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ABSTRACT Even though dynamic cell switching is a prominent approach for energy optimization in
heterogeneous wireless communication networks, it results in spectrum under-utilization as the spectrum
originally occupied by the base stations that are turned off remain dormant. In order to make the businesses
of primary network (PN) operators, who hold the spectrum license, more profitable and sustainable as well
as to avoid spectrum under-utilization, this dormant spectrum can be leased to the secondary network (SN)
operators who cannot afford to purchase the spectrum license. In this study, first, the cell switching problem,
which solely focuses on the amount of energy saved, is translated to a problem of revenue maximization by
including the spectrum leasing concept and converting the energy saving to monetary saving from reduced
electricity bills. In this regard, two spectrum demand scenarios are considered for the SN operator: delay
tolerant (DT), for non-real time applications, and non-delay tolerant (NDT), for real time applications. Then,
a cell switching and spectrum leasing framework based on simulated annealing algorithm is developed to
maximize the revenue of the PN while respecting the quality-of-service constraints. The simulation results
reveal that the DT spectrum demand is more beneficial to both PN and SN operators as it results in greater
revenue for the former while the latter is able to access more spectrum to meet higher service demands. This
finding suggests that if the application can tolerate delays, then it makes more sense for both PN and SN to
adopt the DT scenario. In addition, it is observed that the performance of the proposed framework is very
close to that of the optimal solution with a significant reduction in the computation complexity.

INDEX TERMS 5G, HetNet, cell switching, energy efficiency, green communications, spectrum leasing,
simulated annealing algorithm.

I. INTRODUCTION

In order to achieve enhanced data transmission as a challenge,
mobile network operators (MNOs) are constantly facing the
demand for capacity improvement. This is due to increase
in the number of connected devices, increasing use of data
hungry applications, such as online gaming and multimedia
services, as well as other emerging use cases including virtual

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine

VOLUME 10, 2022

and augmented reality, driver-less cars, etc [1]. In addition,
with the proliferation of Internet of things (IoT) devices
where virtually everything is connected to the Internet, the
demand for more capacity would further escalate [2].

One of the major approaches for enhancing network capac-
ity to meet the ever increasing data demands in 5G is the
introduction of network densification [3], which involves the
deployment of massive number of small base stations (SBSs),
including remote radio head (RRH), micro, pico, and
femto, under the coverage of macro base stations (MBSs),
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by employing the principle of spatial frequency reuse.
However, this comes at a cost of increased network energy
consumption (as 5G also targets to be 100 times more energy
efficient that 4G networks) [4]. Also, with 6G network target-
ing higher capacity and data rates due to emerging use cases,
the network densification would further increase in 6G [5].
This means that the energy consumption of the network
would further escalate if not properly managed. To tackle the
problem of increased energy consumption owing to capac-
ity expansion through network densification, the most com-
mon approach is to implement dynamic network operation;
i.e., the base stations (BSs) are only available when needed.
This can be achieved via dynamic cell switching and traffic
offloading [6].

In dynamic cell switching approach, the BSs (which
accounts for about 50% - 60% of the total power consumption
of the radio access networks (RAN)) [4] are turned off when
they are not serving any user demand or have very few users
connected to them, while the traffic of the BSs that are turned
off are transferred to the neighbouring BSs or MBSs. This
ensures that the energy consumption of the network scales
with the capacity utilization thereby enhancing the energy
efficiency of the network. Dynamic cell switching has the
advantage of minimizing energy consumption of the network
which translates to cost savings or additional revenue on the
side of the mobile network operators (MNOs) due to reduc-
tion in the expenditure on energy purchase. It also results
in reduced greenhouse gas emission, as most of the energy
used to power the BSs are from fossil fuels, thus ensuring
environmental sustainability [7].

One of the major drawbacks of dynamic cell switching is
that the spectrum allocated to the switched off BSs remains
dormant during the period that they are inactive, resulting in
spectrum under-utilization. Such dormant spectrum can be
leased to smaller network operators (also known as secondary
networks (SN) operators) who require a smaller amount of
spectrum for their data transmission and cannot afford to
purchase a spectrum license like the major network opera-
tors (also known as primary network (PN) operators). This
is because spectrum is normally auctioned by the telecom-
munication regulatory body in each country (e.g., Office of
Communications (Ofcom) in the UK) at a very expensive
rate. Spectrum leasing results in enhanced spectrum utiliza-
tion and additional revenue to the PN operators, since it
has been observed that the licensed spectrum is not always
fully utilized most of the time [8]. The spectrum purchased
by the SN from the PN can be used to provide data ser-
vices which are delay tolerant (DT) such as meter readings,
health information from wearables, etc., and do not require
real-time data transmission. It can also be used to provide
non-delay tolerant (NDT) services such as location and traffic
update services, voice calls, etc., which require real-time data
transmission for quick decision making. Therefore, the PN
operator can gain revenue both from energy cost savings
due to dynamic cell switching and from leasing the dormant
spectrum of the BSs that are turned off to the SN.
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Several approaches have been proposed in the literature
for implementing dynamic cell switching in mobile cellu-
lar networks [9]-[16]. These methods comprise analytical,
heuristic and machine learning-based approaches. Similar
optimization techniques have also been proposed for spec-
trum leasing [17]-[22]. However, very few research works
have considered both cell switching and spectrum leasing for
maximizing the revenue of the PN [23], [24], even though
only a homogeneous network deployment scenario as well as
a fixed electricity and spectrum pricing policy were consid-
ered, thereby making their work quite simplistic.

In order to fill in the above-mentioned gaps in the liter-
ature, two different perspectives should be taken into con-
sideration. First, the cell switching and spectrum leasing
problems should be considered together in order to have a
holistic view. Therefore, in this paper, we first combine the
cell switching and spectrum leasing concepts, and produce
a joint optimization problem. To do this, we converted the
energy saving via cell switching to its monetary equivalent,
that is, the reduction in the energy bills, so that the energy
saving and revenue can be combined. This enables us to
model the joint optimization problem in a way that a single
objective function can be obtained, since the outputs of both
energy saving and spectrum leasing are monetary. Second,
such holistic view should be tested in a more realistic and
complex scenario to verify its applicability and feasibility. For
this purpose, we created a heterogeneous network (HetNet)
scenario with different types of SBSs. Moreover, in addition
to classical fixed pricing policy, we also adopted a dynamic
pricing policy for both electricity and spectrum. These two
components of the considered scenario (i.e., diverse set of
SBSs and dynamic pricing policy) make it not only more
realistic but also more challenging, given that each type
of SBS has different characteristics and the overall system
becomes quite dynamic (e.g., the loads of BSs and the prices
of electricity and spectrum change at each time slot).

The solution to this problem is non-trivial as it involves
trying different options out of a large set of possibilities.
The optimal solution is the exhaustive search (ES) approach
because it tries all the possible options before selecting the
best one; however, it results in a huge computational overhead
especially when the number of SBSs deployed in the network
becomes very large.

A. CONTRIBUTIONS
In this paper, we propose a cell switching and spectrum
leasing framework to maximize the revenue of the PN. The
proposed algorithm is able to learn the optimal cell switching
and spectrum leasing policy that would result in maximum
revenue for the PN while ensuring that the QoS of the PN is
maintained. The proposed framework is implemented locally
at each MBS since they are responsible for controlling the
SBSs under their coverage. The following are the contribu-
tions of this work:
« We formulate the problem as a binary integer program-
ming problem and develop a cell switching and spectrum
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leasing framework using the SA algorithm to determine
the optimal policy that maximizes the revenue of the PN
while ensuring that the QoS is maintained.

o We consider a HetNet comprising four different types of
SBSs, which makes the network scenario more complex
and realistic compared to the previous works that con-
sidered only homogeneous scenario.

« We consider two electricity and spectrum pricing poli-
cies: 1) fixed and 2) dynamic policy, in order to study the
effects of constant and varying electricity and spectrum
prices on the maximum revenue of the PN, as both could
be the cases faced in real systems. For the dynamic
pricing policy, both DT and NDT spectrum demand
scenarios are also investigated.

« In addition to the ES algorithm, two benchmark solu-
tions are also developed for comparison with the pro-
posed framework.

« A complexity comparison of the proposed method with
that of the ES is carried out to highlight the advantage of
the proposed framework.

« Finally, in order to capture the realistic behaviour of
the network, the performance of the proposed frame-
work is evaluated using real data comprising call
detail records (CDR) of Milan city via extensive sim-
ulations, and the result obtained is compared with
benchmarks.

The remaining part of this paper is organized as follows: In
Section II we review the related literature, while in Section III
the system model is comprehensively presented. The pro-
posed SA algorithm based framework for cell switching and
spectrum leasing is discussed in Section IV, followed by the
performance evaluation in Section V. Section VI concludes
the work.

Il. RELATED WORKS

Dynamic cell switching techniques are the most commonly
employed methods for optimizing energy consumption in
cellular networks because they are the cheapest to implement
and require minimal changes to network architecture [4].
These techniques result in significant energy savings com-
pared to other methods such as cell zooming, bandwidth
adaptation, sectorization, etc [6], [7].

The authors in [9] proposed a SBS switching scheme to
minimize the energy consumption in a HetNet based on
stochastic geometry. In [10] the authors considered the prob-
lem of SBS power control and user association in HetNets
and proposed a heuristic algorithm to determine the switching
pattern of redundant SBSs during periods of low traffic.
In [11], a user association and cell switching algorithm based
on belief propagation was developed to maximize the energy
efficiency (EE) of a HetNet by switching off BSs with few
users while transferring serving users to neighbouring BSs.
In [12], the authors proposed an SBS switching mechanism
based on particle swarm optimization to minimize the energy
consumption of a HetNet without violating QoS constraints.
An SBS switching mechanism for EE optimization in HetNet
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using genetic algorithm was proposed in [13] while respect-
ing QoS constraints.

The authors in [14] proposed a reinforcement learn-
ing (RL) based cell switching approach to optimize the energy
efficiency as well as the CO, emission in a HetNet. A cell
switching and traffic offloading scheme for energy optimiza-
tion in ultra-dense network using artificial neural network
was proposed in [15]. The authors in [16] developed a scal-
able RL based cell switching framework using state-action-
reward-state-action (SARSA) algorithm with value function
approximation to determine the optimal switching policy
that would minimize the energy consumption in an ultra
dense network while ensuring that the QoS of the network
is maintained. Even though dynamic cell switching results
in significant energy savings, it also results in spectrum
under-utilization as the spectrum that was originally allocated
to the SBSs that are switched off remain dormant when they
are inactive. These dormant spectrum can be exploited via
spectrum leasing operations.

As regards spectrum leasing, three major reasons for spec-
trum leasing have been advanced in literature [25]: i) For
monetary gains, ii) to maximize transmission rates, and iii) to
reduce the energy consumption of primary users (PUs). In the
first case, the PN leases some of its spectrum to the SN
at a cost in order to generate additional revenue. In the
second case, the PN shares some of its spectrum to the
SN in exchange for assistance in data transmission, thereby
enhancing the data rates of the PUs. In the third case, the
secondary users (SUs) act as a relay to the PUs thereby
reducing the transmission distance between the PUs and the
BSs which leads to energy savings in the PUs. In this work,
we are interested in the first case that is spectrum leasing for
monetary gains because we want to maximize the revenue of
the PN.

In this regard, various research works using techniques
such as game theory, matching theory, and machine learning
techniques, etc., have been proposed [17]-[22]. The authors
in [17] proposed a traffic-adaptive spectrum leasing scheme
whereby the SUs are able to negotiate the duration of channel
leasing with the PUs in order to ensure their continual utiliza-
tion of the leased channel for the complete transmission of
the data in their buffer. To achieve this objective, the average
utilities of both the PN and SN were first formulated, after
which a spectrum leasing agreement that is beneficial to both
parties was developed using Stackelberg game model. The
work in [19] proposed a joint optimization scheme for spec-
trum leasing and spectrum allocation using both Stackelberg
game and matching theory. The proposed approach is able to
determine the best price for leasing the spectrum as well as the
best PU-SU pair while enhancing the spectral efficiency of
the PUs and SUs. In [18], the authors considered a spectrum
leasing problem between MNOs and mobile virtual network
operators (MVNOs) using matching theory in order to maxi-
mize the utilities of both parties in terms of spectrum leasing
cost and bandwidth allocation. Their goal is to find a suitable
paring between the MNOs and MVNOs that would maximize
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the revenue of the MNOs as well as the bandwidth allocated
to the MVNOs.

The work in [22] considered the problem of spectrum leas-
ing optimization for cognitive radio network (CRN) transmis-
sion over TV white spaces. A neural network based solution
was proposed to determine the optimal transmission policy
that would result in minimal spectrum leasing cost while
considering the QoS of the CRN. The works in [20] and [21]
considered the problem of resource allocation and spectrum
leasing in CRNs where the PUs lease part of their spectrum to
the SUs in exchange for data transmission assistance from the
SUs as well energy saving for the PUs. Joint cell switching
and spectrum leasing has been considered in [23] and [24]
to maximize the profit of both PN and SN as well as to
minimize the energy consumption of PN. The authors in [23]
considered a CRN comprising both PN and SN where the
PN aims to reduce its energy consumption by turning off
some BSs and transferring the users to the SN to maintain
their QoS. In addition, the PN obtains revenue by leasing
the free spectrum to the SN while the SN also gains revenue
from the PN by charging a roaming price. A sub-optimal
heuristic algorithm was developed to optimize the energy
consumption of the PN by determining the set of BSs to
switch off.

The novelty of this work is threefold: A low complexity,
cell switching and spectrum leasing framework is proposed,
which considers a HetNet scenario comprising different types
of BSs as opposed to previous works in [23] and [24]
that considered only homogeneous scenario comprising only
one type of BS. Second, both fixed and dynamic electricity
pricing and spectrum leasing policies, as well as delay toler-
ant (DT) and non-delay tolerant (NDT) spectrum demands,
which are a better representation of what is obtainable in real
systems. Thirdly, we avoided roaming charges by ensuring
that only vertical traffic offloading between SBSs that are
switched off and the MBS of the PN is considered, in order
to minimize additional expenses and maintain the QoS of the
network.

IIl. SYSTEM MODEL

A. NETWORK MODEL

The network model is presented in Fig. 1. Two types of
networks are considered: First, the PN is a HetNet with con-
trol and data separated architecture (CDSA) [26] comprising
multiple macro cells (MCs). Each MC consists of one MBS
and several SBSs. The MBSs serve as control BSs, provide
constant coverage and low data rate transmission. The SBSs
are deployed within the coverage of the MBSs and serve
as data BSs to provide high data rate transmissions in hot
spot zones. The communication between MBS and SBSs are
carried out in the control channels, which are separated from
the data channels. Four types of SBSs—RRH, micro, pico
and femto—are considered. Second, a SN is also assumed to
operate in the same coverage area and the HetNet allows this
SN to lease some unused spectrum whenever PN SBSs are
put to sleep.
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FIGURE 1. The PN comprises a MC which consists of an MBS and various
types of SBSs and the SN comprises SN BSs. Note that the HetNet can
include multiple MCs.
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In this context, it is assumed that each SBS continuously
monitors the activity of the SN BSs in their coverage area
and reports the spectrum demand alongside their own traffic
load to the MBS. The MBS then decides which set of SBSs to
switch off in order to maximize the revenue of the PN based
on the available radio resources in the MBS, the traffic loads
of the SBSs, and the spectrum demanded by the SN’s BSs
without violating the QoS of the PN. This can be maintained
by ensuring that the traffic load of the SBSs that are switched
off are transferred to the MBS.

In this work, we assume that the traffic load of all users
can be sustained by the network before cell switching and
spectrum leasing is implemented, which means that the net-
work has enough radio resources to support all users’ traffic
demands. However, when cell switching and spectrum leas-
ing is implemented, we cannot guarantee that the network
would have sufficient resources to handle the traffic load of all
users any more. Hence, we define the QoS as the capacity of
the network to sustain the traffic load of all the users after cell
switching and spectrum leasing operation. This is referred to
as coverage loss in [27].

Due to the CDSA employed, all the MCs are assumed
to have similar deployment characteristics except for the
number and composition of SBSs. In addition, they also
function in a decentralized manner, with the MBS responsible
for controlling the operations of all the SBSs in each MC.
Hence, in this work, we considered only one MC compris-
ing 12 SBSs, four of each type of SBSs, as a representation
of other MCs within the network. Each primary network (PN)
SBS, has a secondary network (SN) BS associated with it,
bringing the total number of SN BSs considered to 12.

B. POWER CONSUMPTION OF HETNET

We adopt the BS power consumption model in [28], [29] for
estimating the power consumption of the BSs in the HetNet.
The total power consumption of the HetNet comprises sum of
the power consumption of the MBS and that of all the SBSs
under its coverage. The instantaneous power consumption of
a BS, Pps,;, at time ¢ can be expressed as:

Pgs,; (1) = Po + 71 ¢ Py, (nH
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where P, is the constant circuit power consumption, t; is
the instantaneous traffic load of any BS at time ¢, ¢ is the
load dependent power consumption component and Py is the
transmission power of the BS. It should be noted that the value
of Py, ¢, and Py is different for each type of BS (i.e., MBS,
RRH, micro, pico, and femto).

As such, the instantaneous total power consumption of the
HetNet, Pyn,;, at time ¢ can be expressed as:

My Mp
Puny (1) = Y3 PEs (1Y) )

i=1 j=I

where Py and 7,7 denotes the power consumption and
traffic load of the j BS in the i MC respectively, and Pygi1
represents power consumption of the MBS in the i MC. M,,,
and M} are the number of MCs within the HetNet and the
number of BSs (including an MBS and SBSs) within an MC,
respectively.

C. PRICING PoOLICY
Two kinds of pricing policies are considered for both the
electricity and spectrum:

1) FIXED PRICING POLICY

The unit cost of electricity as well as that of the spectrum
remains constant throughout the day, irrespective of the fluc-
tuations in energy or spectrum demand.

2) DYNAMIC PRICING POLICY
The electricity and spectrum price varies according to the
amount of electricity and spectrum demanded at different
times of the day. The dynamic pricing model for electricity
was adapted from [30], where the instantaneous electricity
prices were obtained by multiplying the fixed price by a vari-
able factor to indicate changes in the prices at different times
of the day. For the dynamic spectrum price, we assumed that
the spectrum prices follow the traffic demand pattern of the
PN. However, these values are scaled with the fixed spectrum
price such that: Crg,; = m . Crp F, where m is a time variable
function that changes with the instantaneous traffic load, 7,
ie., m = f(1;), CrB,: and Crpf are the dynamic and fixed
spectrum price (i.e., cost per resource block (RB)). According
to 3GPP [31], aRB is equivalent to 12 successive subcarriers,
thus taking one subcarrier to be 15kHz, we consider one RB
to be 180kHz. The dynamic electricity and spectrum pricing
policies are presented in Fig. 2.

Under the dynamic spectrum pricing policy, two types of
spectrum demand scenarios are considered:

o Non-Delay Tolerant (NDT): This scenario deals with
applications such as location updates, voice calls, etc.,
that require real-time data transmission and cannot tol-
erate delay because of the sensitivity of the information
and its requirement for quick decision making. For such
applications, the SN has to demand for the spectrum as
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FIGURE 2. Dynamic electricity and spectrum pricing policy (normalized)
for every 10 minutes over a 24 hours period.

soon as the need for data transmission arises, irrespective
of the spectrum price.

« Delay Tolerant (DT): There are some other applications
such as meter readings, feedback from wearables, etc.,
whose information may not be needed for real-time
decision making and hence can tolerate some level of
delay in data transmission. In these scenarios, the SN
can decide to accumulate their service demands until the
periods of the day where the spectrum price is cheapest,
before transmission to save cost. In this work, the cheap-
est period is statistically decided only once and then the
traffic is adjusted accordingly.

IV. PROBLEM FORMULATION

A specific time period T (in mins) is considered and it is then
divided into equal time slots (in mins) with a duration of d (in
mins). Then, we define an index vector ¢ that stores the time
slots in an order, such that t+ = [1,2,..., Mr], where Mt
is the number of time slots and is given by My =T /d. The
BSs of the PN are represented by By’ while that of the SN
by B;j . We view the problem from the PN perspective and
formulate the revenue maximization problem by considering
the revenue obtained from the combination of cell switching
and spectrum leasing. Since the PN obtains its power supply
from the grid, it can decide to turn off some SBSs during
periods of low traffic to reduce their energy cost (i.e., gain
some revenue from energy saving) and also lease the dormant
spectrum to the SN in order to gain additional revenue.

3) REVENUE FROM CELL SWITCHING

The overall power consumption—the summation of the
power consumption of all the BSs over all the time slots—
when no cell switching is implemented (i.e., when all the BSs
are on), Py, can be expressed as:

Mr M, M,

Pon = Z Z ZPBS ;(Tti’j)- (3)

t=1 i=1 j=1

The overall power consumption—the summation of the
power consumption of all the BSs over all the time
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slots—when cell switching is implemented (i.e., when some
BSs are turned off), P, is given by:

Mr M, My

Pos= 3 > S ITWPE () + (1 TIPS 1 ()

t=1 i=1 j=1

where ngs ¢ is the power consumption of the BS when it is
switched off (i.e., sleep mode power consumption of the BSs)
I';’ denotes the on/off status of the (i, /)™ BS at time 7 i,e.,
. [1, ifBison
ri/ = i’ 5)
0, if By is off,

Since the MBS is always on, Ff’l =1, V.
Then, the overall power saving due to cell switching, Pgy
can be expressed as:

Psv:Pon_Pcs~ (6)

Therefore, the revenue due to energy saving, Rg, can be
expressed as:

Rp = ZPsv,t—Tce,f, @)

where C. ; is the cost of electricity at time #, and Pgy ; is the
energy saving at time 7.

4) REVENUE FROM SPECTRUM LEASING
The revenue due to spectrum leasing, (R;), can be expressed
as:

Mr M, My .
=333 "1 - 1)y min(wg,, ¥ )Cres (8
t=1 i=1 j=I

where \Ili’j denotes the amount of spectrum (number of

RBs) supphed by BU ‘-IJI J denotes the amount of spectrum

demanded by \I/S , from BP and Cgrg; is the unit cost of
spectrum (i.e., price per RB) at time 7.

BY and B/ are assumed to have the same capacity, which
implies that \IID] =< \lf’ J . Therefore, (8) can be simplified as:

Mr Mwm M)

=33 N a -1y Cre.. ©)

=1 i=1 j=I

5) TOTAL REVENUE
The total revenue of the PN, Rt can be expressed as:

Rt =Rg + Ry, (10)
and substituting (7) and (9) in (10), we obtain:

My
M=Zm,

t=1

My My M)

S T
=E E E(1_F;J)“IJBJ[CRBJ+Psv,t_ce,t~ an
’ MT

=1 i=1 j=1

Mr My, Mp

—Cer + Y3 S a -1y Cra.

t=1 i=1 j=1
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Replacing (7) with (3) and (4) and simplifying (11), we get the
closed form expression for the total revenue and is expressed
as:

Mr M,, My

Rr=3 Y Y (-T7)

=1 i=1 j=1

[Z(PBS t

T
P )3 Cor + ¥, Crns . (12)

6) OPTIMIZATION OBIJECTIVE

The revenue maximization objective function is the joint opti-
mization of the revenue due to cell switching and spectrum
leasing and can be expressed as:

max.  Rp(r™, W) (13)
r,’

s.t. Y =T/, Vij (14)

il < il (15)

I/ efo,1}, Vij. (16)

The constraints of '( 13) are explained in the following. The
traffic demand, Y, when all the BSs in the MC i are on
(i.e., before traffic offloading) is computed as,

My
Y= er, Vi. (17)
j=1

To ensure QoS, the traffic of any SBS that is switched off will
be transferred to MBS and therefore the actual traffic of MBS

during the offloading process, denoted by £! is equal to,
My .
thl = 4y -1, Vi (18)

The traffic demand of the MC after traffic offloading, T can
be expressed as,

My
Th=2"1 4y Y, Vi (19)

Therefore, (17) must be equal to (19) to satisfy the constraint
in (14). We are assuming that MBS will be able to handle the
traffic of all the switched off SBSs. On the other hand, if there
is a maximum limit on the amount of traffic that the MBS
can handle then we also have to introduce another constraint.
For example, let rr'r’ll denote the maximum traffic that MBS
can serve in any time slot . Then, we have the additional
constraint in (15).

The solution to the problem in (13) is non-trivial as it
involves deciding the optimal set of SBSs to turn off out
of all the possible options, and then leasing their spec-
trum to the SN BSs in order to maximize the revenue of
the PN. The optimal solution can be obtained from ES
algorithm, however, the number of search spaces increases
exponentially with the number of SBSs in ES, thereby
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resulting in huge computational overhead. Hence, we resort
to a less complex heuristic which considers a lesser search
space and can give a sub-optimal solution with reduced
computational complexity (lesser search spaces compared
to ES).

V. PROPOSED FRAMEWORK

The aim of this paper is to determine the optimal cell switch-
ing and spectrum leasing strategy that would maximize the
revenue of the PN without compromising the QoS of the
network. Although ES always finds the optimal policy, it is
computationally complex to implement because it has to
sequentially search through all the possible cell switching
and spectrum leasing combinations before deciding the opti-
mal solution. As a result, in this work, we employ the SA
algorithm which has lesser complexity since it involves lesser
search spaces in finding the optimal solution. However, this
algorithm is not always guaranteed to produce the optimal
result as is the case with ES. In this regard, albeit being
sub-optimal, through extensive simulations, we prove that
the developed SA algorithm based solution produces almost
the same results as the ES algorithm—especially when the
network sizes are reasonable—with much less computational
complexity, providing a promising trade-off between the per-
formance and complexity.

A. SIMULATED ANNEALING (SA) ALGORITHM

The SA algorithm is a probability-based heuristic that deals
with the annealing process in solid materials. The working
principle of SA algorithm involves mimicking the process
during which a heated solid material cools down. It has been
used in the optimization of difficult problems such as machine
scheduling, inventory control and vehicle routing problems
in the literature [32]-[35]. One of the most important fea-
tures of the SA algorithm is that it ensures the results that
degrade the value of the objective function are included in
the solution process under certain conditions in order not to
be stuck at a local optimum. In other words, an improved
objective function value (better than the current best solu-
tion) is always accepted, whereas non-improved solutions are
accepted based on a probability value [34]. This mechanism
is elaborated in the next section.

In basic SA algorithm, the criteria used to accept a worse
objective function are the random numbers between 0 and 1,
the improvement in the objective function, and the current
temperature values. In the operation steps of the algorithm,
as the temperature of the system decreases, the possibility
of accepting worse results decreases because, as can be seen
in (21), the decrease in 7 value also decreases the selection
probability of worse solutions. Thus, while the diversification
feature is high at the beginning of the algorithm, intensifica-
tion feature becomes prominent towards the last iterations.
In other words, the algorithm performs a wider search by
taking into account the worse solutions in the initial stage.
However, it focuses on specific regions in the search space in
the final stages. The probability of increase at temperature,
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T (in Kelvin), of §E amplitude in energy is presented in (20),
where K is Boltzman constant:

SE
p(8,T) = exp ( KT)' (20)
Therefore, the starting temperature of the system is a
hyper-parameter of the algorithm and has a significant impact
on the overall performance, such that it must be high enough
to allow any feasible solution to be accepted. However, if it
is set too high, the search process will be random until the
temperature decreases to a certain level. As such, a certain
T value is determined as a stopping criterion in order not to
prolong the search process excessively.

B. SA ALGORITHM FOR CELL SWITCHING

AND SPECTRUM LEASING

To control the switching off/on of SBSs, it is necessary to
determine the parameters of the algorithm in the first place.
Then the objective function value of randomly generated
initial solution s is calculated with (13). In this way, the
revenues are obtained according to the energy saved from
turning off some SBSs in the PN (7) and spectrum leased to
the SN (9). During the search process, the algorithm attempts
to transform the current solution s into one of its randomly
selected new solution s'. However, in the developed algo-
rithm, instead of randomly selecting a neighborhood struc-
ture, each neighborhood is applied in an order as in sequential
variable neighborhood search (VNS) algorithm [36]. We also
expanded the search area in each iteration due to the small
number of neighborhood types.

Note that only feasible solutions which guarantee (14)
and (15) are considered in the proposed SA algorithm.
To ensure this, a feasibility check is performed first in each
of the neighborhood solution produced. With the applied
neighborhood structure, several temporal solutions can be
produced until a feasible solution is obtained. If the revenue of
the obtained solution with the new neighborhood structure, s’,
is higher than the current solution s, the new solution is
unconditionally accepted. If the revenue of the neighborhood
solution is less than the existing solution, the probability of
accepting the neighborhood solution is calculated as:

p=exp<—w) 21

After the local search process (after k iteration), the temper-
ature is decreased according to the formula 7 = T — «,
where « is the temperature reduction parameter. The pseudo
code for the developed SA based cell switching and spectrum
leasing framework is presented in Algorithm 1.

The step-by-step implementation procedure of the pro-
posed SA based cell switching and spectrum leasing frame-
work is discussed in the following:

1) FEASIBILITY CHECK
In order for a solution to be evaluated within the algorithm,
a preliminary check is performed to determine whether it is
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feasible or not. For this reason, the transferred traffic loads of
SBSs that are switched off in the s solution should not exceed
the normalized capacity of the MBS (15). The pseudo code
for feasibility check is shown in Algorithm 2.

Algorithm 1: SA Algorithm for Cell Switching and
Spectrum Leasing

-

Randomly generate an initial solution: sg € S
2 while s is infeasible; do Randomly generate an initial solution:
S0 € S;
3 Calculate revenue of sg
4 Define an initial temperature 7 > 0
5 Define temperature reduction function and « value
5= 50,5 = 50.£(8) = f(s0). () = f (50);
6 Define local search iteration number for each temperature (k)
7 while 7 > 0.01 do
8
9

n=k;
while (n>0) do
10 generate (1-reserve) neighbor solution s’
1 while (s’ is infeasible) do
12 generate (1-reserve) neighbor solution s
13 A =f(s') — f(s);
14 if (A <0)thens =s';
15 else

generate a random number from uniform
distribution in the 0-1 range (1)
if (u < exp(f%)); then s = 5';

18 if (f(s") < f(s*)); then s* = 5/;

19 end

20 generate (2-reserve) neighbor solution s’

21 while (s’ is infeasible) do

22 generate (2-reserve) neighbor solution s’
23 A=f(s")—f(s)

24 if 1 < 1 thens =,

25 else

generate a random number from uniform
distribution in the 0-1 range (u)
if (u < exp(—%)); thens = s5';

28 if (f(s") < f(s*)); then s* = 5/;

29 end

30 generate (swap) neighbor solution s’

3 while (s’ is infeasible) do

32 generate (swap) neighbor solution s’
3 A=f@)—f(s)

34 if (A < 0); then s = 5';

3 else

generate a random number from uniform
distribution in the 0-1 range (u) if
(u< exp(—%)); thens = s;

3 if (f(s") < f(s*)); then s* = §';

38 end

39 n=n-—1;

40 end

41 T=T -«

42 apply (shaking) procedures to s*, s = s

43 end

44 s* is the heuristic solution of the problem

*

2) SOLUTION REPRESENTATION

The proposed SA algorithm has a representation scheme
specially designed for the cell switching and spectrum leasing
problem. It has a binary representation depending on whether
the SBSs are off or on.
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Algorithm 2: Feasibility Check
1 MBS traffic load = ri'];

2 fori in s do

3 if (s'(i) = 0) then

4

calculate the transferred traffic load ) =2 7 (1- F;’J );
5 thl = by 30 e -y
6 if 251 < 1 then
7 | s is feasible
8 else
9 | s isnot feasible
10 end
11 end
12 end

3) INITIAL SOLUTION

In the SA algorithm, the initial solution, which is the first
feasible solution at the beginning of the iterations in the SA
algorithm, is generated randomly or with certain methodical
approaches such as nearest neighbor heuristics [35]. Simple
heuristic methods are considered to decrease the solution time
and increase the quality of the solution in some NP-hard prob-
lems. However, in this work, the initial solution is generated
randomly, and not with any constructive heuristic method
because the optimized initial solution can be trapped in a
particular local optimum within the search space.

4) NEIGHBORHOOD STRUCTURES

The proposed SA algorithm has three different neighborhood
structures, seeking for better results from different aspects in
each iteration. The SA algorithm also has nested iterations.
The primary iteration is associated with temperature drop.
Each temperature level represents one iteration and performs
a global search in the search space. In addition, there are
local search iterations in which neighborhood structures are
applied sequentially at each temperature level. Neighborhood
structures are named as 1-reserve, 2-reserve and swap, and
they are frequently used in applications such as vehicle rout-
ing problems, travelling salesman problems (TSP), and loca-
tion problems [32], [33]. In the neighborhood of 1-reserve,
a random cell is chosen from the solution state s and the
selected cell’s index is denoted by j. If the value of s(j) is 1,
this value is changed to O and vice versa for the case where
the value of s(j) is 0. In the 2-reserve neighborhood, this
process is performed for two different cells, while in the swap
neighborhood, the values of two randomly selected cells are
replaced with each other.

In addition to the neighborhood structures, the shaking
tool is also used for diversification before each temperature
change in the algorithm. After the local search procedure
at certain temperature, the bit representation (i.e., 0 and
1 values) are changed randomly to search in different spaces.
This action is to prevent the algorithm from being stuck at a
local optimum. The demonstration of the implementation of
neighborhood structures is shown in the Fig. 3.
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FIGURE 3. Illustration of the different types of neighborhood structures.
The topmost bar shows the initial status of the SBSs, followed by the
implementation of the three neighbourhood structures while the last bar
represents the shaking operation.

5) PARAMETER SETTINGS

SA algorithm begins with five parameters: 7, 7g, k, « and K.
T and TF are the initial and final temperatures, respectively.
The initial temperature must be high enough to allow the
acceptance of any feasible solution. If the initial temperature
is too high, the probability of generating random solutions
among feasible solutions at the beginning of the algorithm is
higher. On the other hand, if the initial temperature is too low,
the probability of getting stuck at the local optimum of the
algorithm increases. The final temperature of the algorithm is
set to avoid spending too much time in reaching the optimum.
k is defined as the number of iterations of the local search
procedure at each temperature, while « is the temperature
reduction parameter. It refers to the amount by which the
temperature will be decayed at the end of each iteration. K is
Boltzmann constant and is used in calculating the probability
of accepting or rejecting worse solutions. If the new objective
function value is worse than current best solution, it will gen-
erate u, which is a random variable between 0 and 1. Then, the
obtained solution will be accepted if the criterion represented
in (21) is satisfied. Except for this situation, an improved
objective function value is always accepted. We considered
different SA algorithm design parameters that are frequently
used in the literature [32], [33] and chose the ones that lead
to the best results during the preliminary tests. The best SA
parameter combination is 7 = 1, « = 0.01, 7p = 0.01,
k = 10N, where N indicates the total number of SBSs in
the PN.

6) COMPLEXITY COMPARISON BETWEEN SA AND ES

An ES algorithm would perform a complete space search
of all the possible configurations until the optimum con-
figuration is found. This may be suitable for functions of
few variables, but considering the cell switching and spec-
trum leasing problem, it would result in exponential com-
putational complexity of O(2"). Due to the computational
complexity of problems like this and other NP-hard prob-
lems, many optimization heuristics have been developed in
order to obtain optimal or approximate optimal solutions.
In addition, the solution times of heuristic approaches are
incomparably low compared to algorithms that try all possible
scenarios. Because, not all feasible solution combinations
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are considered in heuristic approaches. Heuristic approaches
work with the best solution-oriented search and they focus
on specific regions in the search space. Therefore, the com-
putational cost of heuristic approaches are very low compared
to ES, especially in large-scale cell switching problems. One
widely used technique is the SA algorithm, by which we
introduce a degree of stochasticity, potentially shifting from
an optimal to a sub-optimal solution, in an attempt to reduce
the complexity, escape local minima, and converge to a value
closer to the global optimum.

1,100

890 -2,500

SA Time (secs)

ES Time (secs

-o—-SA

|J & & Il Il Il -.-ES U
4 8§ 12 16 20 24 36 48 64
Number of SBSs

FIGURE 4. Time complexity comparison between ES and SA.

However, the time complexity of heuristic algorithms such
as the SA algorithm cannot be easily determined because
such algorithms do not guarantee to find the global optimal
solution within a certain time limit. Instead, determining the
total simulation run time of the algorithm can give us an
idea of the computational complexity of the algorithm. Fig. 4
shows the simulation run time comparison between ES and
the proposed SA algorithm. It can be clearly seen that the
simulation run time of the ES algorithm is very small when
the number of SBSs are less than 16. However, we notice a
huge leap in simulation time when the number of SBSs is
increased from 16 to 20 because the number of search spaces
of the ES increases exponentially with the number of SBSs.
This accounts for the very wide difference in the simulation
time that is observed when the number of SBSs are increased
to 20 compared to when they were 16. It should be noted that
we stopped the simulation at 20 SBSs for the ES algorithm
because of the limitation of our computer as it would take
days to complete the simulation when the number of SBSs
are increased to 24. The simulation time of the SA algorithm
is also very low until about 20 SBS when it starts to increases
with higher magnitudes. But this is much lesser than the
magnitude of simulation time increase that is observed with
the ES algorithm. The SA algorithm exhibits a polynomial
order of computation complexity because it does not have to
consider all the search spaces like the ES algorithm in order
to determine the optimal cell switching and spectrum leasing
strategy.
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ES algorithm searches all the neighborhood solutions
regardless of whether a solution vector yields worse results
in terms of the objective function. This situation causes an
unnecessary computational cost increase in the algorithm.
However, SA does not check every solution in the entire
solution space. While doing a local search in a solution space,
it looks at the solution regions adjacent to the best solution.
This is because the global optimum is likely to be close to
the local best solutions. As a result, SA’s superiority over
ES algorithm in terms of computational complexity is due
to its solution search strategy. Hence, the ES algorithm is
only suitable for small networks with few SBSs while the
SA algorithm can be applied even when number of SBSs are
very many.

VI. PERFORMANCE EVALUATION

The proposed cell switching and spectrum leasing frame-
work can be implemented in any network regardless of the
network size in terms of the number of MBSs involved.
Since the framework is implemented independently at each
MBS, which is responsible for controlling all the SBSs
under its coverage, the simulations are conducted for a single
MBS with multiple SBSs for the sake of brevity. Hence,
we need to develop one framework and implement it in all
the other MBS-SBSs configuration throughout the network.
The system configuration comprises the hardware, which
is a HP-TXHOCCYBDOHV desktop computer and has the
following specifications: The processor is Intel core 17-8700
@3.2 GHz, RAM of 16 GB, with Windows 10 Enterprise
operating system and 475 GB hard disk capacity. The soft-
ware employed is the Spyder version 4.0.1 which runs Python
version 3.7. The development environment that is utilized is
Anaconda because it has a complete suite for Python devel-
opment as well as that of other high-level languages. The PN,
SN, and SA algorithm parameters used in the simulations are
presented in Table 1.

TABLE 1. Simulation parameters.

Parameter Value

Bandwidth of MBS (MHz)

Bandwidth of SBSs, SN-BSs (MHz)
Number of RBs per MBS

Number of RBs per SBSs, SN-BSs

Px (MBS, RRH, micro, pico, femto) (W)
P, (MBS, RRH, micro, pico, femto) (W)
¢ (MBS, RRH, micro, pico, femto)

20
15,10, 5,3
100

75,50, 25, 15

20, 20, 6.3, 0.13, 0.05
130, 84, 56, 6.8, 4.8
4.7,2.8,2.6,4.0,8.0

P3g; (RRH, micro, pico, femto) (W) 56,39,4.3,2.9
Initial temperature, 7 1

Final temperature, Tr 0.01

Fixed spectrum price (per RB) £0.13

Fixed electricity price (per kWhr) £0.1293
Number of PN{\/FBS, SESS 1,12

Number of SN BSs 12

A. DATA SET AND PRE-PROCESSING

To compute the total revenue of the HetNet using (12), the
traffic demand of each BS in the PN (7) and SN (W) is
required. We leveraged the call detail record (CDR) data
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set of the city of Milan, Italy that was made available
by Telecom Italia [37]. In the data set, Milan city was
divided into 10,000 square grids with each having an area
of 235 x 235 square meters. In addition, the call, short-
message and Internet activities that were carried out in each
grid was recorded every 10 minutes over a period of two
months (November-December 2013). Although the activity
levels contained in the data set are without unit and no addi-
tional information was provided regarding how the data set
was processed, we decided to interpret the CDR of each grid
as the traffic loads as they signify the amount of interaction
between the users and the mobile network within the grid in
each time slot. However, during the data processing stage of
this work, we considered only the Internet activity level as the
traffic load for the PN since it was the most significant part
of the data set and also considering the fact that 5G networks
would be mainly Internet based. The Internet activity level of
two grids were selected at random to represent the traffic load
of the MBS while that of one grid was chosen for each SBS.
Then, the traffic loads were normalized separately according
to the capacity of each type of SBS. We assume that the
traffic demand of each BS in the SN is a fraction of the traffic
demand of the SBSs in the PN such that ¥ = gt where
is a variable between 0 and 1 (8 was chosen to be 0.7 in
this work). The traffic demand of the SN is shifted so that
its maximum traffic demand coincides with the period of the
day when the spectrum leasing price is minimum in order to
depict the DT case while for the NDT case, the traffic demand
remains intact.

B. BENCHMARKS

We compare the performance of the proposed method with
three benchmark methods namely: ES, A-type, and D-type
algorithms, which are briefly described in the following
paragraphs.

1) EXHAUSTIVE SEARCH (ES)

This method sequentially considers all the possible cell
switching and spectrum leasing combinations in order to
determine the optimal off/on switching policy that would
result in maximum revenue to the PN while ensuring that
the QoS of the network is maintained. Therefore, this meth-
ods is guaranteed to always find the optimal policy without
violating the QoS of the network. However, the computa-
tional complexity involved in sequentially searching through
all the possible combinations makes it unsuitable for online
implementation. The goal of any other algorithm is to closely
approximate the policy obtained from this approach, hence,
it is suitable as a benchmark for this problem.

2) SORTING-BASED ALGORITHMS

Two additional benchmark algorithms are developed using
the sorting approach which we have named A-type and and
D-type heuristic respectively. In the D-type heuristic, we first
evaluate a utility function, AV, which is the difference between
the traffic demand of the SN BSs and that of the PN BSs,
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i.e., N/ = W — 7. This utility function ' is important because
we are not only interested in switching off the SBSs with
low traffic demand, but also those whose associated SN BS
has high spectrum demand. It is necessary to satisfy both
conditions if the revenue of the PN is maximized because
both of them affects the total revenue in (10) that can be
generated by the PN. In addition, since the total revenue of
the PN is dependent on the amount of revenue that can be
obtained from energy savings and spectrum leasing, thus,
higher values of A" would result in greater revenue generation
due to higher contributions from both components. On the
other hand, lower values of A/ might result in lesser revenue
generation due to smaller contribution either from the energy
savings or spectrum leasing. After evaluating A/, the SBSs are
arranged in descending order according to the value of N
Then, the traffic load of the SBSs are sequential offloaded
to the MBS until the capacity of the MBS is reached. The
procedure for implementing A-type heuristic is similar to
that of D-type except that in A-type, the SBSs are sorted in
ascending order according to \V.

C. PERFORMANCE METRICS

The metrics that would be used in evaluating the performance
of the proposed and benchmark methods are briefly discussed
in this section.

1) TOTAL REVENUE

The goal of this work is to determine the maximum revenue
that can be obtained by the PN over a given period of time, T'.
As described in Section IV, this is obtained by combining
the revenue due to energy saving from cell switching and the
revenue obtained from leasing the spectrum to the SN. The
total revenue of the network can be obtained from (13).

2) AVERAGE NETWORK THROUGHPUT

The effect of the proposed framework on the QoS of the
network is evaluated using the network throughput metric.
Here, we consider the network throughput to be the traffic
demand that can be served by all the remaining BSs (both
MBS and active SBSs) after cell switching and spectrum leas-
ing operation has been executed. To estimate this throughput,
we assume that the activity level contained in the employed
data set are throughput demands (in Mbps) so that 7 can be
seen as the normalized throughput of each BS (i.e., MBS and
SBSs). Therefore, the average network throughput Onet(?)
can be obtained by aggregating the throughput demands of
all active SBSs and the MBS [16], such that:

Onetlt) = Qii() + Y Qij(), (22)
j=2
where Q(r) is the average received throughput from each BS
and can be expressed as:
Q@) = rm()Um(1), (23)

where rpy, is the average throughput that is allocated to each
user (assuming equal resource allocation) and Uy, is the total
number of users served by each BS at a given time ¢.
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D. RESULTS AND DISCUSSIONS

Fig. 5a shows the hourly total revenue obtained by the PN fol-
lowing the fixed electricity and spectrum pricing policy with
NDT spectrum demand using the proposed and benchmark
methods. In addition, the traffic load of the PN MBS, t'!,
is also presented. The first thing we observe from Fig. 5a is
that the revenue obtained from all methods follows a trend
that is opposite of that of the traffic demanded of the PN.
This is so because during the periods of the day where the
PN traffic is low, more SBSs can be switched off which
translates to more revenue generation from energy savings
and spectrum leasing. The opposite is the case when the
traffic of the PN is high. Second, the SA algorithm follows
ES almost exactly, since it is able to employ its mechanisms
such as feasibility check and neighbourhood structures to
determine the optimal cell switching and spectrum leasing
pattern, but with much lesser complexity.

Third, both the A-Type and D-type heuristic solutions
never outperform ES and SA algorithms because they also
respect the constraint of not exceeding the MBS capacity.
Even though they both respect the MBS capacity in order
to maintain the QoS of the network, they utility, N, used
in determining which BSs to switch off only considers the
difference in traffic demand between the PN and SN, but
is not able to distinguish between the various types of BSs
present. In this work, the PN and SN BSs have different
capacities and power consumption, as a result, switching
off a SBS with higher capacity and power consumption and
leasing its spectrum to the SN would result in higher revenue
than switching off one with a lower capacity. This limitation
accounts for the lesser revenue obtained from both the A-type
and D-type heuristics.

Another interesting point to discuss about the observations
in Fig. 5a is that the D-type heuristic mostly outperforms the
A-type heuristic because it switches off the SBS with highest
utility, A/, values first and this helps in the generation of
more revenue compared to A-type which does the opposite.
However, this performance difference is mostly observable
during the times of low traffic as there are more options and
the higher utility is able to find a better solution. For the
time when the network traffic is high, they start perform-
ing alike, since the number of cell switching and spectrum
leasing options becomes very low. Overall, the performance
difference between the D-type and A-type solutions is not
large, as the former outperforms the latter with a minimum
of 1% and a maximum of 29%. The last observation worth
discussing is that the SA solution mainly outperforms both
A-type and D-type solutions (by about 90% and 65% respec-
tively) during periods of high traffic. The reason for this is that
the number of cell switching and spectrum leasing options
becomes very few during this period, thereby making it very
difficult for them to find the best solution while the SA solu-
tion is carefully designed to be able to perform excellently
well even in such periods.

This is because the SA algorithm can search in different
regions of the solution space. This is due to the diversification
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FIGURE 5. The revenue obtained by the PN due to cell switching and
spectrum leasing from fixed pricing policy and dynamic pricing policy

(DT and NDT spectrum demand) for 12 SBSs over a 24 hour period. (a) The
left y-axis is the total revenue obtained from fixed pricing policy with NDT
spectrum demand while the right y-axis is the traffic load of the PN MBS.
(b) Total revenue from dynamic pricing policy with NDT spectrum demand.
(c) The left y-axis is the total revenue from dynamic pricing policy with DT
spectrum demand while the right y-axis is the traffic demand of the SN.

feature provided by the shaking procedure. SA performs a
local search at each temperature level and arrives at the best
solution (or approximate best) in a specified region of the
solution space. Then the shaking procedure is applied with

48312

temperature drop. Thus, in the next iterations, it compares the
local best solutions in different regions of the solution space
with the current best solution and searches up to the termina-
tion criterion. However, heuristic methods such as A-type and
D-type operate fixed (usually one or more feature-dependent
utility functions) rules. This causes heuristic methods to get
caught in the local best solution trap. In addition, the SA
algorithm includes different neighborhood search strategies.
These strategies provide more flexibility in local search and
for this they determine the probabilistic acceptance criteria
according to the temperature level.

Fig. 5b presents the total revenue obtained every hour by
the PN when the dynamic pricing policy with NDT spec-
trum demand is considered using the proposed and bench-
mark methods. In the dynamic pricing policy, the prices
of both electricity and spectrum vary at different times of
the day depending on the amount of spectrum or electricity
demanded. Similar to what was observed in Fig. 5a, the
pattern of the total revenue over the whole day is the inverse
of the traffic profile of the PN. Moreover, the revenue is
generally scaled down compared to Fig. 5a, and this is more
noticeable during periods of low traffic. This is because a
dynamic pricing policy is used, where the PN sometimes
needs to lease the spectrum for less and at those times it also
earns less from energy savings because the prices are lower.
The D-type heuristic also slightly outperforms the A-type
heuristics with almost the same percentage (1% to 29%)
as in Fig. 5a, due to the fact that higher utility values are
considered first during cell switching which helps in greater
revenue generation in the former compared to the latter.
The aforementioned confirms our previous argument on why
the performance of the two benchmark algorithms are sim-
ilar. The proposed SA algorithm also greatly outperforms
the A-type and D-type algorithms with a similar percentage
(90% and 65% respectively) as in Fig. 5a mostly during
the period of high traffic in the PN because there are lesser
cell switching and spectrum leasing options which make it
difficult for the benchmark solutions to make the optimum
decisions.

Another important point to note is that although the D-type
solution offers better results than A-type, these two algo-
rithms have similar working mechanisms as can be seen in
Fig. 5a and Fig. 5b. The D-type sorts the SBSs in descending
order of the value of the utility, AV, in order to determine the
SBSs to turn off and lease their spectrum to the secondary
network while the D-type type does the opposite. Heuristic
approaches such as A-Type and D-Type do not guarantee
an optimal solution. However, the solutions found by such
algorithms may converge to the optimal or approximate opti-
mal. Heuristic algorithms have a probability of being optimal
if the local search region is close to the global optimum in
the solution space. This is also the case at the 24th hour.
The results of the numerical experiments demonstrate that the
proposed A-type and D-type benchmark methods obtain near
optimal solutions at the 24th hour. Another reason for this
may be that there are not many feasible solution alternatives
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in the solution space at this period. In Fig. Sa, at the 24th hour,
the results of the D-type, A-type, SA and ES algorithms are
£320, £347, £369 and £369, respectively. Similarly, in Fig. 5b,
the revenue values of £304, £329, £350 and £350 are obtained
with D-type, A-type, SA and ES algorithms, respectively.
However, it should be noted that benchmark methods still
could not obtain the optimal solution. In cases where the
problem size is small, it is natural for heuristic algorithms
to reach optimal results. On the other hand, the larger the
problem size, the less likely it is for them to converge to the
optimal solution.

Fig. 5c presents the total revenue obtained by the PN when
dynamic pricing policy with DT spectrum demand is consid-
ered. In this case, the SN decides to delay its data transmission
to periods when the spectrum price is low (which also coin-
cides with period of low traffic demand in the PN) so that they
can access more spectrum at a cheaper rate. It can be observed
that there is an overall increase in the total revenue obtained
by the PN in Fig. 5c, compared to Fig. 5a and Fig. 5b: the
total revenue obtained from the proposed SA framework is
about 19% and 16% higher than that obtained in the Fig. 5a
and Fig. 5b, also it is evidenced by the peak value of the
revenue of Fig. Sc being about £183 and £123 higher than that
in Fig. 5a and Fig. 5b respectively. This is because in dynamic
pricing policy with DT spectrum demand, the SN can lease
more spectrum as the periods of low traffic in the PN matches
the period of high spectrum demand by the SN although the
prices are lower. This statement is validated by comparing
the traffic demand of the PN in Fig. 5a with the DT spectrum
demand in Fig. 5c; i.e., periods of lowest traffic demand in the
PN (e.g., in the first quarter of the day where the traffic load
is 14%) coincides with periods of highest spectrum demand
from the SN (about 28%) so that even though the spectrum
prices are lower at these times as seen in Fig. 2, the large
amount of spectrum demanded by the SN causes the total
revenue in this scenario to be highest.

The performance difference between the D-type and
A-type heuristics is more significant in the dynamic pricing
policy with DT spectrum demand scenario compared to both
the fixed and dynamic pricing policy with NDT scenarios in
Fig. 5a and Fig. 5b with values ranging from 5.3% to 86%.
The reason for the wider performance gap is that the NDT
spectrum demand is responsible for preventing the D-type
heuristic from significantly outperforming A-type heuristic.
This phenomenon originates from the fact that in the fixed
and dynamic pricing policy with NDT spectrum demand,
the trend of the SN traffic demand follows the PN traffic
demand, hence the margin in the values of A is smaller in
the both cases compared to the dynamic pricing policy with
DT spectrum demand, thus accounting for the lesser total rev-
enue results of A-type and D-type heuristics in the previous
scenarios. On the other hand, for the dynamic pricing policy
with DT spectrum demand (Fig. 5¢), since the traffic demand
of the SN is the inverse of the traffic load of the PN, the
difference in the values of A\ at different time slots is higher
and since D-type gives preference to SBSs with higher N/
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during cell switching and spectrum leasing, more revenue
is generated by the D-type compared to A-type, hence the
reason for the wider margin in the revenue generated in the
former compared to the latter. In addition, the SA algorithm
greatly outperforms the A-type and D-type benchmarks in
terms of revenue generation by a maximum of 124% and 95%
respectively, during periods of high traffic demand in the PN.
These values are 34% and 31% higher than its performance
against the two benchmarks in both the fixed and dynamic
pricing with NDT spectrum demand in Fig. 5a and Fig. 5b
respectively. The reason is that the SA algorithm is able to
take advantage of the available options to switch off SBSs
during period of high traffic which coincides with low spec-
trum demand by the SN in order to generate much higher
revenue than the A-type and D-type algorithms.

It can also be observed that the results of D-type and A-type
methods are almost the same in a few instances with the
A-type even slightly surpassing that of the D-type at some
points. For the NDT cases (with both fixed and dynamic
pricing policies), Fig. 5a and Fig. 5b, this occurs when both
the data traffic of the PN and the spectrum demand of the
SN are high. This is due to the fact that the difference in the
values of the utility in this period is very small, thus, there
is very little revenue from spectrum leasing as the SN is not
able to access spectrum due to lack of dormant spectrum from
the PN. Also, very little revenue can be obtained from energy
saving since only very few SBSs can be turned off due to very
high traffic load in the PN.

For the DT case with dynamic pricing policy, Fig. Sc,
the similarity in the results of both the D-type and A-type
heuristics occurs at 16hr-21hr, when the traffic demand of
the PN is very high and the spectrum demand of the SN is
very low. At these periods, both benchmarks begin to function
alike because even though there is a large difference in the
value of the utility function, there is very little opportunity
to switch off the SBSs due to high traffic in the PN. Hence,
there is an insignificant difference in the performance of both
benchmarks as relatively less revenue can be obtained during
this period. The traffic load of the PN is also high from the
8th to 10th hour, even though it is not as high as that of 16th to
21st hour. However, the spectrum demand of the SN is quite
high from the 8th to 10th hour but very low from the 16th to
21sthour. As aresult, the D-type solution clearly outperforms
the A-type solution from the 8th to 10th hour because it
switches off SBSs with the highest utility first, which makes
it able to take advantage of the available spectrum (due to
not so high traffic in the PN) to generate higher revenue than
the A-type solution which switches off the SBSs with lowest
utility first.

Fig. 6a shows the total amount spent by the SN for spec-
trum purchase as well as the total quantity of spectrum
obtained for a 24 hours period using the proposed SA-based
framework and ES while Fig. 6b shows the unit cost of the
spectrum (i.e., price per RB) for both DT and NDT spectrum
demand using both algorithms. From Fig. 6a we can see that
the total amount expended by the SN on spectrum purchase as
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FIGURE 6. Total expenditure and quantity of spectrum purchased by SN
and the average unit cost of the spectrum for 12 SBSs.

well as the quantity of spectrum purchased are significantly
higher in DT than in the NDT scenario with a percentage
difference of 19% and 21% respectively. The rationale behind
this is that most of the periods when the electricity and
spectrum prices are low are also the periods when the traffic
loads of the MBS and SBSs are low. As such, more SBSs
can be turned off in order to ensure that more spectrum is
available for SN to purchase during these periods. Although
more spectrum is available to the SN for both DT and NDT
spectrum leasing scenarios with the dynamic pricing polices
during periods of low traffic load in the PN, the difference
in the volume of spectrum demanded in both cases is what
accounts for the difference in the amount expended on spec-
trum purchase in Fig. 6a.

In the DT case, the data to be transmitted is delayed
until when the spectrum and electricity prices are low, which
means that the SN is able to take advantage of more spectrum
available in order to offer more data services to it users. How-
ever, for the NDT case, even though more spectrum is avail-
able during periods of low prices, the spectrum demanded
by the SN during this period is also low, so lesser revenue
is generated and fewer data services can be offered in this
scenario. For example, in the first quarter of the day where the
traffic load of the PN is the lowest (about 14%), the revenue
generated by the dynamic pricing policy with DT spectrum
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demand is 47% higher than that obtained from the dynamic
spectrum demand with NDT spectrum demand because more
spectrum is available for leasing as well as a corresponding
high spectrum demand from the SN. However, the availability
of more spectrum does not correspond with high spectrum
demand in the NDT case thereby leading to a lesser revenue
generation. Fig. 6a also reveals that the total expenditure
and quantity of spectrum purchased using SA algorithm is
almost the same as that of ES algorithm which validates the
excellent performance of the SA algorithm earlier discussed
under Fig. 5a, Fig. 5b and Fig. 5c.

The purchase of more spectrum by the SN in the DT case
compared to the NDT case means that the SN incurs more
expenses during DT data transmission compared to NDT data
transmission. Therefore, the DT case is more beneficial to
the PN because it results in more total revenue. It is also
beneficial to the SN because it pays less for a unit of spectrum
even though its total expenditures increases. Hence, where
possible (for suitable applications), we can conclude that
the shift in the SN traffic demand would be recommended.
However, the kind of shift in the data transmission time of the
SN does not have to be implemented in exactly the same way
as in this work, instead, depending on the type of application,
the latency requirements are evaluated and the appropriate
shifts in the traffic is implemented accordingly, making the
DT spectrum demand quite flexible and dynamic. Although
this traffic shift may not always coincide with the cheapest
time but to a cheaper time. In summary, DT spectrum demand
will make the business of both PNs and SNs more sustainable
because it is more profitable for both parties.

A major constraint in this work is to ensure that the QoS
of the network is maintained by ensuring that traffic served
by the network remains constant even when some SBSs are
switched off. The PN is supposed to respect the capacity
constraints of the MBS before switching off any SBS. From
the simulations, we observed that both the proposed and
benchmark solutions are able to maintain the QoS of the
PN. The SA algorithm uses the feasibility check in Algo-
rithm 2 to ensure that only solutions that do not exceed
the capacity of the MBS are considered. The ES algorithm
follows similar procedure by guaranteeing that solutions that
exceeds the MBS capacity are excluded when selecting the
optimal cell switching and spectrum leasing strategy. Both the
A-type and D-type algorithms are implemented in such a way
that the traffic load of the SBSs are offloaded sequentially
(in ascending and descending order respectively) and once
the offloading capacity of the MBS is attained, no further
SBS is turned off. By so doing, they both guarantee that
the throughput of the network is maintained. It is also wor-
thy of note that irrespective of the pricing model used for
electricity and spectrum (fixed or dynamic) and the type of
spectrum demanded by the SN (DT or NDT), the average
throughput of the PN remains the same. This is because both
the proposed and benchmark algorithms take the traffic-QoS
constraint (14) into consideration thereby ensuring that the
QoS of the network is not violated.

VOLUME 10, 2022



A. I. Abubakar et al.: Revenue Maximization Through Cell Switching and Spectrum Leasing in 5G HetNets

IEEE Access

In this study, SA, which is one of the meta-heuristic algo-
rithms, is applied to solve the cell switching and spectrum
leasing problem. Meta-heuristic algorithms such as SA may
differ from each other in terms of various prominent features.
In other words, these methods have various advantages and
disadvantages. Although the SA algorithm is one of the most
important meta-heuristic algorithms, it is insufficient when
compared to modern meta-heuristic algorithms in terms of
some features such as convergence speed and parallel compu-
tation. Thus, the SA algorithm can be hybridized with differ-
ent meta-heuristics in order to perform parallel computation.
In addition, the SA algorithm is a no memory class algorithm
that offers a single solution. Memory-based meta-heuristic
algorithms such as genetic algorithm, particle swarm opti-
mization can be applied to the current problem to present
a comparative performance test study. As another option,
an adaptive algorithmic structure can be presented to improve
the performance of the SA algorithm.

VIl. CONCLUSION

In this paper, we considered the problem of revenue maxi-
mization through cell switching and spectrum leasing in order
to maximize the revenue of the PN, which comprises a HetNet
with different types of SBSs while the SN comprises SN BSs.
An SA algorithm based solution was proposed to determine
the optimal cell switching and spectrum leasing strategy that
would result in maximum revenue for the PN while ensuring
that the QoS of the network is maintained. We considered
fixed and dynamic pricing policy for both electricity and
spectrum. Under the dynamic pricing policy, both DT and
NDT spectrum demand scenarios were considered in order to
determine the effect of these policies on the revenue of the PN
as well as the expenditure and amount of service demands that
can be met by the SN. The simulation results show that the
PN is able to obtain more revenue using the dynamic pricing
policy with DT spectrum demand. Moreover, in the DT spec-
trum demand scenario, the SN is able to lease more spectrum
when the spectrum prices are low, which enables it to serve
more data services at a reduced average unit price. Thus,
making this scenario more profitable to the SN compared
to the fixed or dynamic pricing policy with NDT spectrum
demand scenarios. Overall, the performance of the proposed
method is almost the same as that of the ES algorithm with
lesser time complexity.

This study has some limitations. First, we assumed that
there is only one secondary network (SN) base station (BS)
under the coverage of each primary network (PN) BS; how-
ever, in reality, there could be multiple SN BSs trying to
lease the spectrum simultaneously. Furthermore, the current
work assumes a terrestrial type cellular network only, but the
unmanned aerial vehicle (UAV) mounted BSs (UAV BSs)
have been quite popular, and their integration to the current
problem was not considered in this study. In this regard,
in future, we intend to investigate the scenario where more
than one SN BSs are competing to lease the spectrum of each
PN BSs. In this case, the optimization problem becomes more
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complex as the PN would have to decide which of the SN
BSs to lease the available spectrum including the possibility
of leasing the spectrum to more than one SN BSs at the
same time. The solution to this problem would required the
extension of the current cell switching and spectrum leasing
framework to include sharing of the available spectrum and
matching it with the required number of SN BSs. This would
also require the development of an additional model for spec-
trum sharing using matching algorithms. We also intend to
employ UAV mounted BSs (UAV BSs) to provide additional
offloading capacity for the PN BSs, so that the spectrum of
PN BSs can be evacuated for SN BSs, to enable delay and
rate sensitive users transmit their data during periods of high
traffic demand in the PN.
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