationally intractable.

To handle the non-convexities, let us first introduce
slack variables wy, ¢g,, Yn, and extra (relaxed) constraints
Isnllcc < Wy, VYn,and g, < ||sn||%, Vn. This allows us to refor-
mulate constraint (11b) as quadratic over linear, resulting in
the following equivalent problem:

minimize  log(?) + log(r) (12a)
subject to %’IW’% <t,Vn, |Silloc < wp,Vn,
$p=$y "+ A, Vi, 1+ @l < r,
Gn < lIsul3, Vn (12b)
with variables {m,?,r} and {wy, qn, Sy}n=1,.. Ny. Prob-

lem (12) is still non-convex due to the concave objective and
constraints (12b), which are non-convex due to the convex
R.H.S. terms. To obtain a problem which has a tractable
solution, we need to iteratively approximate these non-convex
parts using first-order Taylor series approximation.

The first-order Taylor series approximations on the objec-
tive (12a) and constraints (12b) around a fixed local point
N} are given by

.....

log(t) + log(r) < log(f) + log(#) + %(t -+ %(r -7
(13)
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Isull3 > 118,115 + 2Re[8(s, — 8,01, Vn.  (14)

Replacing (12a) and the R.H.S. of (12b) with the above
approximations, we can write a convex approximation of
problem (11) as

minimize f + £ (15a)
. aNcwﬁ
subject to s <t,Vn, Isnlloo < W, Vn,

L+ g )3 <7,
gn < 18413 + 2Re[8H(s, — §,)1, Vn, (15b)
s, = sda@ 1 A, Vn, (15¢)

with variables {m, ¢t} and {wy, gu, Su}n=1,... N;. Problem (15)
is convex and can be solved via interior point meth-
ods. The solution is then used to update the local point
,,,,, N}, after which a new solution that is a closer
approximation to a solution of (11) can be found. This
is repeated until the difference between objective values
from one iteration to the next falls under some threshold
eSCA 5 0, or the number of iterations reaches a given
maximum j5¢A. The objective value of (15) can be guaran-
teed to decrease between SCA iterations due to the linear
upper bound approximation [31]. However, since the original
problem is non-convex, convergence to the globally optimal
solution cannot be guaranteed. The joint PAPR and dummy
symbol power reserve minimization algorithm is summarized
in Algorithm 1.

B. LOW-COMPLEXITY PEAK POWER MINIMIZATION VIA
ADMM

Finding a solution to problem (11) using SCA and inte-
rior point methods is computationally taxing, and thus, not
practical. Therefore, finding a low-complexity algorithm with
comparable PAPR reduction performance is necessary.

Another approach to tackling the non-convexity of prob-
lem (11) is to only consider the numerator of the non-convex
PAPR constraint (11b), i.e., peak power minimization. This
principle of tackling PAPR minimization has been considered
in the literature as it is much simpler than utilizing the strict
PAPR expression. Here, we derive the peak power mini-
mization algorithm that also accounts for the dummy symbol
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Algorithm 1 Joint PAPR and Dummy Symbol Power Reserve
Minimization Algorithm
1: Input: {sgatas A }n— NT’ pdata
2: Set: €5CA, jSCA T = maxn(och ||sdd“|| 2o/ 1852 13), F =
1,8, = sd@ vp j=1,00

3: while |0V — 0U—D| > eSCA and j < j5A do

4:  Solve problem (15).

s:  Updates: OV < (152),f < t,7 < r,§, < s,, Vn.
6: j=j+1

7: end while

8: Output: m

power reserve, as a multi-objective optimization problem that
can be solved using ADMM [32].

Peak power minimization ignores the relationship between
the time-domain signal peak and the antenna average transmit
power. It also ignores the logarithmic relationship between
the dummy symbol power reserve p"*(m) and the crest factor
pCf(sn), Vn. Therefore, we can consider the objective (10a)
without the logarithms, but we require a trade-off coefficient
8 to find a good balance between the two functions. Fur-
thermore, as the average transmit powers of the antennas are
ignored, we can denote

— [SF{ SNT] e CCUNTNC ><l

5
A=[A]...A} 1" € C“NTchND,
§data [(S(liata)T .

. (S?V’tha)T]T c COZNTNC x1 X

With this notation, the peak power minimization problem can
be formulated as

minimize  [|5]loc + o 03 (16a)
m,s p
subjectto 5 = 5% 4 Arm. (16b)

We use ADMM to solve this problem. We start by writing
the complex augmented Lagrangian as [33]

Ly5. M, )
_ 8 . o
= I8lloo + gz o013
+ 2Re[wH(§ 9 — A)] + p|§ — 5% — A3
- 1
data — Am + _w”%’
0

a7

= I8lloo + pdatallm||2+plls

where p > 0 is the ADMM penalty parameter and
@ € CoNeNxlis the vector of dual variables corresponding
to constraint (16b). The ADMM steps are [32, Ch. 3]:

s4FD = argmin £,6, Mm%, 0®) (18)
S

(k+1)

mth = = argmin £L,(8 ,m, X)) (19)

m

@*tD = o®) 4 pEktD _gdata _ AgktDy (o()

Following the approach in [21, Sec. IV], step (18) can be
written as an unconstrained scalar optimization problem and
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easily solved via one-dimensional search, for example, the
well-known golden section seafch. To see this, we denote the
constant vector zX) = §92@ 1 An® — (1/p)w®, and write

$4+D = arg min([5llco + o118 — 2113)

NTN k -
- argmln(IISHoo +p Y ehNe |1 52

= arg m1n(max|s1| +pZaNTNC(|z§k)| —1sih?). 1)

The second equality of (21) follows from the definition of
the l>-norm. The third equality is obtained by matching the
element-wise phases of vectors § and z¥) (the phases of §
do not affect the /,,-norm and can be freely chosen). After
matching the phases, we only need to optimize and match the
element-wise magnitudes of s. These can be found via scalar
optimization by solving

(){NTNC (|Z(k) |
1

y = argmln(y +o) -M3). (22)

and then set |s;| = min(lzg )|, y), Vi, i.e., we apply element-
wise clipping. To see this, i.e., to get from (21) to (22), we first
denote max; |5;| = 7. Then, for all i, we can set

if |20 < p

0] 5 = 1% i
y, iflz7 >y,

k
1) —

which characterizes the perfect match in magnitudes if
|z (k)| < y, and the remaining residual otherwise. Another
way to write this is max{0, |z( )| y}= (|z§k)| —P)y, Vi

Next, we move on to find a solution for step (19). The
step has a closed-form solution, as it is a minimization of an
unconstrained convex function, i.e., the zero-gradient condi-
tion gives the minimum. Taking the gradient of the augmented
Lagrangian with respect to m:

AL, m, )

om*
_ dS - pAHEKHD _glata _ A 4 lw(")) —0
ata
p Iy
= = (—I+pA"A) A (@ pE*—5ETD))
p
(23)

By iteratively solving the variables s, m and @, we can
find a solution for problem (16). The iterations are stopped
once a convergence criterion is met, or a maximum number
of iterations kP2 is reached.

To measure convergence, we use the residuals of the primal
and dual feasibility conditions of (16), given by [32, Ch. 3.3]

(rprimal)(k) — ”g(k) _ §data _ Aﬁl(k)nz, (24)

1 ® = [pA@® — @ D). (25)

As the ADMM iterations proceed, these residuals converge to
zero. To set a practical stopping criterion, we can stop iterat-
ing once the residuals fall below a tolerance threshold eP®2k,

The joint peak power and dummy symbol power reserve
minimization algorithm is summarized in Algorithm 2.
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Algorithm 2 Joint Peak Power and Dummy Symbol Power
Reserve Minimization Algorithm

1: Input: {sgata’ An}n:l,...,NT,Pdata» Epeak’ kpeak

2:8etm=0,0=0,k=0.

3. while ”(rprimal)(k)’ (rdual)(k)”Oo
do

4 Calculate §*tD with (21), m**D with (23), and

update @*+1 with (20).

50 k=k+1.

6: end while

7: Output: m.

’10’8'

> ePeak gnd k < kpeak

C. ITERATIVE RELATIVE PEAK POWER MINIMIZATION VIA
ADMM

While the peak power minimization framework of
Section IV-B provides a low-complexity solution to reduce
the peaks of the transmit waveform signal, the PAPR reduc-
tion performance of the algorithm is less effective than
the SCA approach. This is due to the fact that the peak
power minimization algorithm ignores the average antenna-
specific power. Thus, while the peaks of the transmit signal
are reduced, the antennas with low mean power can still
have substantially high PAPR. In the following, we derive
a low-complexity heuristic approach that accounts for the
average power, too.

Similar to the peak power minimization, we manipulate
the denominator of the non-convex PAPR constraint (11b).
Instead of ignoring it completely, we fix the denominator
to be a constant that is iteratively updated between each
SCA iteration. Starting from problem (11), we denote the
denominator of (11b) as (1/05Nc)||s,,||% = (l/och)llsgata +
A,,ril||% = B, Vn, and, by applying first-order Taylor series
approximation on the objective, see (13), we can write the
relative peak power minimization problem as

L 12 (Lo
minimize  max, (%) + pdmé (262)
subjectto s, = sdi@ 4+ A, , Vn, (26b)

with variables {m, s,—1, .. n;}. Note that we also rolled back

the epigraph formulation of (11) to reduce the amount of

optimization variables. Next, we apply a change of variables
1

Sy = 3,? 2s,, Vn, and formulate an equivalent problem as

2 =112
minimize max,, (”S"“ ) + 1!:11:_1!2 (27a)
subject to (sda@ 4 A,m), Vi, (27b)

S"_f

with variables {m, §,—1,_ n;}. This problem is convex around
a local point {t, 7, ;énzl _____ Ny} and can be solved via ADMM.

The complex augmented Lagrangian of (27) is given
by [33]

,,,,,

= 2
maxy ”sn”go ”m”z

.,NT) = ~

Lo, {8y, vy)n=1,.. ; pdataf.
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Nt

+o Y 180 —

n=1

1
_(Sdata +A;m) + — vn ”2»

VA

where o > 0 is the ADMM penalty parameter, and
v, € C*Nex1 wp are the dual variable vectors corresponding
to constraints (27b). Similar to (17), the dual variable vectors
have been moved inside the /;-norm. The ADMM steps are
given by [32, Ch. 3]

(28)

§£lk+1) - arg~min [,o—(ﬁl(k), {Sn, VElk)}n:l,...,NT), Vi (29)
Sn

Y = argmin £, (@, 5, v} ) (30)
m

WD o 0 4 oD L ey g @y (3

Bn

ADMM steps (29) and (30) can be simplified in a similar
manner to Section IV—B Startlng with (29), let us denote the
constant vectors zn (,8 )_7(5data A,m*)—g 1y (k) , Vn.
We also note that max, |S, ||§o maxj, max; |s,,,,|
max; |§i,n|2-

Due to the max-operator over all n, the vectors §,,, Vn, have
to be jointly optimized. To this end, ADMM step (29) is re-

written as

oaNc Nt

+o Y 3 E 5.2,

i=1 n=1

|stn|

.....

(32)

which can be solved via scalar optimization and
clipping, following the same chain of arguments as
in (21).

Step (30) is an unconstrained minimization of a convex
function, and has a closed-form solution via setting the %ra-
dient to zero. To simplify the notation, let us denote q,, =
D Bn)~ 2522‘“‘ + 01 Then, taking the gradient of
the Lagrangian (28) with respect to m:

-k
OLs (@, qi0) v
om*
1 AL H (k) —1 i
= pda_ta;,m UZ AAn(" AAnm)_O
) 1 SR
= = (gl+o ) =AVA)
pr n=1 Pn
Nt
1
“(o ) =) o
n=1 \//;n
By iteratively solving the variables m, {8, Vu}u=1, . Ny

we can find a solution for problem (26). The iterations are
stopped once a convergence criteria is met, or a maximum
number of iterations k™"P°2K is reached.
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Similar to Algorithm 2, we use the residuals of the primal
and dual feasibility conditions, given by [32, Ch. 3.3]

Nt
. 5 1 5

n=1 /3,,
Nt

(rdual)(k) — Z ||O'An(ﬁl(k) _ ﬁl(k_l))”Za 35)
n=1

to measure the convergence. We assume the algorithm is
sufficiently converged once both of the residuals fall below a
set tolerance threshold e™"P¢3X However, unlike Algorithm 2,
we also require an outer loop for the SCA updates, i.e., the
ADMM solution has to be found for each SCA step. However,
by using the solutions of the previous SCA step to initialize
the subsequent ADMM call, the number of iterations is sig-
nificantly reduced for quick convergence. The joint relative
peak power and dummy symbol power reserve minimization
algorithm is presented in Algorithm 3.

D. DISCUSSION ON COMPUTATIONAL COMPLEXITY
Algorithm 1 requires solving the convex optimization prob-
lem (15) around each local point {7, 7, Sn=1,....Ny}, Which can
be done with interior point methods. This solution structure
requires solving Newton steps, which include the inversion
of a matrix with size proportional to the number of primal
and dual optimization variables. The number of primal vari-
ables in (15) can be reduced to Np + Nt by rolling back
the epigraph formulation and backward substituting con-
straints (15b) and (15c¢). The number of dual variables is then
N, and the computational complexity of solving one Newton
step is in the order of O((Np 4 2N1)?). Running Algorithm 1
requires solving multiple SCA steps, each requiring multiple
Newton steps, which becomes practically infeasible for any
large number of dummy symbols Np.

As low-complexity alternatives, Algorithms 2 and 3
require solving the problems (16) and (26), respectively,
which are done with ADMM instead of interior point
methods. This solution structure requires iteratively solving
ADMM steps, multiple times for Algorithm 3 due to the SCA
structure. We can consider the computational complexity of
solving the ADMM steps used in Algorithm 2, i.e., (21), (23),
and (20), and similar consideration will hold for Algorithm 3.

Solving step (21) is a simple one-dimensional search fol-
lowed by a clipping operation, and step (20) is just a subgra-
dient update. The most complexity seems to be in step (23),
which requires the inversion of a symmetric matrix. For the
inversion, we can distinguish two cases: when the dummy
symbols are assigned on a single stream, or on multiple
streams. For the single stream allocation, the non-diagonal
term AMA can be easily simplified to a diagonal matrix,
and thus, the inversion is trivial. Then, the most compu-
tationally intensive calculations are the evaluation of the
matrix-vector products A and the part of (23) following
the matrix inverse. These products can easily be shown to
be Fourier-transforms, with computational complexity in the
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Algorithm 3 Joint Relative Peak Power and Dummy Symbol
Power Reserve Minimization Algorithm

data’ SCA’ Erel—peak’ jSCA’

1: Input: {SdatasAn}n=1 ,,,,, Nt> P
,O.
2 Set: 00 = o0, j = 1,1 = max, (aNcllsg™ |3,/ s3213),
}A’ = 1, ﬁl = 0, vnzl,_i_,NT = 0.
while |0U=D — 00| > ¢5CA and j < j5CA do
Update B, = (1/aNc)|lsd® + A,m|3, Vn.
Setk = 0.
while ”(rprimal)(k)’ (rdual)(k)lloo - Erel—peak and
k < krel—peak do
7: Calculate 557 v, with (32), m*+D with (33),
and update vﬁzkH), Vn with (31).
8: k=k+1.
9:  end while
10:  Calculate ¢t = max, ||§n||C2>o, andr = (1 + Iﬁllﬁl”%).
11:  Updates: OV « (27a), 1 < t,7 < r.
122 j=j+1
13: end while
14: Output: m.

€

AN

order O(aNc log(aN¢)), if fast Fourier transform is imple-
mented. If the dummy symbols are allocated on multiple
streams, the non-diagonal term in the inversion can easily
be shown to be a (Hermitian) striped matrix. If we denote
the number of allocated dummy symbol streams on subcar-
rier ¢ with L™ | then the number of non-zero elements
on each row of the strijaed matrix is less than or equal to
pdummy-max  — may (L") Thus, the inversion can be
undertaken by solving a sparse system of equations. We can
also reorder the rows and columns of the striped matrix,
to obtain a block-diagonal matrix with Nc blocks of size
pdummy-max o ydummy-max gt mogt which can be inverted
separately. The same arguments hold also for Alg. 3.

The steps are solved iteratively until a desired level of
convergence, or a maximum iteration count, is reached.
Therefore, the number of required ADMM iterations depends
on the choice of ePea kPeak for Algorithm 2 (or erel-peak
krel-peak for Algorithm 3). The convergence rate of ADMM
also depends on the penalty parameter p (or o), which is a
design parameter. High values for the penalty parameter set
emphasis on the fast convergence of the primal residual, and
low values put focus on the dual residual. In our simulations,
we found that the dual residual tends to converge much
slower, so low values for the penalty parameter were chosen.

Figure 2 presents a numerical example simulated under an
arbitrary channel realization with Np = 64 dummy symbols,
providing insight into the required number of iterations (the
full details of the system setup are given in Section VII). The
top figure represents the decay of the primal and dual resid-
uals, (34) and (35), for the first SCA step, up to a tolerance
threshold of 1073, The bottom figure represents the number
of ADMM iterations required for each SCA step. It can be
seen that in the beginning, as the SCA point can significantly
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FIGURE 2. Numerical example on required number of iterations for Alg. 3.
Top: Decay of primal and dual residuals during ADMM iterations. Bottom:
Required number of ADMM iterations per SCA step.
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change, ADMM requires more iterations to converge to the
threshold. Then, as the SCA local point gets closer to a local
optimum, the ADMM converges quicker. It should be noted
that the threshold of 1073 is overly strict for this application,
and in practical applications a lower tolerance level (1072 to
10’1) would suffice. Furthermore, for the first SCA steps,
a lower limit can be set on the maximum number of ADMM
iterations to speed up the early (coarse) convergence to a local
optimum. Finally, it is obvious that the number of ADMM
iterations increases as the number of antennas and dummy
symbols increase, as finding a consensus for (larger) m that
works the best for all Nt antennas gets more difficult.

Motivated by the numerical example, we should also high-
light that setting a good initial point can reduce the number
of SCA steps. For Algorithm 1, this requires finding a good
initial dummy symbol vector m, i.e., selecting over space
CM, which is used to calculate {7, 7, §,1.... Np}- In contrast,
for Algorithm 3, the initial point {7, 7, B=1...n;} consists
of only 2 + Nt real variables. Furthermore, the initial {7, 7}
should be set dynamically based on the averages of previous
solutions, especially in time-correlated channels where the
transmission parameters can be assumed to change slowly.
Judging by the bottom graph of Figure 2, this would also
significantly reduce the required ADMM iterations, as only
the last SCA steps would be required.

V. DUMMY SYMBOL AWARE BEAMFORMER DESIGN
FOR DOWNLINK MULTI-USER MIMO

The joint PAPR and dummy symbol power reserve mini-
mization framework operates on any arbitrary beamformers
and data signals, provided there are free space-frequency
resources for dummy symbol allocation. In our previous
work [24], [25], we considered an uplink scenario where
joint transmission between cooperating users was considered,
assuming low angular separation between the users, resulting
in low-gain streams that could be exploited through dummy
symbol allocations. In this article, we consider a downlink
scenario and the corresponding beamformer design.

We consider a multi-user MIMO-OFDM system where a
base station with N7 antennas serves K users with /NV; antennas
each, on Nc subcarriers. The number of antennas can be gen-
eralized, but for simplicity, we consider a case where all the
users have identical configurations. User k is scheduled with
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Lf’a}ga data streams on subcarrier c. Furthermore, we assume
that the number of spatial modes for dummy symbol alloca-
tion qummy, Ve, is known (for example imposed by a stan-
dard or defined by the network operator), and the users are
scheduled with equal amount of space-frequency resources
based on this knowledge. Thus, the total number of streams
is YK gty g0 _ gy

Finally, as we utilize the Hughes-Hartogs bit and power
loading algorithm [28], [29] to construct the transmit signal,
a strict no-interference constraint is set in order to decouple
beamformer design and power allocation. However, this con-
straint is not necessary in general.

Our approach utilizes a novel take on an iterative
block-diagonalization algorithm [34], [26, Sec. IV], [35] to
obtain non-interfering transmit and receiver beamformers.?
The first novel aspect comes from the exploitation of known
dummy symbol allocations. As the resources allocated for
dummy symbols can have arbitrarily low gain, this allows
us to optimize the data precoders with increased dimension
(i.e., project the data into a larger dimensional interference
nullspace), simply by ignoring the dummy symbol precoders
at this point. Thus, we propose scheduling the users with less
than maximum spatial modes, and using the remaining modes
to minimize the PAPR through dummy symbol allocations.
This scheduling scheme can be easily justified, for example,
in scenarios where the user-specific channel matrix is poorly
conditioned, i.e., the majority of the achieved rate is obtained
by using only the best eigenmode for every user.*

The remaining spatial modes on the transmit side can
be exploited to reduce the PAPR via transmitting dummy
symbols. Furthermore, the beamforming gains of these excess
spatial modes can be made negligibly small (in expense of
maximizing the gains of the data-carrying spatial modes),
as dummy symbols are not meant to carry information. This
is done by projecting the dummy symbol precoders into the
nullspace of the already optimized data. This is the second
novel aspect of our approach. Next, we’ll briefly repro-
duce the iterative block-diagonalization process to find the
transmit and receive beamformers, described in more detail
in [26, Sec. IV].

The detected signal of user k on subcarrier c is given by

A

1
de = U He  VeP2d, + Ul e i, (36)

N, X Ldata . o .
where U, € C""""k is the user-specific receive beam-
former, Hox € CNexNT is an arbitrary channel matrix
between the base station and user k, and n. j is the additive
white Gaussian noise vector.

3The beamformers are calculated jointly at the base station and therefore
would need to be signaled to the users. However, as the block-diagonalization
algorithm constructs beamformers with equal performance to zero-forcing,
in practice the receiver could utilize minimum mean square error (MMSE)
detectors for better results without the need for extra signaling [26].

4In non-correlated channels, the allocation of data and dummy symbols is
a trade-off between the benefits of PAPR minimization and throughput, as the
dummy symbols can reserve resources better suited for data transmission.
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The iterative block-diagonalization algorithm is based on
a series of consecutive nullspace projections that eliminate
interference between streams. The transmit and receive beam-
formers of the data streams are optimized separately for all
subcarriers c, exploiting the LS”“““Y spatial modes allocated
for the dummy symbols as additional free dimensions of the
interference-free subspace, which results in increased beam-
forming gain for the data streams (which can freely interfere
the streams carrying dummy symbols).

First, user-specific effective channels are constructed using
the left eigenvectors of the channel matrix as I:IQ v =
UEkHc,k € CLgakaN T, where the columns of U, x are chosen
to correspond to the highest Lff}{ta eigenvalues of the channel
matrix. Then, considering user k, the interfering users’ effec-
tive channels are concatenated as

Hep=[H. .. H  HE oy HE T, (37)

that we can use to find the last Ldata right eigenvectors of

HC ¢ to form an orthogonal basis for its nullspace Vnull
i.e., an interference-free basis. Next, by projecting the chan—
nel matrix of user k into this interference-free domain, i.e.,
I:IC,k = Hc,k\_"c"“k“, we can obtain the left and right eigen-
vectors corresponding to the Lff}cta strongest eigenvalues as

Ugf‘,ﬁa and ng‘,:a, respectively, from the singular value decom-
position of H ;. The interference-free transmit and receive
beamformers for user k are given by V. = \_/‘C‘f‘,{llngi,Ea €

CVLEE" and Uex = ﬁzlalza, respectively. This process is
applied for all users in pafallel, and to further increase the
beamforming gain, the receive beamformer can be used to
initialize subsequent iterations following the same process.

Next, we utilize a strategy similar to successive block-
diagonalization [27] to obtain the dummy stream precoders,
which are projected into the nullspace of the already opti-
mized data. This way, the dummy streams will not interfere
with the data streams, although the opposite can happen.
However, as the dummy symbols are ignored in the receiver,
this interference does not affect the system performance.

The dummy stream precoders can be found, on subcarrier
¢, from the last qummy > 0 right eigenvectors of

[H], .. .H} 41" = UZ V& v, (38)

dummy . . .
denoted as Vdummy CNr*Le . Using this notation, the
complete final transmit beamformer is given by the concate-

nation

Ve=[Vei...Vex VO™ e CM*L ve.  (39)

The iterative block-diagonalization algorithm is summarized
in Algorithm 4.

VI. RATE MAXIMIZATION SEARCH ALGORITHM

There are multiple benefits to reduced PAPR, for example,
less strict linearity requirements and reduced signal distortion
of power amplifiers when using a high input power operating
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Algorithm 4 Iterative Block-Diagonalization Algorithm for
Data and Dummy Beamformer Optimization

- Input: He g, LI, L™ Ve, k.

2 Set: MAX j =1,

3: Select Ldata left eigenvectors for initial U, ¢, Ve, k.
4: repeat {Vc k}

5:  Calculate effective channels: I:Ic,k = UEkHC»k'

6:  Using (37), obtain interference-free basis \_7“““

7. Find the interference-free domain I:Ic, r = Hg, kV"”“
8:  Find Lgf};a left and right eigenvectors correspondlng to
the highest eigenvalues of I:Ic k-
9:  Find beamformers: V. = V“u“V?a,za, Uk
10: i=i+1.
11: until j = MAX
12: Find chmmy using (38), Vc.

Udata

point, where the power efficiency is maximized. The reduced
backoff requirement to combat the signal distortion, a benefit
obtained with reduced PAPR, could be translated to increased
transmit SNR, providing increased cell size.

In this paper, we also consider this additional SNR increase
in terms of increasing the transmit data rate under a given
peak power constraint P*. This means allocating as much
power to the data power budget p%2 as possible, while ensur-
ing that the antenna-specific peak power remains below P
(for example, the dashed black line in Figure 1).

We utilize the well-known Hughes-Hartogs bit and power
loading algorithm [28], [29], to construct the transmit sig-
nal. The HH algorithm iteratively allocates bits on subcar-
riers in a greedy manner based on the channel gains. The
algorithm provides an optimal bit allocation for a given
bit error rate (BER) and total power budget, provided a
strict no-interference constraint is imposed between the
streams on any given subcarrier. Now, using the iterative
block-diagonalization algorithm of Section V, we can obtain
beamformers that remove interference.

Our implementation of the HH algorithm follows [29],
modified to operate in a multi-antenna system with parallel
spatial streams. The algorithm iteratively allocates b bits
on stream [, subcarrier ¢, that requires the least amount of
incremental power, given by

5 | ch ch l| 1
pine = (2" — 1)2ber = & In ., (40
cl ( ) 3 N()B (Src,l) ( )

hlnC

where b, ; is the current bit allocation on subcarrier ¢ of
stream [, G, ; is the /-th column of matrix [U. ... Uc k] €
(CNrXZ’f L:f']-akm, Ny is the noise variance, B is the subcarrier
bandwidth and I'.; denotes the subcarrier and stream-wise
BER target. The bits are allocated using (40) until all
the power available for data allocation is used. Once the
bit and power loading is complete, we assign quadrature
amplitude modulated (QAM) symbols for the subcarriers
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Algorithm 5 Rate Maximization Search Algorithm
1: Input: {U.x, He i}, Ve, k, Ve, Ve, Te g, Ve, 1, B, PX.
2: Set: pdaa — ptx /3
3. while P2** < P% Wi do
4:  Use (40) to iteratively allocate {p.;, b. ;}, Ve, L.
5
6
7

Assign symbols according to b, ;, Vc, [ to find d., Vc.
PAPR reduction using any of Alg. 1-3.
Evaluate (41), Vn, update data power budget with
Pdata — Pdata 4 ptx _ maxn(Pgeak).
8: end while
9: while Pﬁeak > P™, for any n do
10 Remove p%“% from p 7, where indices {c, 1} correspond
to the latest allocation.
11:  Remove ™™ from bz
12:  PAPR reduction using any of Alg. 1-3.
13:  Evaluate (41), Vn.
14: end while

according to the bit rate, and obtain the frequency-domain
data vectors d., Vc.

Our aim is to maximize the transmitted data rate by
alternating between bit and power loading and PAPR
minimization. After jointly minimizing the PAPR and
the power reserve required by the dummy symbols,
we compare the antenna-specific peak power to the peak
power constraint P, and allocate the difference to the
data power budget. The antenna-specific peak power is
given by

preak — 101og([Is 1%, Vn. (41)

Then, if Pgeak < P, ¥n, we allocate the minimum difference
to the data power budget as P44 = pdata L pX_max (PR,
where P4® = 101og((1/N.)p%®) is the average SNR. The
bit and power loading and PAPR minimization are repeated
using the new data power budget.

Once the antenna-wise peak power constraint is vio-
lated, i.e., Pgeak P™, for some n, we backstep indi-
vidual bit allocations and re-optimize the PAPR, until
Pgeak < P%,Vn. This provides the highest possible data
rate for Hughes-Hartogs bit and power loading, under a
given peak power constraint and QAM-symbol realization.
The rate maximization search algorithm is summarized in
Algorithm 5.

We acknowledge that the proposed rate maximization
search algorithm is not necessarily appealing in practice,
as it requires constructing the transmit signal multiple times,
while continuously re-optimizing the PAPR. For the pur-
poses of this paper, the algorithm is used to simulate the
performance increase that is possible to be obtained using
the PAPR reduction framework. In a more practical scenario,
the data power budget would be immediately set according
to statistics on past PAPR reduction capabilities, such as 99-
percentile results for Pt 4 pres | without utilizing a search
algorithm.
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VIIi. NUMERICAL RESULTS

We investigate the performance of the proposed joint PAPR
and power reserve minimization framework using Monte
Carlo simulations by first simulating the complementary
cumulative distribution function (CCDF) for the different
PAPR reduction algorithms and comparing them to the
OFDM baseline. Afterward, we investigate the effect that
the number of dummy symbols Np has on the 99-percentile
PAPR reduction performance and the achieved rate when
using the different algorithms. Finally, we compare the
PAPR-rate performance of the algorithms for various peak
power constraints.

We compare our proposed algorithms to other TR tech-
niques in the literature [13]-[19], [21], [23], in terms of
worst-case PAPR performance. As many of the existing
schemes are designed for single-antenna systems and might
not readily translate to the multi-antenna case, we will base
our comparison on the operating principles, i.e., between
the optimization objectives of peak power and strict PAPR
minimization. This is done through (16) by setting § = 0,
which corresponds to peak power minimization (i.e., the
general literature approach) translated to a general MIMO
framework. Furthermore, as [20] uses a linear approximation
of the average transmit power, without updating the local
point, we use a5A = 1 setting of Algorithm 1 with § = 0 to
provide the performance of a similar system. We also com-
pare our algorithms to active constellation extension (solving
[12, Eq. (6)]), as it has a similar operating principle as tone
reservation.

Straight comparison to other, non-TR based techniques
is difficult due to differing objectives and design con-
straints, such as allowed performance deficiencies. For
example, amplitude clipping [S]-[7] can provide significant
PAPR reduction if clipping noise and signal distortions can
be tolerated. Our approach causes only negligible noise
and distortions due to the orthogonal resources of the
dummy symbols. Furthermore, methods that trade EVM
or BER for PAPR reduction (such as [20], [21]) have
poor performance if the BER target is strict. Our proposed
approach has a negligible impact on EVM/BER. Thus, set-
ting strict constraints for signal distortions and BER, i.e.,
mere selection of system parameters, can result in supe-
riority of one method over another. Thus, we have lim-
ited our comparisons to methods with similar operating
principles.

A. CHANNEL MODELS

For the rate maximization simulations, we generate the chan-
nel matrix in two ways. As the iterative block-diagonalization
algorithm to find the beamformers is well-justified in sce-
narios where the channels are correlated, we generate the
channel matrix by using a MIMO version of the multi-
path channel model for uniform linear arrays [36]. The
MIMO modification is obtained by utilizing a rank-1 channel
matrix for each path instead of a vector [37]. The multipath
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channel is given by

Nk

M

where 7y is the pathloss to user k, M denotes the number
of independent (and identically distributed) paths, ¢ ,, is the
uniformly distributed random phase noise of the path, and the
vector ay(6k m) is the array signature vector at the transmitter,
with angle of departure 6y ;.

For simplicity, we consider equidistant users with n; =
1, Vk, and assume that the random phase rotation ¢y ,, pro-
vides enough averaging to use the same angle 6 ,, for both
array vectors, without loss of generality. The antenna spacing
and carrier wavelength are normalized to 1. The number of
multipaths is set to M = 50.

For comparison, we also consider uncorrelated channels,
where all of the channel coefficients are random, independent
and identically distributed as Ak ; j ~ CN(0, 1),Ve, k, i,].

M
Heip = ——= Y a0 @ m) ePm, Ve, (42)

m=1

B. COMMON SYSTEM PARAMETERS

We consider a base station with Nt antennas serving
K =2 users each equipped with N, = 2 antennas on
Nc = 64 subcarriers. The users are on a circle around
the base station, with a 40 degree angle between the users.
Both users have a uniformly distributed angular spread of
20 degrees. The noise power and subcarrier bandwidth are
set to No =1 and B = 1, respectively. The BER-target
for Hughes-Hartogs bit and power loading is set to I'c; =
1073, Ve, 1, and we consider 4-, 16-, and 64-QAM alphabets,
i.e., b = 2, for the bit loading.’

For the SCA and ADMM algorithms, we set the conver-
gence thresholds eSCA — gpeak _  rel-peak 1073, and
the maximum number of iterations as jSCA = 30, kPeak —
krel-peak — 1000, unless otherwise defined. The number of
dummy symbols Np varies, but the symbols are placed using
a comb-2 structure. We set the ADMM penalty parameter
p = 0.01 for Algorithm 2 and 0 = 0.05 for Algorithm 3,
which were found to provide good convergence properties.

C. SIMULATIONS

We investigate the PAPR reduction performance of the pro-
posed joint PAPR and dummy symbol power reserve mini-
mization algorithms. The base station has Nt = 6 antennas,
with a transmit SNR of P9 — 20 dB, and the number
of dummy symbols is fixed to Np = 64. We simulate
the algorithm performance for minimizing Pt + P™S over
10000 channel instances, plotted as a complementary cumu-
lative distribution function in Figure 3. To provide sufficiently
accurate results, the oversampling factor was set to o = 4.

50ur proposed framework can also straightforwardly handle higher order
alphabets, as they only affect the data signal Sdata The use of higher
order modulations results in higher non-optimized PAPR, which translates
to slightly increased numerical values for the PAPR results. However, the
effect would be similar for both our proposed scheme and the comparison
cases.
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FIGURE 3. Complementary cumulative distribution function for the joint
worst-case PAPR and dummy symbol power reserve (P<f + Pres) with
different PAPR reduction algorithms.

From Figure 3 we can see the powerful PAPR reduction
capabilities of the proposed algorithms, especially Algo-
rithm 3, i.e., the iterative relative peak power minimization.
Even for a single SCA iteration, the algorithm performs
better than the peak power minimization schemes, with com-
parable performance to single iteration Algorithm 1. With
additional SCA iterations it even beats Algorithm 1, with
significantly reduced computational complexity, as discussed
in Section IV-D. As the only principal difference between
these algorithms is in the handling of the denominator (11b),
we conclude that the better performance is caused by a better
choice for the fixed SCA local point, i.e., fixing the denom-
inator at each SCA step instead of using a linear approxi-
mation. For Algorithm 2, note that we have used § = 0,
which was found to provide the best results in terms of
Pf + P®s_ Finally, when compared to active constellation
extension [12], our proposed scheme performs significantly
better in terms of worst-case PAPR. This is due to the peak
power minimization objective and our use of high order
constellations. Also, due to the power requirement of ACE,
the worst-case PAPR can be worse than the OFDM baseline,
where no additional power is added to the signal. We investi-
gate the effect of § next.

It is of interest to see how the performance behaves for
6 = {0,0.1,0.5,1,5,10}, and for comparison, we also
provide results for Algorithm 1, where we have modified
the objective (152) to ¢/7 + 8| |3/(p?47). As Algorithm 3
operates on the same principle as Algorithm 1, the results are
assumed to behave similarly, and are thus omitted to avoid
cluttering. The results are presented in Figure 4.

It can be seen that when using the strict PAPR expression,
i.e., Algorithms 1 and 3, it is best to have equal priority for
both the PAPR and dummy symbol power reserve objectives.
However, for the peak power minimization problem, the
smaller values of § provide better results. This is intuitive,
since minimizing the signal peaks can be done also by min-
imizing the average power of the signal. Thus, the objective
function of minimizing of the dummy symbol power reserve,
which adds to the average signal power, is already present
in the peak power objective. The same effect does not hold
when utilizing the strict PAPR expression, where minimizing
PAPR can be done by minimizing the peaks or increasing
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FIGURE 4. Complementary cumulative distribution function for
Pt 4 pres, effect of the trade-off parameter § on the performance of
Algorithms 1 and 2.

TABLE 1. Average increase on transmit power required by the dummy
symbols, and the 99-percentile PAPR achieved, for different values of s.

Algorithm 1 Algorithm 2
5 pres [dB] | Pf[dB] || P [dB] | P¢f[dB]
0 2.5395 43253 2.5345 6.5201
0.1 || 2.2324 4.2830 2.4010 6.8162
0.5 || 1.4236 4.6132 1.9296 7.8643
1 0.9410 5.0754 1.5137 8.7095
5 0.1872 7.0025 0.4761 9.8265
10 || 0.0768 8.1469 0.2357 9.8222

the average power. It is evident that setting § = 0, i.e., the
approach taken in the literature, provides the best results for
Algorithm 2. However, our proposal for Algorithm 2 still
provides the possibility of trading between the power peaks
and the allocated dummy symbol power (i.e., transmit SNR),
which is not considered in the literature, with low computa-
tional complexity. This trade off would provide benefits in,
for example, low-SNR applications where the signal power
peaks are already low enough to not be distorted by PA satura-
tion due to the low average transmit power. Then, a bigger part
of the power budget could be allocated for data instead of the
dummy symbols and the subsequent loss in peak reduction
performance can be tolerated at the PA. Table 1 illustrates the
average additional transmit power required for the dummy
symbols, and the 99-percentile PAPR that is achieved, for
different values of §. We can observe that the dummy symbol
power requirement can be quite significant with lower values
of §, i.e., the region of best performance for Algorithm 2.

Figures 3 and 4 are simulated using Np = 64 dummy
symbols. Next, we investigate how the number of dummy
symbols affects the algorithm performance. We consider the
99-percentile P' 4+ P, calculated from results simulated
over 1000 channel iterations. We set § = 0 for Algorithm 2.
The oversampling factor was set to @ = 1 for quicker simu-
lations, as it affects the behavior of all algorithms similarly.
Figure 5 presents the results.

It can be seen that increasing the number of dummy sym-
bols has diminishing returns. Algorithm 3 has the best per-
formance overall, offering significant PAPR reduction even
at low dummy symbol counts. Algorithm 2 has the worst
performance, possibly even lower than the OFDM baseline,
at low dummy symbol counts. This is caused by the increase
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FIGURE 5. PAPR reduction algorithm performance as a function of the
number of dummy symbols.

in P™, combined with the low PAPR reduction capability
when only few resources are allocated for the algorithm to
operate with. As the number of dummy symbols is increased,
the algorithms based on the strict PAPR expression begin
to saturate, whereas the performance of Algorithm 2 could
still benefit from more dummy symbols. It should be noted
that Np = 128 corresponds to two full streams allocated
for dummy symbols only, which in this setup could be done
without affecting the data allocation.

Finally, we investigate the rate performance of the different
proposed PAPR and dummy symbol power reserve minimiza-
tion algorithms using Algorithm 5. The simulation setup has
strict constraints due to our use of Hughes-Hartogs bit and
power allocation in the signal construction. Thus, we limit our
investigation into differences between the algorithms under
the same setup instead of simulating a realistic scenario.

We consider a system where the base station has
Nt =4 antennas and serves K = 2 users with N, =
2 antennas each. Thus, there is a trade-off in space-frequency
resources between dummy and data symbols. The results are
simulated over 1000 channel realizations, and since we are
only interested in the performance differences between the
algorithms, the oversampling factor was set to « = 1, and
we set a peak power constraint P* = 20 dB for Algorithm 5.
Here, we also consider the effect of correlated channels to
show the benefits of having low-gain streams to exploit.

Figure 6 presents the achieved average rate as a func-
tion of the number of dummy symbols, with separate plots
for correlated (solid line) and uncorrelated channels (dashed
line). We can immediately make two main observations: first,
the trade-off in resources between data and dummy sym-
bols, which is evident in the case of uncorrelated channels
around the point Np = 64. Allocating more dummy symbols
reserves high gain subcarriers from data allocation, and the
power increase provided by PAPR minimization is unable to
compensate, thus reducing the rate. The second observation
is that the rate reduction is not yet present in correlated chan-
nels, where the low-gain streams can be allocated for dummy
symbols to provide additional power boost, thus increased
rate, with minimal penalty.
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PAPR-rate performance with respect to peak power constraint for Algorithms 1-3
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FIGURE 7. PAPR-rate performance of different PAPR minimization
algorithms for different peak power constraints.

Comparing the different algorithms, the peak power mini-
mization algorithm (Algorithm 2) performs the best in terms
of achieved rate, and the algorithms utilizing the strict PAPR
expression (Algorithms 1,3) have a lower but comparable
performance. The higher rate performance of Algorithm 2
is explained by the objective of (16), i.e., the focus to min-
imize the highest signal peak (see (41)), which is the limiting
factor when attempting to allocate as much power for data
under a given common peak power constraint P* for all
antennas.

Despite the highest performance in terms of rate, the PAPR
performance of Algorithm 2 is still worse due to the high
PAPR of the antennas with lower average transmit power.
To illustrate this, Figure 7 plots the 99-percentile PAPR and
achieved rate for different algorithms for Np = 64. In the fig-
ure, the points correspond to different peak power constraints,
P% = {5, 10, 15, 20, 25, 30} dB, set over all antennas.

It can be seen that Algorithm 2, operating under the peak
power minimization principle, has the highest rates (right-
ward direction), but at the same time, the highest PAPR
(upward direction). For a fixed rate, the lowest PAPR is
obtained with Algorithm 3. The worse behavior for the
peak power minimization at lower peak power constraints is
explained by P™*, which corresponds to the factor of increase
on the allocated data power. Thus, as the data power is very
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low, this factor can be very high, even more significant than
the reduction in P°',

VIil. CONCLUSION

We proposed a joint PAPR and dummy symbol power
reserve minimization framework to combat the high PAPR
of MIMO-OFDM systems. Our proposed method operates on
the strict PAPR expression, which also accounts for the PAPR
of antennas with lower average transmit power. We were
motivated by the fact that the peak power minimization prin-
ciple, common in the existing literature, does not necessar-
ily translate well to multi-antenna systems as it can ignore
the antennas with lower than maximum average transmit
power. We also account for the self-power requirement of the
scheme, which has not been widely considered.

We derived low-complexity iterative algorithms to provide
solutions for the proposed problem, and also proposed an
approach to beamforming, where we leveraged knowledge
of dummy symbol allocations to provide higher gain data
streams at the cost of lower gain streams for dummy sym-
bol allocations. Our simulation results show the benefits of
using the strict PAPR expression instead of peak power min-
imization, in terms of worst-case PAPR over all antennas.
We also see that the dummy symbol power reserve should be
accounted for if strict PAPR expression is used, however, for
peak power minimization it is not necessary. Finally, we see
from the results that the proposed PAPR reduction scheme is
very beneficial in terms of rate, especially under correlated
channels where low gain streams are common.
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