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ABSTRACT It is crucial to know the permittivity of dielectric materials used in radio frequency (RF)
components and devices because their operation frequency and loss characteristics are significantly affected
by the permittivity. In this study, we propose a permittivity characterization technique based on a deep
neural network (DNN). The latter was trained using data obtained from full-wave electromagnetic simulation
software. With the DNN trained with more than 95% testing accuracy, the measured complex transmission
coefficient of the material under test (MUT) was assigned as an input to the DNN model, and the complex
permittivity of the MUT was retrieved at the output. The proposed technique was validated by measuring
FR-4 epoxy resin substrates of different thicknesses. The results obtained with the DNNmodel showed good
agreement with each other, with an error of less than 1.2% for the relative permittivity value over a broad
frequency range of 1 – 10 GHz. We also compared the results with those obtained from a conventional
permittivity characterization technique based on analytical solutions to highlight the effectiveness of the
proposed method.

INDEX TERMS Material characterization method, dielectric permittivity, relative permittivity, loss tangent,
deep neural network.

I. INTRODUCTION
The permittivity indicates the amount of dipolar polar-
ization caused by the excitation of electric fields on the
dielectric. The permittivity can be expressed as a complex
number [1], [2]

ε∗ = ε0(ε′r − jε
′′
r ) = ε0ε

′
r(1− jtanδ), (1)

where j =
√
−1, ε0 is the permittivity in vacuum, ε′r is the

relative permittivity, and tanδ is the loss tangent. The latter is
widely used by engineers and scientists because it indicates
the amount of friction loss generated when a dielectric is
exposed to high-frequency electromagnetic (EM) waves. For
radio frequency (RF) or microwave engineering, ε′r and tanδ
of a dielectric used for implementing an electric circuit, such
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as a substrate material of a printed circuit board (PCB), must
be known because the operation frequency and loss are highly
affected by these two properties. Therefore, an effective and
accurate technique for measuring the permittivity of a mate-
rial at high frequencies is required.

Existing permittivity measurement techniques can be cate-
gorized into three types: transmission and reflection (T/R),
free-space, and resonant [3]. The resonant method is the
most accurate technique, but measurement is only available
around the resonant frequency of the test apparatus or its har-
monic frequencies [4], [5]. The free-space method is a non-
destructive technique in which a material under test (MUT)
is placed in air and illuminated by broadband EM waves
from a focused horn antenna pair [3], [6]. However, the
required MUT size and distance from horn antennas, which
are proportional to the wavelength, can be extremely large
at low frequencies. For instance, at 1 GHz, a distance of
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6 m is required between two horns for an MUT with an area
of 30 cm × 30 cm.

The T/R method [7]–[13] uses guided waves along a
transmission line (Tx-line) instead of waves radiating from
antennas, as in the free-space method. The MUT is inserted
into or placed on a Tx-line, and then the S-parameters, such
as the reflection (S11) and/or transmission (S21) coefficients,
are measured. Subsequently, ε′r and tanδ are retrieved from
the S-parameters using the Nicolson Ross-Weir (NRW) equa-
tion [14], [15]. This closed-form equation assumes ideal
transverse electromagnetic (TEM) wave propagation along
the Tx-line. However, in the real world, no ideal TEM
wave exists; thus, the quasi-TEM wave approximation was
applied. Broadband quasi-TEM Tx-lines, such as coaxial
cables or planar microstrip lines, are often used as test fix-
tures with moderate measurement accuracy. Nevertheless,
the NRW equation cannot be used if the quasi-TEM con-
dition is not satisfied, for example, in the case in which
MUT partially fills the cross-section of a test fixture [14].
Additionally, the extraction of permittivity from the mea-
sured S-parameters information using closed-form equations
assume several approximations such as dominant mode only
propagation, negligible conduction loss and fringing effect,
etc. This will significantly affect the extracted result accuracy.

To resolve this, a numerical technique (e.g., Newton’s
method [16], Monte Carlo method [17], surrogate-based
method [18], and iterative comparison method [19]) can
be used to retrieve the dielectric properties instead of the
analytical NRW equation. However, those methods become
inapplicable when applying with a large amount of data or
insufficient input data will cause themodel (e.g., Monte Carlo
method) to perform quite poorly in the retrieving outputs.
Gang et al. [20] has stated the limitations of inaccurately
extracted dielectric permittivity results from these conven-
tional methods based on related electromagnetic parameters
using a linear or polynomial fitting. It is worth mentioning
that other alternative machine learning (ML) methods such
as generalized regression neural network (GRNN), support
vector regression machine (SVRM), etc., have also been
studied and proved to work more efficiently for a wide area
of applications. However, those aforementioned algorithms
are more popularly applied for modeling microwave struc-
tures (e.g., antennas) and design parameter optimizations
[21], [22]. To the best knowledge of the authors, there has
not been much research done so far into applying those
algorithms for material characterization purposes.

From the existing neural network-based extraction meth-
ods for the complex permittivity that have been studied, there
are some characterization limitations such as frequency of
interests, characterizing properties, model complexity, etc.
Qian et al. [23] provided a simple and convenient extraction
method for retrieving the ε′r using reflection coefficient data
assisted by an artificial neural network (ANN) based algo-
rithm, and proved to work effectively with less than 5% error
for several organic solvents. However, the method only pro-
vides measurement results at a low frequency of 2.45 GHz.

Panda et al. [24] had also used the ANN-based system with a
coplanar waveguide (CPW) sensor to determine both the rel-
ative permittivity and loss tangent of several solid dielectric
materials in a broad frequency range from 1 to 6 GHz. Addi-
tionally, these artificial intelligence (AI) based algorithms
also proved to work effectively for the material characteri-
zation at sub-THz frequencies as has been illustrated in [25].
It should be emphasized that if multiple parameters are con-
sidered, e.g. the amplitude, phase, and other S-parameter
data, it could significantly improve the measuring of com-
plex dielectric permittivity results. Therefore, a deep neural
network (DNN) algorithm, which is developed with several
hidden layers of the single perceptron ANN model, can be
one promising technique for handling such cases [26].

In this paper, we propose a novel T/R method based on a
deep neural network (DNN) technique to retrieve broadband
ε′r and tanδ values from themeasured S-parameters. DNNwas
found to be the most efficient candidate thanks to its brain-
inspired neural network among several AI-supported algo-
rithms [20]–[27]. It can efficiently provide a global minimum
of an error function based on a model trained by a massive
amount of data. In this work, the training data were iteratively
collected by modeling the actual measurement setup in full-
wave simulation software (Ansys HFSS).

Themeasurement fixture used in this study was a grounded
coplanar waveguide (GCPW), which supports a wide band-
width of 1 – 10GHz. Thus, a planarMUT can be conveniently
placed on the GCPW. The effectiveness of the proposed
method was validated by measuring three planar printed
circuit board (PCB) substrates with different thicknesses.
In Section 2, the design of the GCPW fixture and overall
measurement setup are described. Section 3 presents details
of the permittivity retrieval process using a DNN and its
parameters. Section 4 presents permittivity measurements of
the FR-4 epoxy resin substrates using the proposed technique.

II. MEASUREMENT SET-UP
A planar Tx-line is widely used as a measurement fixture
for RF material characterization because it allows quasi-
TEM wave propagation over a broad bandwidth. The MUT
can be conveniently placed on a half-opened planar struc-
ture without any exhaustive and destructive sample prepara-
tion process, which is usually required for closed structure
Tx-lines such as coaxial lines or waveguides [1]. Fig. 1(a)
shows the cross-section of the GCPW planar Tx-line and the
electric (E) and magnetic (H) fields generated at the slots.
Compared to ordinary CPW without bottom ground, GCPW
confines strong E-fields at the slots owing to the metallic
via truncation to the ground [19], [28]. These strong E-fields
interact with theMUT at the top, whereas the electromagnetic
waves propagate along the length of the Tx-line. The GCPW
structure was optimized using full-wave simulation software
(Ansys HFSS), and its final design parameters are listed in 1.
Fig. 1(b) shows the fabricated GCPW with the MUT on top.
The PCB substrate of GCPW is a 1.6 mm thick FR-4 epoxy
resin. The 3.5mmSubMiniature versionA (SMA) connectors
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TABLE 1. Design parameters of GCPW.

TABLE 2. Hyper-parameter configurations of the proposed DNN model.

TABLE 3. Performance comparison of the proposed DNN method.

were soldered at the ends of the GCPW and connected to a
network analyzer (Anritsu MS2028C) for S21 measurements,
as shown in Fig. 2. Notably, the well-known 2-port short-
open-load-through (SOLT) calibration [29] was performed
prior to measuring the transmission coefficient (S21).

As mentioned in the introduction, one way to retrieve the
dielectric properties, that is, ε′r and tanδ, from the measured
S21 is to use an analytical method based on closed-form equa-
tions. For GCPWs whose cross-section consists of three dif-
ferent materials (i.e., air, substrate, and MUT), a closed-form
equation based on elliptical integrationmay be used [30]–[33]
as long as the quasi-TEM wave propagation condition holds.
However, we found non-negligible errors in the retrieved

FIGURE 1. Design of the GCPW measurement fixture: (a) Cross-sectional
view of the GCPW, and (b) Fabricated GCPW with MUT placed on top.

FIGURE 2. Measurement set-up: GCPW connected to a network analyzer.

ε′r and tanδ values when a closed-form equation was used.
In contrast, the ε′r and tanδ, that were derived from the pro-
posed DNNmethod, were close to the known references. This
comparison is presented and discussed in Section 4.

III. PERMITTIVITY RETRIEVAL PROCESS BASED ON DNN
The permittivity extraction based on S-parameter information
requires a rigorous expression and mathematical formula-
tion of the measurement fixture and can sometimes lead
to convergence problems [24]. To alleviate this problem,
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FIGURE 3. Flow chart of the proposed permittivity characterization
method.

FIGURE 4. Prediction accuracy of the ε′
r of 1.6 mm thick FR-4 regarding

different amounts of input training data from 130, 70, and 50 simulations.

many intelligent computational algorithms have been pro-
posed and proved to work efficiently in several fields of study.
More specifically, the recent AI-brained-inspired algorithm
(i.e., neural network) has also played a significant role in
the field of regression studies [21]. The general feedforward
neural network model involved three layers including input,
hidden, and output. It can be extended to a more complex
model by adding several hidden layers, which is commonly
called a deep neural network. The learning and training pro-
cess depends significantly on the amount of sufficient input
datasets and other predefined hyper-parameters (e.g., learn-
ing rate, amount of perceptron at each hidden layer, etc.)
of the developed model. It should be noted that there will
always be an expense of computational resources (i.e., model
complexity) and achievable sufficiency model, and these
should be defined appropriately based on each developed
application. In our study, a fully connected pyramid-like
structure has been proposed with some predefined threshold
of 95% testing accuracy. Fig. 3 shows an overall flow chart
of the permittivity retrieval process based on DNN. The
GCPW and MUT are modeled in HFSS as in the actual S21
measurement. Subsequently, a number of simulated S21 data

(approximately 130 simulations) are collected by varying ε′r
and tanδ in the simulation set-up. In the meanwhile, a macro
script was implemented and used to efficiently accumulate
and automatically classify the vast amount of S21 data. The
collected S21 simulations are used to train the DNN algo-
rithm. The S21 measurement data is inputted to the trained
DNN and the ε′r and tanδ matched to the measurement data
are retrieved. The hyper-parameter configurations of the pro-
posed DNN models for extracting ε′r and tanδ are listed in 2.
A total amount of 11830 datasets were generated considering
the lower and upper constraints of ε′r and tanδ in the frequency
range of interest from 1 to 10 GHz. These datasets were split
into training and testing data by a defined training ratio of
0.85 and 0.90 for ε′r and tanδ training models, respectively.

The hyper-parameter values for the DNNmodel were opti-
mized until the training accuracy is at a satisfactory level
(i.e. 99% for the relative permittivity and 94% for the loss
tangent). Parametric studies were performed to find the opti-
mal model between several critical parameters including, the
training accuracy, the hyper-parameters setting, the amount
of input/output data, time consumption, number of hidden
layers, etc. For instance, different amounts of training inputs
have been studied to find the most suitable one. With an opti-
mal number of hidden layers, we predicted the relative per-
mittivity of a 1.6mm thick FR-4 substrate with three collected
datasets from 130, 70, and 50 simulations. The predicted
results were obtained as shown in Fig. 4.We observed that the
choice of prediction accuracy is significantly affected by the
number of datasets used. The appropriate accuracy threshold
can be determined based on the given task.

Fig. 5 shows a schematic of the DNN model. The input
consists of three columns: frequency, real part of S21, and
imaginary part of S21. The outputs were ε′r and tanδ There
were 8-hidden layers between the input and the output. Each
hidden layer contains a hypothesis obtained by weighting
and biasing the data of the previous layer based on the
weighted-sum method [27]. The mean squared error (MSE)
is used as a cost function to monitor the difference between
the actual values and predicted values. The cost function
is updated using the Adam optimizer [34], which is inher-
ently adapted with the backpropagation algorithm to provide
suitable updated weights and bias values. A scaled expo-
nential linear unit (SELUs) activation function is used to
prevent backpropagation from the vanishing gradient prob-
lem, in which the weight is not adjusted and results in a
poor training model [35]. This update ceases when the dif-
ference in the cost function is less than a defined threshold
that complies with the well-trained DNN model. The DNN
algorithm is written in Python and is associated with useful
functions from deep learning libraries such as TensorFlow for
variable declaration, NumPy for mathematical operation, and
ScikitLearn for data splitting.

IV. RESULTS AND DISCUSSION
To validate the proposed technique, we measured ε′r and
tanδ of a known material. FR-4 epoxy resin substrates with
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FIGURE 5. Schematic of 8-layer DNN training algorithm where Hn is the model hypothesis, and Wn and bn are weighting and biasing
values, respectively, at each hidden layer.

FIGURE 6. Training and testing accuracies versus number of epochs of
proposed DNN model: (a) for relative permittivity prediction, and
(b) for loss tangent prediction.

three different thicknesses (0.6 mm, 1.0 mm, and 1.6 mm)
were prepared and placed on the GCPW one by one for
S21 measurements. From this experiment, we expected to

FIGURE 7. Retrieved permittivity values of 1.6 mm thick FR-4 substrate
from 1 to 10 GHz by the proposed DNN method, and its comparison with
the analytical method: (a) relative permittivity, and (b) loss tangent.

retrieve the same ε′r and tanδ values from the measured S21s,
despite the thickness differences. It is worth noting that full-
wave simulation data had to be collected from three different
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FIGURE 8. Retrieved permittivity values of 1.0 mm thick FR-4 substrate
from 1 to 10 GHz by the proposed DNN method, and its comparison with
the analytical method: (a) relative permittivity, and (b) loss tangent.

simulation models, while one identical DNNmodel for ε′r and
tanδ retrieval was used for all experiments. Thus, once the
DNN model is successfully trained, it can be used in other
experiments.

Fig. 6 shows the training and testing accuracies versus
the number of epochs (i.e., the number of iterations of the
algorithm) for the proposed DNNmodel. Training and testing
accuracies were obtained by applying the DNN model to
the training and testing data. The latter is different from the
training data and is, therefore, never seen before from the
DNN model viewpoint. Both Fig. 6(a) and Fig. 6(b) showed
that the training and testing accuracies increased as the
number of epochs increased, and they agreed well with
each other. In Fig. 6(a), ε′r prediction attains 99% accuracy
with 56,000 epochs, whereas tanδ prediction, in Fig. 6(b),
eventually reaches 94% accuracy with a larger number of
500,000 epochs. From this, it is expected that the retrieved
ε′r has higher accuracy than the tanδ at the end. This also
corresponds to a higher error in tanδ characterization for a
low-loss material when the T/R permittivity measurement
method was used [36].

The trained DNN model was later used to retrieve the
dielectric properties of a known FR-4 substrate with three
different thicknesses. A broadband measurement of S21

FIGURE 9. Retrieved permittivity values of 0.6 mm thick FR-4 substrate
from 1 to 10 GHz by the proposed DNN method, and its comparison with
the analytical method: (a) relative permittivity, and (b) loss tangent.

from 1 to 10 GHz was performed for each substrate thickness
of 1.6 mm, 1.0 mm, and 0.6 mm, as depicted in Fig. 2. Their
ε′r and tanδ values were subsequently retrieved, and each
of the above-mentioned thickness’s results were illustrated
in Fig. 7, Fig. 8, and Fig. 9, respectively. As shown, they
are similar to the known properties of FR-4: ε′r = 4.3, and
tanδ = 0.025 [24] over a broad frequency range. The max-
imum errors from the known properties were 1.2% for ε′r
and 20% for tanδ. Furthermore, similar results for different
sample thicknesses have also demonstrated the validity of the
proposed technique. We also compared the ε′r and tanδ results
with those obtained from an analytical method [31], which is
derived specifically based on our proposed GCPW Tx-line
structure and MUT conditions (e.g., height, length). It should
be noticed that the analytical extraction technique with a
multilayer coplanar structure relies on measuring the trans-
mission coefficient of the loaded material (GCPW Tx-line
with MUT) and the unloaded material (standalone GCPW
Tx-line), and employed the conformal mapping technique to
extract the permittivity of the MUT. This technique is based
on a closed-form equation, which limits the accuracy of the
extracted results, and its deriving process is briefly explained
in the appendix section.
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A comparison of ε′r and tanδ are shown in Fig. 7, Fig. 8,
and Fig. 9 in its corresponding sub-figure (a) and (b) for
the three thicknesses, respectively. As observed, the results
from the analytical solution are different from the known
values. The errors were 39.6% for ε′r and 4.4% for tanδ
even though the calculation was performed correctly. A large
difference is observed in the extracted values for the fre-
quency range in question, which is an unexpected result for
the nondispersive FR-4 substrate. These erroneous results
were due to the invalidity of maintaining the quasi-TEM
conditions required for the analytical method. 3 highlights
the performance comparison of the proposed method and its
related counterparts for material characterization in terms of
model complexity, frequency ranges, extracted parameters,
and accuracy.

V. CONCLUSION
A material characterization technique based on a deep neural
network (DNN) was proposed to determine the permittiv-
ity of a dielectric material, namely, the relative permittivity
and loss tangent. The technique utilizes several simulation
datasets that are automatically generated from full-wave elec-
tromagnetic simulator (HFSS) to be trained by our in-house
developed DNNmodel. We performed optimization to obtain
an optimum model for the relative permittivity and loss tan-
gent, respectively. The proposed technique was validated by
measuring three thicknesses of FR-4 PCB substrates, and the
results agreedwell with each other. Furthermore, we provided
a comparison between our proposed DNN method and its
related analytical method. The proposed method based on the
DNN technique provides broadband characterization capabil-
ity from 1 to 10 GHz with moderate accuracy. It is worth
noting that the proposed technique is applicable to charac-
terize materials other than FR-4 based on the S-parameters
measured using any Tx-line structures other than GCPW as
long as the full-wave simulation data for training is properly
predefined and collected.

APPENDIX
The section below shows the analytical extraction technique
for retrieving the permittivity of the MUT with a multi-
layer coplanar structure, which is involved with S21 data of
the loaded and unloaded MUT on the coplanar structure.
Fig. 10 shows the measurement configuration of the analyt-
ical method and several involved parameters in determining
the dielectric permittivity of the MUT. The derivation pro-
cedure takes into consideration the propagation constant
between the loaded and unloaded MUTs [31], which is
expressed in (2). The effective permittivity of the planar
structure can be obtained from the complete elliptical integral
of the first kind, K (a0)/K (a′0), as expressed in (3) and (4) for
the unloaded and loaded MUTs, respectively.

S21Loaded
S21Unloaded

= e−(γL−γU) = ej
2π
c fl(
√
εeff_U−

√
εeff_L) (2)

FIGURE 10. Related parameters involved in the analytical extraction
technique for a multi-layer Tx-line structure, where h is the height of the
substrate, εr is the permittivity and a is the moduli variable.

εeff_U=
1+ Aεr1
1+ εr1

(3)

εeff_L=
2ε0(B+(εr1−1)

K (a1)
K (a′1)
+(εr2 − 1)K (a2)

K (a′2)
)

2ε0B
(4)

where,

A =
K (a0)
K (a′0)

K (a1)
K (a′1)

B =
K (a0)
K (a′0)

+
K (a1)
K (a′1)

The closed-form expression of the elliptical integral of the
first type is used to determine the moduli variable ‘‘an’’ and
its complementary moduli ‘‘a′n’’, where their values can be
obtained as in [30] and [31]. Finally, we obtained the com-
plex permittivity of the MUT by substituting all the defined
parameters in (5).

εr2 = {
AC2
− (A+ (εr1 − 1)K (a1)

K (a′1)
)

K (a2)
K (a′2)

} − 1 (5)

where,

C =
√
εeff_U −

cln( S21Loaded
S21Unloaded

)

2πfl
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