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ABSTRACT Community structure has a more intuitive, physical meaning than how it has traditionally
been perceived; this representation plays an important role in networks and is accordingly becoming widely
adapted. Consequently, community detection has attracted increasing attention. Although scholars have
proposed many community detection methods from different perspectives, due to the complexity, diversity
and dynamic characteristics of networks, efficient community detection in many real networks remains a
challenge. Inspired by fish school effect in real life, this paper envisions networks as an ecosystem and
proposes a novel dynamic model that aims to reveal the communities in a more intuitive way. Relying on the
new model, we design a community detection algorithm, known as community detection based on fish school
effect (CDFSE). CDFSE has plentiful desirable properties: high-quality community detection, parameters
free and notable scalability. To evaluate the performance of CDFSE, this paper employs two widely utilized
evaluation metrics and twelve representative algorithms to test the effectiveness of the algorithm in both
synthetic and real-world networks. The experimental results show that in most cases, CDFSE is superior to

the comparison methods in terms of the quality of community detection.

INDEX TERMS Fish school effect, community detection, cluster, complex network.

I. INTRODUCTION

With the rapid development of computer and information
technology, modeling the complex networks found in nature
has attracted increasing attention and became a popular
research topic. Therefore, complex networks are becoming
an important research direction. In the real world, a large
number of composite systems involving such fields as biol-
ogy, computer science, sociology, economics, transportation,
and iatrology can be abstractly described as complex net-
works [1]-[4]. The framework of complex network is mainly
contributed by nodes and edges, nodes indicate elements in
complex systems and edges represent specific relationships
between pair of nodes. Community detection provides a
scheme for analyzing the structural characteristics of complex
networks to study their organizational functions and explore
their potential connections. For example, community detec-
tion could elucidate the mechanism behind human migration
and social structure formation [5]; constructing a pathophore-
sis dynamics model to predict and mitigate the spread range
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of infectious diseases [6]; investigating brain networks to
reveal the potential conjunction between various functions
and discovering treatments for major diseases [7]; optimizing
and processing massive amounts of data to realize network
public sentiment monitoring and improvement of intelligent
recommendations and precision marketing [8], [9]; charac-
terizing the interdependence and hidden network behind the
economy to predict the occurrence and evolution of financial
crises [10], [11]; and detecting roads with frequent traffic
accidents and congestion, ensuring the safety and smoothness
of transportation networks. In consequence, the study and
design of efficient and accurate community structure detec-
tion methods is crucial.

Currently, representative community discovery algorithms
in the field of complex networks primarily include graph-
based segmentation algorithms, hierarchical clustering algo-
rithms and partition-based optimization algorithms [12]. The
classical algorithm (KL) is based on bisection. Its basic idea
is to introduce a trial function Q for the network. Q represents
the difference between the number of edges in two quasi
communities minus the number of edges between two quasi
communities, and then get the partition method to maximize
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the value of Q. However, this algorithm and many others
need to know the number of communities and the number
of nodes in each community in advance. Hierarchical clus-
tering algorithms primarily include splitting algorithms and
aggregation algorithms. The GN algorithm [13] is one of
the most popular splitting algorithms and is based on edge
betweenness. In the process of partitioning, the algorithm
needs to constantly calculate and eliminate the edge with the
highest edge betweenness. The fast greedy algorithm [14] is a
representative aggregation algorithm that uses the modularity
index as the objective function of the algorithm partition and
selects the structure corresponding to the optimal modularity
value as the final community partition result [15]. The two
algorithms have high time complexity and low effectualness
for large-scale network community discovery. The main idea
is to constantly adjust the community of each node such that
the algorithm partition obtains the best community discovery.
Although the k-means algorithm based on partitioning [16]
has the advantage of simplicity, low complexity and fast
convergence speed, its distinct method for randomly select-
ing initial community centers affects community partitioning
to a certain extent. The label propagation algorithm (LPA)
[17], [18] has approximately linear time complexity. On the
other hand, outcomes observed from community detection
are regularly in volatile.Roy U K proposed a modified local
random walk method to catch the fuzzy community based
on neighbors’ similarity [19]. Xiaodong Li surveys recent
theoretical advances in convex optimization approaches for
community detection [20]. Zhang, Y proposed the SEAL
algorithm to detect communities using generative adversarial
networks [21].

With the expanding scale of complex networks, traditional
community discovery algorithms appear some shortcomings
which limit the efficiency of the algorithm in practice, such
as high complexity, the demand to specify the number of
communities, community size and other prior conditions,
or the need to optimize the predefined objective function.

This paper proposes a community detection method based
on fish school effect (CDFSE) to characterize network com-
munity structure. The network is regarded as an ecosystem,
and its dynamic processes over time are explored. Inspired by
this principle, a new dynamic model is designed to simulate
fish school effect. Compared with the traditional commu-
nity detection method, the CDFSE method has better effect.
Firstly, it can achieve high-quality community division. Sec-
ondly, it does not require parameter setting. Thirdly, it does
not claim the prior knowledge of network structure; more
importantly, it has the characteristics of low time complexity,
and it works efficiently in identifying community structure
in large-scale networks. In the next section, we explore the
central principle behind this method.

A. BASIC IDEA

In the physical world, common interests or hobbies will
attract people to each other. These people may then attract
other members to join or be attracted to and join a larger
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group. Once a group is large enough, it will have stronger
resistance [22], [23]. More importantly, this group is likelier
to attract other potential members. In nature, and all aspects of
human life, this behavior can be seen; for example, when two
people like basketball, they may set up a basketball team to
attract other members or join other basketball teams. People
are attracted by activities according to their interests. This
phenomenon is similar to fish school effect in the ocean [24].
Fish school effect refers to the phenomenon of groups of
fish swimming in the sea, both chaotic and orderly. The fish
move from east to west in a uniform manner according to
the current and food availability; when attacked by hunters,
they quickly gather and disperse, similar to an organization
with a strict division of labor and cooperation. Fish school
effect is mainly used in the field of intelligent transportation.
Through the research on the consistency of fish swarm and
swimming behavior, a mathematical model of fish school
movement is constructed to simulate the vehicle path trajec-
tory, so as to effectively realize the multi vehicle cooperative
control in traffic [24], [25]. Community can be regarded as
a collection of users with strong common attributes. As time
goes on, when an increasing number of members with this
common attribute are in the community, they can form a
potent organization, similar to fish swarming in the sea, and
produce a force far greater than the individual. The individu-
als can not only resist risks but also attract other members
to join to form a larger community. In complex networks,
nodes share similarity and attract each other, especially in
scale-free networks. Barely nodes occupy larger degree than
others while majority nodes own small degree. Majority of
edges cluster in the community while only few of them cross
between communities within community structure. Based on
this feature, we examine whether we can characterize com-
munity structure by reproducing fish school effect for nodes
in a complex network. We propose a new method to divide
community structure based on fish school effect. Regarding
the network as an adaptive dynamic system and investigate
its dynamics with time-varying becomes a significant notion.
Specifically, in an ocean network, there are numerous kinds
of fishes, which is the initial state; the same kind of fish
attract each other because of their common characteristics
(they share great similarity), forming an initial group. The
group itself and a small number of fish in the group will
attract and gather other fish of the same kind because of
their greater attraction, forming a large-scale group that is
more attractive, more stable, and even attracts other groups to
form a larger group, which is the motion state of fish group.
Over time, different kind of fish will be attracted to different
groups according to their distinct characteristics, which is the
steady state of the fish group, and the whole process is shown
in Fig. 1.

Why do all kinds of fish with initial state in the sea move
regularly and finally reach a steady state? Because at the
beginning, each individual in the network has its own char-
acteristics (this article refers to the characteristics that are
different from other individuals, or its charm or resources)
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FIGURE 1. The formation process of fish school effect. (a) In the initial stage, different kinds of fishes in the ocean swim disorderly as an
individual. (b) after a period of time, the same kind of fish attract each other to form small groups because of their same habits. (c) finally, all

kinds of fishes in the ocean form small groups.

and commonness (this paper refers to the common character-
istics that distinguish groups from each other, for example,
common interests and common goals), it is these features
and commonality to push them, over time, each individual
is attracted by different groups (communities) to achieve a
stable state.

We will formally define the fish school effect model
in Section 3. Here, according to the three states of fish
school effect, a small fish swarm network in the sea is
employed as an example to illustrate this idea. The nodes in
Fig. 2 can be regarded as individual fish in the sea. The edge
connection between nodes indicates that the two fish have
common characteristics, and the value of this connection is
their similarity. The procedure of examination in community
detection depending on fish school effect splits into three
stages: at the beginning, each fish has its own characteristics
and commonness, and they are all scattered. The similar-
ity between individuals is calculated by the Adamic-Adar
Index [26] (AA) expression. Here we need to introduce the
AA similarity index. The index considers the degree value
information of the common neighbors of two nodes. The idea
is that the contribution of the node with small degree value
is greater than that with large degree value. For example,
the similarity between individuals 2 and 3 is 0.53, and the
similarity between individuals 4 and 6 is 0.32 as illustrated
in Fig. 2 (a). The following stage is that, fish with larger
characteristics attract each other to form subgroups because
of their greater similarity. For example, individuals 2 and 3,
individuals 4 and 6, individuals 8, 9 and 10, and
individuals 11 and 15 have greater similarity than
other individuals, so they are the first four to form subgroups
A, B, C and D respectively and presented in Fig. 2 (b).
In the third state, an expanding amount of fish are
attracted to join the subpopulation in order to form a large
population due to fish school effect. For example, the affinity
between individual 1 and individual 2 is 0.21, the similar-
ity between individuals 1 and 3 is 0.39, and the similarity
between individuals 1 and 7 is 0.22. Therefore, compared
with group B, group A is more attractive to individual 1. In the
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same way, the similarity between 7 and individual 1 is 0.22,
and the similarity between individual 7 and individual 6 is
0.30, so individual 7 is more attracted to group B. In the end,
individual 1 is attracted by group A, fish individuals 7, 5 and
12 are attracted by group B, and fish individuals 13 and 14 are
attracted by group D. From this prospective, each individual
is attracted to different groups or communities in other words.
Therefore, the community structure is exposed naturally and
this procedure is demonstrated in Fig. 2(c).

B. CONTRIBUTIONS

By simulating fish school effect, the CDFSE algorithm
achieves several advantageous community detection charac-
teristics for complex networks. The main advantages are as
follows:

® Novelty: “Fish school effect” reflects the behavior of
fish in the ocean but now is introduced into the complex
network for community detection. At the same time,
it is also the principle of interlinkage of complex natural
laws.

® High efficiency: Because the CDFSE algorithm derives
from a natural law, it is closer to a real network. Through
experimentation, the algorithm is more efficient and has
better community detection quality than several other
representative community detection methods.

® Simplicity: Compared with the traditional classical
methods, CDFSE method is simpler and more conve-
nient, that is, CDFSE method does not request param-
eter settings. Through experiments, we further verify
the feasibility of applying fish swarm effect theory to
community detection in complex networks.

® Scalability: The time complexity of CDFSE is deter-
mined as O (n-k2) due to the only restriction in cal-
culating the attractiveness of adjacent individuals. It is
worth noticing that the value of k represents the average
degree of nodes and its numerically tiny. For this reason,
large-scale networks can be more efficiently processed
by applying CDFSE algorithm.
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(c)

FIGURE 2. Community detection process based on fish school effect.

(a) In a fish school network, the edge represents the relationship
between individual fish, and the similarity between individuals is
different. (b) Different individuals gravitate each other to form subgroups
because of their commonness and individuality. (c) As time goes on, the
community structure will eventually be revealed naturally.

The first section of this paper introduces the main ideas and
innovations of CDFSE. The exposition of CDFSE method
and fish school effect model including the corresponding
algorithm will be introduced in the following section by a
more specific way. In the third section, CDFSE is compared
with several typical algorithms on the generation network and
the real network. Finally, the conclusion is given in the fourth
section.

Il. METHODOLOGY

A. RELEVANT DEFINITIONS

Before elaborating the CDFSE method in detail, we firstly
formalize some basic notations. TABLE 1 describes all the
key symbols used in this paper and gives a brief description.
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TABLE 1. Symbol Description.

Symbol explanation
n, The number of nodes in the network (n,=[V/)
ne The number of edges in the network (n.=|E|)
D, Degree of node v
d.(v)  The interior degree of node v in Community ¢
N(v) Neighborhood of node v
AAy1v,  AA similarity index between nodes v1 and v2
NA,,_y1 Attraction of node v1 to node v2
CAy.. Attraction of Community c to node v

We denote an undirected and an unweighted network as
G = (V, E) where V is a set of nodes and E is a set of edges.

Definition 1: (AA similarity index) [26] Given undirected
network G = (V, E), the AA similarity index of nodes vl
and v2 is defined as

1
SAAyIv2 = ZVGCNMZ Jog (Dv) (D
where CNyy2 is the common neighbor node of vl and v2.
In fact, any two nodes in the community may have similarity.
Generally, the similarity of two nodes is relatively large only
when they are directly connected. If two nodes are indirectly
connected, their similarity is small.

There are many kinds of fishes in the sea. The identical
kinds of fish share the same lifestyles and attract each other to
form a school of fish. Equivalently, individuals have their own
interests and characteristics in reality which caused mutual
attractions into the same group among people who shares
related interests. For example, both A and B like basketball,
and both B and C like music. Compared with basketball,
B likes music more. It is obvious that the similarity between
A and B is not as great as that between B and C, so B
and C will attract each other with same music rather than a
basketball team. Because the attraction between individuals is
related not only to the similarity but also to the degree of the
individuals themselves, the attraction between individuals is
defined as the multiplication of the degree of individuals and
the similarity between individuals.

Definition 2: (individual attraction) Given the undirected
network G = (V, E), the attractiveness of node v1 to node v2
is defined as

NAy v = SAAVIVZ * Dy (2)

SAA,1v2 indicates similarity coefficient of AA between
nodes vl and v2, and D,; represents the degree of
node vl1.

Once the fish in the sea form a group, it will produce
the fish group effect. After joining a fish group, fish have
to accept the constraints of the organization, simultaneously,
they obtain stronger anti-risk ability and rich food. Thus, they
attain a greater ability to attract new members. Correspond-
ingly, the community itself is a collection of users with strong
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FIGURE 3. Example of group attraction. For node 12, it is ultimately attracted by that community, which is determined by its internal
degree and the degree of its adjacent nodes, which can be calculated by formula (3).(a) When the internal degree of node 12 in the two
communities is not equal, after calculation, the attraction of community B is greater than that of community A, and it is finally attracted
to community B.(b) When node 12 has the same internal degree in the two communities, the attraction of community A is greater than

that of community B, and it is finally attracted to community A.

common attributes, which will also have a strong attraction
for new members. For example, an excellent research team
will attract more researchers to join. In this research, we apply
the connection strength of individuals in a group to describe
the attraction of groups to individuals.

Definition 3: (cluster attraction) given undirected network
G = (V, E), the attractiveness of Community ¢ to node v is
defined as

CAV—)C = dc(v)2 + Z

ueN(v),uec

dc (w) 3

where d. (v) denotes the internal degree of node v in Com-
munity c. According to the number of edges from node v to
different communities, the community attraction CAy_, . can
be divided into two cases: one is d. (v) inequality, and the
other is d; (v) equality.

To better understand how to use formula (3) to calculate
group attractiveness, we use an example network to illustrate.
The example network consists of 14 nodes, which are divided
into two communities A and B, as shown in Fig. 3. There are
also two cases: (1) when a node’s internal degree in two com-
munities is not equal. For example, for node 12 in Fig. 3 (a),
the degree of internality in community A is da (12) = 1,
while the degree of internality in community B is
dp (12) = 2. The internal degree of node 12 in commu-
nity A is significantly less than that in community B. The
attraction of node 12 to community B may be greater than
that of community A. To further determine this attraction,
we consider the influence of indirect neighbors on node 12.
In community A, node 3 is connected with node 12, and the
degree of node 3 is 5, da (3) = 4, so the attraction of commu-
nity A to node 12 can be calculated as CAjp—, 5o = 1244 =5
according to formula (3). In community B, nodes 7 and 8 are
connected with node 12, and the degree of node 7 is 4,
so dp (7) = 3, the degree of node 8 is 4, so dp (8) =3,
so the attraction of community B to node 12 can be cal-
culated as CAjp.g = 2243 + 3 = 10. Since the attrac-
tion of community B to node 12 is stronger than that of
community A to node 12, node 12 is more likely to join
community B, as shown in Fig. 3 (a). (2) When a node is
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equal within two communities, for example, for node 12 in
Fig. 3 (b), da (12) = dp (12) = 2, it is difficult to judge
which community, A or B, are more attractive to node 12.
Consequently, the impact of indirect neighbors appears in
node 12 must be attentively considered. In community A,
nodes 5 and 6 are connected with node 12, and the degree
of node 5 is 5, so da (5) =4, the degree of node 6 is 35,
da (6) = 4, so according to formula (3), the attraction of
community A to node 12 can be calculated as CAjp_.p =
2244 44=12. Tn community B, nodes 9 and 10 are
connected with node 12, and the degree of node 9 is 3,
so dg (9) = 2, the degree of node 10 is 4, dg (10) =3,
so according to formula (3), the calculation can be given is
that the attraction of community B to node 12 is CAjpp =
2242 +3 =9. Because community A is more attractive
to node 12, node 12 is more likely to join community A,
as shown in Fig. 3 (b).

B. FISH SCHOOL EFFECT MODEL

On the basis of the relevant definitions in Section 2.1, the
fish school effect model is constructed. The model consists of
three stages: network initialization, subpopulation formation
and fish school effect, as shown in Fig. 4.

1) NETWORK INITIALIZATION

In the sea, there are a variety of fishes, where each fish is a
single individual with its peculiar living habits and charac-
teristics. Therefore, we can regard the individual fish in the
ocean as a node in the network. In this paper, we apply the
degree and similarity of nodes to describe their characteris-
tics. Initially, each individual has its own characteristics and
is regarded as an independent group or individual, as shown
in the first stage of Fig. 4.

2) SUBGROUP FORMATION

In the sea, each fish is an independent individual with
its own personality. Therefore, there are certain differences
among individuals. Some individuals have greater charac-
teristics and will attract other individuals, while others with
smaller characteristics will be attracted by other individuals.
Furthermore, distinctive resources have been allocated to
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* Network initialization

Node v has its own characteristics and is
regarded as an independent group or individual

D, > max(D,;),v1 € N(v)

Node v still belongs
to atomic population

No .
+ Forming subgroups

Node v joins a new subgroup

i
<
i
(X

Is there a node v in the network that has not joined the group

All the nodes in the network
join the corresponding groups

* Fish school effect

Node V joins group C

End

J

FIGURE 4. Flow chart of the fish school effect model. 1) Network initialization: initially, each individual has its own characteristics and is regarded as an
independent group or individual. 2) Subgroup formation: nodes are more likely to attract neighbors to join their communities for which with more
resources in order to build a subgroup after processing a series of iteration. 3) Fish school effect: all nodes have joined distinct groups and eventually
each group structure tends to reach an equilibrium state after numerous iterations have been operated. Therefore, the community structure of the

network is founded naturally.

particular node in the network. The more resources the
nodes have, the more attractiveness they obtained to let
other nodes to join in. Oppositely, nodes with fewer
resources are attracted by remaining nodes In the second
stage as shown in Fig. 4, when Dy> max (Dy1), vl € N (v),
node v still belongs to the atomic group C,. Otherwise,
node v joins a new subgroup C,; where C, is the com-
munity to which node v belongs and D, represents the
degree of node v. By applying a series of iterations, nodes
equipped with extra information are presumably to attract
more neighbors to join their communities for building a
subgroup.
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3) FISH SCHOOL EFFECT

An expanding quantity of nodes are appealed by varied
subgroups after the formation of subgroups. The structure
and attractiveness of the subgroup may change when a node
joins it. As long as there are nodes in the network that
have not joined the group, a new round of iteration will
be carried out. Eventually, driven by the network topology,
all nodes will be able to change their attractiveness after
processing many iterations. The nodes have joined different
groups, the network structure reaches the equilibrium state
when the group to which the nodes belong no parameters
longer changes, as shown in the third stage of Fig. 4. In this
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way, the community structure of the network is formed
naturally.

C. CDFSE ALGORITHM
The detailed algorithm named CDFSE will be interpreted in
this part.

1) NETWORK INITIALIZATION

Initially, we characterize each node as an independent indi-
vidual or group. To distinguish different nodes, we label each
individual or group with a number for initialization.

2) CORE GROUP CALCULATION

Before calculating the core group, we need to compute
the individual attraction first. Individual attractiveness is
related to resources and similarities. In the network structure,
we apply the degree of nodes to represent the resources owned
by nodes and use the AA similarity coefficient to represent the
similarity between nodes. According to formula (2), we can
measure the attraction between individuals. It is because of
the existence of individual attraction that the nodes in the
network attract each other and form a subgroup (core group).
We can calculate the core group through a round of iteration.

3) FISH SCHOOL EFFECT SIMULATION

According to the fish school effect model proposed in this
paper, the interaction between subpopulations constantly
attracts other individuals to join in and thus form larger
subpopulations. The procedure of fish school effect can be
simulated because the subpopulation tends to be stable after
repeatedly iterations. In the community, we employ the nor-
malized mutual information index to evaluate the perfor-
mance of every community partition. With the passage of
time and the influence of topology, the network structure
achieves a steady state; thus, the best division can be obtained.
The CDFSE algorithm is displayed in algorithm 1 CDFSE.

D. ALGORITHM COMPLEXITY ANALYSIS

The CDFSE algorithm is primarily divided into three
stages, and the time complexity of each stage is shown
in TABLE 2. Therefore, the computational complexity of
CDFSE is O (k> n). The time complexity of the CDFSE
algorithm is relatively low because the average degree k of
the network is generally small, for this reason the algorithm
can deal with large-scale networks.

Ill. EXPERIMENTS

To evaluate the achievement of the CDFSE algorithm, this
experiment compares CDFSE with twelve representative
community detection algorithms and conducts experiments
on the generated network and real network respectively.
Firstly, we briefly describe these algorithms.

Ncut (Normalized cuts) [27] is a typical spectral clustering
method. Above all, the sample data set is defined as an affinity
matrix describing the similarity between the two data points,
and then the eigenvalues and eigenvectors of the matrix are
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Algorithm 1 CDFSE
Input:
G=(VE)
1://Initialize communities of each node
2: for each node v in V do
3:  Cv=Nv the node number of v
4: end for
5://Compute the core subgroups
6: for each node v in V do
7: for each node u in N(v) do
8: compute the AA similarity coefficient using Eq. (1)
9: compute the individual attraction using Eq. (2)
10: end for
11: compute core groups
12: end for
13://Simulate fish school effect
14: Flag = TRUE
15: NMImax = 0
16: while Flag do
17: for each node v in V do
18: for each node u in N(v) do
19:  compute the cluster attraction using Eq. (3)
20: end for
21: end for
22: S = NMI(C; true clusters)
23: if S > NMImax then
24: NMImax = S
25: else
26: Flag = FALSE
27: end if
28: end while
29:// return communities C
Output: C

TABLE 2. Complexity analysis of the cdfse algorithm.

Time

stage complexity explanation
1. Network O(n) A loop to calculate the initial
initialization group
Two loops are needed to
. calculate the core groups in
zéreCOIrl;I:IUtslng O(k'n) the network, and K is the
group average degree of the
network
s St e Wi of o
Fish school O(L-k*n) ’

a stable state, and 1 is usually

effect 310

determined. Next, the appropriate eigenvectors are selected
to cluster different data points. The essence of Ncut is to
transform the clustering problem into the optimal partition of
graphs.
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Infomap [28] is a community detection algorithm
combining random walk and information theory. It regards
community detection as a coding problem and obtains the
optimal community structure according to the principle of
minimum description length.

LPA (Label Propagation Algorithm) [29] is a graph-based
semi-supervised learning method that uses the relationship
between samples to establish a complete graph model. Its
essential idea is to use the labeled information of marked
nodes to predict the labeled information of unlabeled nodes.
The algorithm is simple to implement and shorter execution
time cost, but the result obtained from each run is unstable.

WT (WalkTrap) [30] is a random walk algorithm, which
divides communities by calculating the similarity among
nodes using random walk.

FG (Fast Greedy) [31] is a hierarchical aggregation
Approach for community detection. The mechanism behind
this approach is to optimize modularity greedily to reveal the
community structure.

Louvain [32] is a well-known multilevel modularity opti-
mization community detection algorithm that allows hier-
archical community detection. Its time complexity is lower
compared with the algorithm proposed by Newman.

MCL (Markov Clustering) [33] refers to the Markov clus-
tering algorithm, which is a fast and scalable clustering algo-
rithm. It is based on the simulation of flow in graphs and
is widely used in different fields, mainly in the field of life
science.

FluidC (Fluid Communities) [34] is a scalable and diverse
community detection algorithm based on propagation. It sim-
ulates the expansion and contraction of a fluid until equilib-
rium is found.

EDCD (Edge-Deleting Community Detection ) [35] is an
optimized modularity algorithm that operates a restriction
strategy to iteratively delete edges to find strongly connected
communities.

SCD (Silhouette Community Detection) [36] is an embed-
ded clustering method, which reveals community struc-
ture by optimizing the contour measurement, particularly,
extracting the real value representation of nodes from its
neighborhood.

ASOCCA (Adjacent node Similarity Optimization Com-
bination Connectivity Algorithm) [37] is a combination con-
nectivity algorithm for optimizing the similarity of adjacent
nodes to achieve accurate community testing. It uses the
local similarity measure based on the clustering coefficient
to identify the nearest neighbor of each node. Obtaining
multiple groups of connected components by combining dif-
ferent node pairs in order to form the final initial community.
Additionally make usage of community merging strategy to
further optimize the community structure.

NBCD (Neighbour Based Community Detection) [38] is
a neighborhood based community detection algorithm. It is
based on two novel similarity measures using a similar-
ity parameter « and a set of ground rules are proposed in
this work. The similarity parameter « provides a choice
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for the user to select the tightness of the nodes within the
communities.

In the following tests, we apply the default value provided
by the papers as the parameter value for each algorithm to
compare the experimental results. Since the Ncut and FluidC
algorithms require prior knowledge, we use the actual number
of communities as the parameter. Each algorithm for each
network runs independently 20 times in the same experimen-
tal environment, and finally, the average value of the results
is obtained. The data packets used in the experiment are
obtained from the internet, as shown in TABLE 3. We built
our experimental environment, as shown in TABLE 4.

TABLE 3. Source of each algorithm.

algorithm  Experimental data sources

Neut http://scikit
learn.org/stable/modules/clustering.html

Infomap http://igraph.org/

LPA http://igraph.org/

WT http://igraph.org/

FG http://igraph.org/

Louvain http://igraph.org/

MCL http://micans.org/mcl/

FluidC https://githpb.com/F erranPares-/Fluid-
Communities

EDCD https://According to the algorithm to achieve
their own

SCD https://github.com/SkBlaz/SCD

ASOCCA https:// github.co_m/BasdekD/community-
detection-in-socialnetworks
https://drive.google.com/drive/folders/1UD7La

NBCD t314MSL187KYGO8stDhT9fxTUsJ?usp=shari

ng

TABLE 4. Experimental environment.

name configuration

computer Desktop computer

CPU Main frequency 3.3 GHz
processor Intel Core 15

Memory 16.0 GB

Program running Python 3.5.1
environment

A. EVALUATION INDEX
To comprehensively investigate the achievement of various
algorithms, this paper uses two popular evaluation methods to
evaluate the accuracy of community detection. The following
is a brief introduction of these two evaluation indicators.

Normalized mutual information [39] (NMI) is generally
used in clustering to measure the similarity of two clustering
results. It can objectively evaluate the accuracy of commu-
nity classification compared with standard division. NMI is
defined as follows:

I(a; b)

NMI (a, b) = 2—H @ +E®) 4)
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FIGURE 5. Performance comparison of all algorithms on the benchmark network when . changes from 0.1 to 0.8.

where I(a;b) represents the mutual information between a
(true value) and b (Estimated value), and H(a) denotes the
entropy of a. The value range of NMI is O to 1. The
larger the value is, the more accurate the division will be.
NMI = 1 means that the predicted community is com-
pletely consistent with the real community division, while
NMI = 0 indicates that it is completely different.

Another indicator is the adjusted random index (ARI) [40],
which is often used to calculate the similarity between two
samples. ARI is given as follows:

(X11+X%01) (X11+X10)

_ _ X00
AR =x11 (X11+X01)-5(X11+X10) _ (x11+xo1)(x11+X10) ®)

X00

where x11 indicates the logarithm of points belonging to the
same community in both the real community partition and the
predicted community partition, Xoo represents the logarithm
of points that do not belong to the same community in the real
community partition and the predicted community partition,
x10 represents the logarithm of the points that are not in
the same community in the predicted community division
but belong to the same community in the real community
division, and xo; represents the logarithm of points that do
not belong to the same community in the real community
division but belong to the same community in the predicted
community division. The quality of community detection is
evaluated by calculating the number of the same and different
sample pairs allocated to the predicted community partition
and the real community partition.

B. NETWORK GENERATION

In this paper, the well-known LFR model [41] is used to
create a synthetic benchmark network. The LFR benchmark
network assumes that the distribution in the network and
the distribution of community size conform to the power-
law distribution: power law index of degree 7| sequence,
77 Negative index of community size distribution. The edge
of each node in the community is 1-x times its degree, while
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the edge connected to the outer community node is p times its
degree, which is called the mixed parameter (0 < p < 1) and
is used to dominate the complexity of community division.
In addition, the model has several parameters: the number of
nodes in the generated network (N); the average degree of the
generated network (k); the minimum number of community
nodes in the generated network (Cpin); and the maximum
number of community nodes (Cpax). The average clustering
coefficient (cc) of the network is generated.

To evaluate and compare the performance of various algo-
rithms, the following parameters are set for the generated
network: N=1000, K=15, Cyjn= 10,Cphax= 50,71 = 2,
and 1, = 1, where u varies from 0.1 to 0.8 to increase
the complexity of network generation. Fig. 5 demonstrates
the performance of these several methods on two distinctive
indexes. In the NMI metric, when the parameter p ranges
from 0.1 to 0.5, except for the FG algorithm, which seems
unsuitable for these networks, other algorithms can divide
the generated network perfectly. As the parameter u changes
from 0.5 to 0.6, the performance of the LPA, FG and EDCD
algorithms declines significantly, and their NMI values fall
below 0.75, while the Infomap, CDFSE and Ncut algorithms
are more robust as their NMI values are all above 0.95. The
performance of other algorithms, such as Louvain, WT, MCL,
ASOCCA, FluidC and SCD, with NMI values are between
0.85 and 0.95 in average. When u > 0.6, except for the MCL
algorithm, which is still strong, the performance of the other
algorithms is significantly reduced. In terms of the purity
index, when u ranges from 0.1 to 0.4, except for the FG algo-
rithm, the other algorithms can divide the generated network
well. When u ranges from 0.4 to 0.5, the performance of the
EDCD and MCL algorithms begins to decline significantly,
and its ARI value drops below 0.6. When p ranges from
0.5 to 0.6, the performance of the LPA algorithm declines
sharply, and its ARI value tends to 0. Infomap, CDFSE and
Ncut are still robust, and their ARI values are still above
0.95. The performance of WT, Louvain, SCD, ASOCCA and
FluidC algorithms also declines to varying degrees, with NMI
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FIGURE 6. Performance of each algorithm and composite benchmark network when the average degree k changes from 5 to 25.

TABLE 5. Nmi performance of each algorithm and composite benchmark network when the number of nodes changes form 1000 to 50000.

NMI CDFSE  Ncut Infomap LPA WT FG Louvain MCL FluidC EDCD SCD ASOCCA NBCD
1000 1 0.990 1 0.999 1 0.945 0.991 1 0.960 1 0.960 0.999 1

2000 1 0.948 1 1 1 0.948 0.990 1 0.959 1 0.952 0.996 1

4000 1 0.902 1 1 1 0.929 0.977 1 0.953 1 0.933 0.986 1

6000 1 0.898 1 1 1 0.899 0.956 1 0.942 1 - - 1

8000 1 0.884 1 1 1 0.894 0.947 1 0.932 - - - 1
10000 1 0.865 1 1 1 0.909 0.960 1 0.922 - - - 1
20000 1 0.833 1 1 1 0.873 0.936 1 0.912 - - - 1
50000 0.999 0.813 0.999 0.999 0.987 0.884 0.971 0.999 0.902 - - - 0.999

values between 0.5 and 0.7. When p > 0.6, the performance
of all algorithms decreases rapidly, but SCD and CDFSE are
still better than that of others.

Moreover, for the purpose of evaluating the effectiveness
of the comparison algorithms in different community density
networks, we apply fixed © and change the average degree
parameter K to generate the network, where 1 = 0.1 and
k changes from 5 to 25. When k changes from 5 to 25,
the performance of each comparison algorithm in different
indicators is displayed in Fig. 6. It can be clearly observed
that, our CDFSE algorithm achieves the best performance
in terms of the NMI index and ARI index compared with
other algorithms. When k=5, the NMI value of CDFSE is
above 0.95, and the ARI value is above 0.92, while the NMI
value and ARI value of the other algorithms are not greater
than 0.8. When k>10, the NMI value and ARI value of the
CDFSE algorithm reach 1, and the performance of the other
algorithms is not as good. The highest NMI value and ARI
value of the CDFSE algorithm do not exceed 0.95. Addition-
ally, the performance of the FG algorithm is worse because
the FG algorithm is sensitive to the community density on
the generation network. This effect may be caused by the
resolution limitation of modularity [13].

48532

Finally, in order to evaluate the effectiveness of the compar-
ison algorithm in large-scale networks, we use the generation
network with the increasing number of nodes. When the
number of network nodes changes from 1000 to 50000, the
performance of each comparison algorithm under different
indicators is shown in TABLE 5-6. It can be clearly observed
that compared with other algorithms, our CDFSE algorithm
has achieved ideal community detection results in NMI index
and ARI index.

C. REAL NETWORK

To test the effectiveness of the algorithm on real data sets,
this paper also makes comparisons between several represen-
tative real networks in different sizes, which all have actual
community structure information. The NMI and ARI indexes
are still used to evaluate the community detection quality
of each algorithm because these networks have known real
community partition information. TABLE 7 describes the
basic information for these real networks. These websites
access real data sets: http://snap.stanford.edu/data/, http://
networkrepository.com/networks.php, and https://network
data.ics.uci.edu/index. php. Firstly, we provide a brief
description of these networks.
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TABLE 6. Ari performance of each algorithm and composite benchmark network when the number of nodes changes form 1000 to 50000.

ARI CDFSE  Ncut Infomap LPA WT FG Louvain MCL  FluidC EDCD SCD ASOCCA NBCD
1000 1 0.990 1 0.999 1 0.945 0.991 1 0.960 1 0.960 0.999 1
2000 1 0.938 1 1 1 0.799 0.980 1 0.952 1 0.952 0.997 1
4000 1 0.892 1 1 1 0.694 0.949 1 0.943 1 0.923 0.951 1
6000 1 0.873 1 1 1 0.590 0.871 1 0.932 1 - - 1
8000 1 0.866 1 1 1 0.541 0.812 1 0.921 - - - 1
10000 1 0.821 1 1 1 0.552 0.852 1 0.920 - - - 1
20000 1 0.821 1 1 1 0.396 0.717 1 0.910 - - - 1
50000  0.999 0.801 0.9975 0.998 0.975 0.542 0.927 0992  0.895 - - - 0.999
TABLE 7. Basic information for each real network.
clusterin .
Dataset node number edge number average degree . g community number
coefficient
Football 115 613 10.661 0.40 12
Karate 34 78 4.588 0.57 2
Dolphin 62 159 5.13 0.30 2
Polbooks 105 441 8.4 0.49 3
Amazon 334,863 925,872 5.53 0.40 75,149
NI
0.8 0.8
0.6 0.6 1
S 4
Z 04 < 0.4-
0.2 0.2
00 0-0I‘I'I'I'I'I‘I'I'I'I'I‘I'l'
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SRV T I NRIRTE SR ARINC I S

Football Network

FIGURE 7. Performance of different comparison algorithms on the football network.

Football network: This network originated from American
college football games. It consists of 115 nodes and
613 edges. The nodes represent each football team, and the
edges represent regular games between the two connected
teams. The network consists of 12 sports leagues (i.e., clubs),
each of which contain approximately 8-12 teams.

Zachary’s karate network: This is a well-known network
of karate clubs in the United States that represents the friend-
ships among the 34 members of the club. The network is
divided into two communities due to the different opinions
of the leaders.

Dolphin network: A dolphin network constructed by D.
Lusseau et al. after seven years’ observation of a group of
bottlenose dolphins living in Doubtful Sound, New Zealand.
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The nodes represent individual dolphins, and the edges rep-
resent frequent contact between two dolphins. The network
has 62 nodes and 159 edges, which are divided into two
communities.

Political book network: This is a network of books about
American politics. These books are sold by online book-
sellers on Amazon. Its nodes represent the books related
to American politics sold in the Amazon online bookstore,
as well as the number of readers who have purchased
these two books. The nodes are divided into three types: 1,
n and c, which represent ‘“liberal”, “‘conservative” and
“centrist”, respectively. Therefore, the network is divided
into three communities. The network consists of 105 nodes
and 441 edges.
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FIGURE 8. Performance of different comparison algorithms on the karate network.
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FIGURE 10. Performance of different comparison algorithms on the political book network.
Amazon network: This network is based on the online sales category that is considered as a real community. The network
data of products on the Amazon website. The nodes represent consists of 925872 edges and 334863 nodes.
products, and the edges represent the connection between Generally, the CDFSE algorithm’s performance on the

frequently purchased goods. Each commodity belongs to a football network is not outstanding, but it performs very well
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FIGURE 12. Community detection results of CDFSE on the karate network; two communities are

detected.

on the karate club network, political book network and dol-
phin network. The algorithm also achieved good community
detection quality.

On the American college football network, most algo-
rithms, such as Infomap, MCL, Ncut, EDCD, FluidC,
CDFSE, WT and Louvain, obtained outstanding clustering
results due to the high average degree as shown in Fig. 7.
The Infomap and MCL methods achieved high NMI and
ARI values. These two algorithms also detected 12 high-
quality communities. Compared with the above two algo-
rithms, the CDFSE algorithm is slightly inferior (NMI=0.90,
ARI=0.81) and detected 10 high-quality communities as
shown in Fig. 11. The performance of the FG algorithm on
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this network is not ideal and it achieved a low index value
(NMI=0.76, ARI=0.47). These results are consistent with
the experimental results.

On the karate club network, the CDFSE algorithm
achieved the highest index score (NMI=1, ARI=1) with
the EDCD algorithm taking second place (NMI=0.93,
ARI=0.95). The index scores of the other algorithms are
no higher than 0.9 as shown in Fig. 8. Since the NMI
and ARI indexes of the CDFSE algorithm are both 1, the
community structure detected by the algorithm is com-
pletely consistent with the real network partition. In fact,
CDFSE successfully detected two communities as shown in
Fig. 12, and their community organizations are completely
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FIGURE 14. Community detection results of CDFSE on the US political book network; three communities are detected.
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FIGURE 15. Performance of different comparison algorithms on the Amazon dataset.
consistent with the real partitions. In this network, CDFSE considers the attractiveness of groups as well. Of course,

attained good detection because the CDFSE method the MCL, ASOCCA, EDCD, LPA, Ncut, and FluidC meth-
considers not only the attractiveness of individuals but ods also achieved good performance. It’s worth noticing
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that MCL and ASOCCA also successfully detected two
communities.

In the dolphin network, the CDFSE algorithm once again
outperformed the other algorithms in terms of the NMI
index value which reached 0.89, and ARI index value which
reached 0.93. Among the other algorithms, the highest NMI
index value does not exceed 0.65 and the highest ARI index
value does not exceed 0.57, which is more obvious from
the column diagram shown in Fig. 9. CDFSE successfully
detected two communities, which is consistent with the real
network as presented in Fig. 13, the number of communities
detected by the other algorithms ranges from 4 to 12. The
quality of community detection of some algorithms is not
high, and in particular, the NMI value of the EDCD algorithm
is the lowest, which indicates that the community division of
most nodes is incorrect.

On the political book network, the index score of the
CDFSE algorithm achieves the highest again (NMI=0.58,
ARI=0.68). With the exception of the MCL algorithm, the
index scores of the other algorithms are also exceptional, all
of which are above 0.50. Therefore, most algorithms have
achieved good clustering as shown in Fig. 10. Here, CDFSE
detects three communities as shown in Fig. 14. Other algo-
rithms detect four to six communities.

This paper employs Amazon dataset to make judgement
on the performance of the comparison algorithms under
large-scale networks. Due to the large number of online com-
munities, this paper selects top-5000 highest-quality actual
communities with the largest number of members for compar-
ison. On the Amazon network, the CDFSE, Infomap and WT
algorithms achieve the best performance with NMI index val-
ues above 0.95; furthermore, the ARI index value of Infomap
is as high as 0.94 which is far higher than that of the other
algorithms as shown in Fig. 15. There are 20057 communities
detected by the CDFSE algorithm and 17296 communities
detected by the Infomap algorithm. However, due to the
high time complexity, the Ncut, EDCD, SCD and ASOCCA
algorithms cannot operate on the Amazon network.

According to the experimental results, both the Infomap
and CDFSE algorithms are appropriate for networks of differ-
ent sizes. They produce better performance when generating
benchmark networks and obtain higher index values. How-
ever, CDFSE is better than Infomap in real networks, as it
obtains the best social division.

D. EXECUTION TIME ANALYSIS

To evaluate the scalability of the CDFSE algorithm at the
network scale, this paper takes advantages from the LFR
model to generate benchmark networks in different sizes with
a fixed average degree of k = 15. When the number of nodes
changes from 2K to 50K, the CDFSE algorithm apparently
has better performance than the other comparison algorithms.
The CDFSE algorithm is more advantageous when dealing
with small and medium-sized networks because its time com-
plexity is O (k?-n) as shown in Fig. 16. When the number
of nodes changes from 1K to 100M, the CDFSE algorithm
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FIGURE 16. Run time comparison of all algorithms when the number of
nodes ranges from 2K to 50K.
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FIGURE 17. Run time comparison of all algorithms when the number of
nodes ranges from 1K to 100M.

is faster when compared with the Ncut, EDCD, WT, FG,
and MCL algorithms; additionally, for the reason that the
value of K is relatively small, the CDFSE algorithm performs
well when dealing with large-scale networks. However, the
CDFSE algorithm is slower than LPA, Louvain, and FluidC
as shown in Fig. 17. In view of the poor quality of community
detection by these three algorithms and the stability problems
of the LPA and FluidC algorithms, the CDFSE algorithm is
preferable.

IV. CONCLUSION

Community detection has always been a argument of interest.
Inspired by fish networks found in nature, this paper pro-
poses a community detection model according to fish school
effect and presents a community detection algorithm named,
CDFSE according to the model. The central idea behind
CDFSE is to regard the network as a dynamic system and
research its dynamics with time. Individuals in the network
form subgroups because of their commonness and charac-
teristics, and subgroups will attract other individuals to form
large groups because of their own attraction. As time goes on,
all individuals will eventually be attracted to different groups,
forming a stable community structure. We make comparisons
between CDFSE and several other representative community
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detection algorithms by applying them on Football, Karate,
Dolphin, Polbooks and Amazon networks. The experimental
results show that the CDFSE algorithm performed well on
different networks and it achieved better performance than
the other comparison algorithms. The main performance is as
follows: firstly, this algorithm has higher efficiency and better
community detection quality than others which mentioned
above, secondly, the algorithm does not need to set param-
eters and is more simple and convenient; thirdly, the time
complexity of the algorithm is small, and it can be applied
to large-scale network; next, the algorithm is derived from
nature, in line with the laws of nature, closer to the real
network, so it can be better applied to community detection.
The limitations of this paper is that only time complexity
been added to verify its effectiveness when comparing with
the classical method on the actual data set, and the space
complexity is what we need to consider for further explore.
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