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ABSTRACT Large Scale Multi-user MIMO (LS-MU-MIMO) is a promising technology for the fifth-
generation (5G) and beyond wireless systems. It offers several magnitudes of improvement in data rates and
spectral efficiency (SE) due to its ability to suppress the interference and to have the properties of channel
hardening and favourable propagation. In its conventional cellular paradigm, a large number of co-located
antennas are deployed at the Base Station (BS) to serve a smaller number of user terminals (UTs). In order
to deal with the inter-cell interferences more efficiently to achieve higher SE, a Cell-Free paradigm was
proposed. Previous studies, which compare the two network deployments, relied on idealized assumptions,
such as perfect channel state information, uncorrelated channels, and single-cell processing analysis-based,
to name a few. This paper intends to bring further understanding of these two paradigms by examining
the potential benefits of each paradigm in more realistic scenarios. Specifically, the influence of channel
correlation on the achieved performance and network density in dense urban scenarios is investigated.
Here, the performance of a Cell-Free network versus a traditional Co-located Cellular network structure has
been compared in a more realistic setting. The comparison is carried out in different scenarios, taking into
consideration the dense urban scenario, which supports low-to-moderate mobility and channel dispersion.
First, we study the system performance gain in terms of Per-Terminal SE for different ratios of Antenna-
UT and pilot scalers. Next, the Area-SE, defined as the sum SE of all UTs per unit area, is considered for
different values of network density. Then, the channel estimation accuracy for both network deployments
is compared, and its impact on the system performance as the Antenna-UT ratio increases is presented.
Further, the impact of the spatially correlated channels is investigated in both network configurations. Finally,
fronthaul requirements and distributed implementation in Cell-Free system deployment are discussed.
Numerical simulations have been performed to investigate the performance gap between the two network
deployments. Considering a cell-free system with scalable linear detectors and a large number of APs, the
results show that the impact of noise and small-scale fading vanishes; moreover, a reduction in the non-
coherent interference is observed in the same way as in the Co-located Cellular LS-MU-MIMO systems.
The findings indicate that employing linear detectors results in non-increasing Per-Terminal SE as the
network density increases. It is also found that Area-SE grows exponentially with the network density
in both system deployments. Moreover, the increase in the Antenna-UT ratio improves the Per-Terminal
SE and channel estimation accuracy. However, increasing the pilot scalers affects the systems’ behavior
in both deployments differently. Furthermore, local detection schemes are investigated, demonstrating the
advantages of distributed implementation in the Cell-Free system in terms of reducing fronthaul signaling.

INDEX TERMS 5G, MU-MIMO, large scale MIMO, cell-free MIMO, spatial correlation channels, pilot
contamination, channel estimation, LMMSE, area SE, local partial RZF.
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I. INTRODUCTION
Fifth-generation (5G), also known as new radio, has been
designed to cope with the constant increase in the demand for
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higher rates of data services [1]. 5G systems are expected to
provide ubiquitous connectivity and services to an unprece-
dented number of devices. The vision of 5G and beyond
systems is to move the connections toward the recent realiza-
tion of the Internet of Things (IoT), in which vehicles, sen-
sors, robotic agents, home appliances, and wearable fitness
and medical devices will interact with the end-users. Thus,
it provides society with many game-changing services such
as telesurgery, smart homes, self-driving cars, and advanced
security systems [2]. To serve this massive number of devices,
5G and beyond networks have to increase the system capacity
compared to the existing standards [3]. Large Scale Multi-
user Multiple-input Multiple-output (LS-MU-MIMO) sys-
tem, which deploys a large number of antennas at the base
station (BS), is one among many promising key technologies
for future cellular networks [4], [5]. Cellular LS-MU-MIMO
communication systems are being deployed in recent 5G
networks due to their ability to provide a significant improve-
ment in the throughput and a great enhancement in the reli-
ability, speed, and spectral efficiency [6]. Serving BSs with
64 antenna elements are available and have been in use since
2018 [7]. The idea behind this technology is to equip the BSs
with a number of antennas much larger than the number of
active user terminals (UT) per time and frequency resource.
As a result, LS-MU-MIMO systems perform a coherent trans-
mission that provides the system with unprecedented spatial
resolution, array gains, and a reduction in interference, thus
guaranteeing an increase in spectral efficiency (SE).

Antenna arrays at the BS in LS-MU-MIMO systems can
be deployed in two different setups: Co-located or Dis-
tributed. In the Co-located cellular topology, all the anten-
nas are located in a compact array at the BS, and each BS
serves a specific group of UTs. In this network topology,
the system performance can be improved by reducing the
sizes of the cells in the network and applying proper signal
processing and power control [8]. On the other hand, in the
cellular distributed LS-MU-MIMO systems, the antennas are
spread out over the coverage area. As a result, the system
can provide a higher probability of coverage compared to
the co-located LS-MU-MIMO. However, when it comes to
the backhaul requirements, the co-located systems have the
advantage of lower backhaul signaling compared to the dis-
tributed systems [9]. Modern signal processing techniques
can be individually used in the BS to suppress the two types
of interference (intra-cell and inter-cell interferences) without
any cooperation between the BSs. However, in high-density
networks, the performance of those systems still faces a
limitation due to the interference from adjacent cells and
large SNR variations, especially for the cell-edge UTs, which
suffer more performance degradation [10]. Hence, 5G and
beyond networks are expected to provide a better system
performance in terms of uniform spectral efficiency and cov-
erage. Many techniques have been proposed to tackle the
performance degradation and solve the UTs location-related
issues in the Cellular systems. For instance, to maintain a
uniform service for all UTs, the concept of the distributed

antenna system (DAS) was proposed to reduce the access
distance [11], [12]. In the DAS-based structure, the antenna
modules are distributed within each cell and connected to
the home BS via wires, high-speed fiber optics, or RF links.
Hence, the UTs close to the cell edge can be covered, and their
performance improved. The coordinated multi-point (CoMP)
is another concept to enhance the cell edge users’ perfor-
mance [13]. The idea is to evolve the existing cellular systems
by allowing cooperation among the neighboring cells. There-
fore, the cell edge user data rate and spectral efficiency can be
improved with the cost of higher computational complexity
and fronthaul signaling. The network can be divided into
static disjoint cooperating clusters containing a few neigh-
boring cells to reduce the computational complexity and the
fronthaul signaling. Nevertheless, by dividing the network
into disjoint cooperating clusters, residual inter-cluster inter-
ference still limits the system performance [14].

An alternative to the distributed LS-MU-MIMO systems
is to deploy a cellular network with a large number of small
cells. Each cell has a small, low-cost, and low-power BS
serving only one UT [15]. This uncoordinated Small-Cell
structure can mitigate the performance variations between
the center and edge UTs. However, the system still suffers
inter-cell interference due to its cell-centric structure.

From the above discussion, it can be concluded that inter-
cell interference is unavoidable, and it is a fundamental lim-
itation under the Cellular paradigm. Hence, there has been a
great interest in shifting to a new network paradigm known
as Cell-Free to overcome inter-cell interference and the per-
formance degradation at the cell-edge UTs. This recently
evolving concept uses LS-MU-MIMO, CoMP, andDAS tech-
nologies to produce a new network infrastructure called Cell-
Free LS-MU-MIMO [16]. The Large-Scale term indicates
that the cell-free structure employs a large number of access
points (APs) spread out in the service area. Hence, the main
idea is to install many Access Points (APs) across the area
of coverage to serve the UTs via time division duplex (TDD)
operation. Hence, each UT is being cooperatively served by
a preferred set of surrounding APs. Similar to cellular dis-
tributed LS-MU-MIMO, the idea of having a large number of
antenna elements to serve a smaller number of UTs is adopted
in Cell-Free systems. Therefore, Cell-free LS-MU-MIMO is
actually a specific realization of distributed LS-MU-MIMO
with a user-centric structure. Compared to the conventional
uncoordinated small cell system, where a UT is being served
only by the closest antenna, Cell-Free can potentially provide
better system performance [17]. To coordinate and process
the transmission of all UTs in a Cell-Free system, all the
APs are connected to a central processing unit (CPU) through
fronthaul links. Thus, this network structure removes the
cell boundaries and their corresponding inter-cell interfer-
ence [18]. This paper aims to model and analyze such a
user-centric system and evaluate the gain in the performance
compared to a co-located cell-centric system.

Note that the transmitter in Cell-Free system is known as
Access Point (AP), in Co-located Cellular and Small Cell
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system architecture as Base station (BS), and in Distributed
antenna systems as Remote Radio Heads (RRHs). Since Cell-
Free (used here for user-centric) refers to a distributed net-
work topology with no cell boundaries, the term Co-Cellular
will be used to refer to the conventional Co-located Cellular
LS-MU-MIMO systems in the remainder of this paper.

A. RELATED WORK
Conventional LS-MU-MIMO cellular networks have been
studied extensively in many prior works [19]–[32]. To make
the analysis tractable, most of the works consider three sim-
plifying assumptions: i) the channel state information (CSI)
is perfectly known at the BS (i.e., perfect CSI). However,
this is not the case in practical scenarios where the channels
have to be estimated at the receiver (i.e., imperfect CSI).
The effect of perfect and imperfect CSI is investigated in
[21], [22]; ii) the propagation channels between the UTs
and the BSs are spatially uncorrelated [23], while practical
channels are spatially correlated. Due to the lack of enough
physical space to separate a large number of antennas in
the BS, antenna correlation is inherent to the realization of
Co-located LS-MU-MIMO systems. The effect of the chan-
nel correlation in multi-antenna systems with a large number
of Co-located antennas was studied in [24]–[28]; iii) signal
processing schemes designed for single-cell scenarios were
applied, whereas multi-cell signal processing schemes can
achieve better system performance [29]–[32]. For instance,
a multi-cell Minimum Mean-Squared Error (MC-MMSE)
detector that utilizes all the channel directions to suppress
both intra-and-inter cell interferences is proposed in [30].
The authors have compared the proposed scheme with the
single-cell scheme and shown that significant SE gains can
be obtained. The performance analysis of cellular Co-located
and distributed LS-MU-MIMOnetwork setups has been stud-
ied and compared in [9], [33]–[35]. Results show that the
distributed layout can achieve better performance and sub-
stantial data rate gains than the Co-located layout. Co-located
LS-MU-MIMO architecture has the advantage of low back-
haul signaling, thanks to the compact layout of the BS anten-
nas. However, the distributed LS-MU-MIMOprovides higher
diversity gain and probability of coverage at the cost of
increased backhaul signaling.

Recently, Cell-Free LS-MU-MIMO systems have gained
considerable attention, and many papers in the literature
have studied their performance from different perspec-
tives [36]–[44]. For example, achievable spectral efficiency is
derived for Maximum Ratio (MR) combining and conjugate
beamforming (CB) in [38]. In [39] and [41], a stochastic
geometry approach has been used to analyze the favorable
propagation, channel hardening, and overall system per-
formance. In [42], the system behavior was investigated
over spatially correlated Rician fading. Further, a Cell-Free
LS-MU-MIMO system with precoding and power optimiza-
tion to maximize the data rate has been studied [43], [44]. The
traditional Cell-Free deployment was originally developed
under two original assumptions.

First, all the APs simultaneously serve all the active UTs
in the system [41], [45], [46]. This assumption will result in
making the framework unscalable in practice, which means
that the system will not be able to handle a growing num-
ber of APs and UTs. To overcome this limitation and pre-
serve the scalability, the key properties of the conventional
LS-MU-MIMO systems and the user-centric architecture
have been explored in [47]–[53]. A survey on user-centric
cell-free massive MIMO systems with a comprehensive list
of references to understand the cell-free systems has been
recently published [49]. In the user-centric approach, each
UT can select its set of serving APs from the neighborhood,
which can be achieved by a clustering scheme known as
dynamic cooperation clustering (DCC) [51], [53]. In the DCC
scheme, each UT will be served by a subset of APs, and the
scalability comes from decentralizing some signal processing
between the APs and the CPU.
Second, the traditional Cell-Free deployment also assumed

infinite fronthaul connections [44], [54]–[56]. However,
when dealing with practical systems, each fronthaul link will
have a limited capacity. Also, there is a need to limit the fron-
thaul signaling between the APs and the CPU to achieve scal-
ability [49]. The performance of limited-fronthaul cell-free
LS-MU-MIMO has been investigated in [36], [57], and [58].

Generally, there are two types of implementations in Cell-
Free systems: fully centralized and distributed. In the fully
centralized implementation, all the network processing is
done at the CPU. The pilots and data signals are forwarded to
the CPU, which will perform the required signal processing.
However, when a large number of APs are installed in the cov-
erage area, the burden on the fronthaul links is increased. The
centralized implementation of Cell-Free deployments, where
the channel estimation and data detection are accomplished
at the CPU, is discussed in [59]–[61]. Taking the practical
constraints of limited fronthaul capacity, this implementation
will result in an overall unmanageable fronthaul signaling
[62]. The decentralization in Cell-Free LS-MU-MIMO can
be implemented in different levels, depending on how the
signal processing is divided between the APs and the CPU.
By distributing the network tasks between the CPU and the
APs, the computational complexity will be less, and the
overhead will be finite even with an increasing number of
UTs. To reduce the fronthaul traffic, distributed operations are
considered [61], [63]. In this distributed method, the required
signal processing is done at the APs. The distributed imple-
mentation can be broadly distinguished from the centralized
implementation in terms of three operations:

1) uplink channel estimates are computed locally at all
APs; 2) combiners to be used at the APs are computed locally
at each AP, and local data estimation is performed; 3) the
fronthaul is used to send the local data estimates to the CPU
and not for the channel estimates or the combiners.

When comparing the Cell-Free system with the previous
systems, most of the studies focus on comparing it with
the small cell counterpart [38], [39], [44], [64], where the
system consists of a large number of distributed APs with
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no cooperation between them. For example, authors in [38]
analyzed the cell-free performance, taking into account the
orthogonality of pilot sequences and the effect of channel
estimation, and compared it with small cell systems. The
results reveal that the Cell-Free deployment can provide a
substantial improvement in the SE compared to the small cell
deployment. In small cell systems, the CPU and the APs are
limited to exchanging data and power control signals. Hence,
it is clear that the Cell-Free LS-MU-MIMO systems outper-
form the small cell systems [65]. Therefore, to quantify the
gain in the performance, it is better to compare the Cell-Free
system to the conventional Co-Cellular system.

Further, the performance analysis discussed in the litera-
ture is mostly based on linear MR or Zero Forcing (ZF) com-
bining schemes; for example, [44], [66], and [67]. However,
there is a need to evaluate the system performance with more
advanced combining schemes like Regularized Zero-Forcing
(RZF) and MMSE, which have already been proposed for the
conventional LS-MU-MIMO systems [30].

This paper is an attempt to address the above points. First,
we consider the centralized implementation to investigate
its ability of interference cancellation. Then, the local dis-
tributed operations with different combining schemes have
been studied. It is assumed that the channels have to be
estimated in a training phase, in which a Bayesian Linear
MMSE (LMMSE) channel estimator is employed. The per-
formance in the uplink of Cell-Free deployment is studied
and compared with Co-Cellular LS-MU-MIMO deployment
to analyze the impact of no-cell structure on the achievable
sum rate. The effects of channel correlation, pilot contamina-
tion, pilot scaling, and the Antenna-UT ratio are taken into
consideration for more realistic system deployment scenar-
ios. Moreover, this work investigates the impact of AP/BS
densification on the uplink per-terminal SE of both system
deployments by introducing the concept of network density.
(see [28], [68]–[70] formore results on this concept in cellular
systems.)

B. CONTRIBUTIONS OF THE PAPER
The existing literature contributions typically consider the
traditional structure of Cell-Free LS-MU-MIMO system,
in which all the APs serve all the active UTs in the network
at the same time. However, this structure is both power inef-
ficient and impractical because only a portion of the APs
can beneficially transmit to a certain UT. A practical variant
of Cell-Free system known as the user-centric architecture
allows each UT to dynamically select its set of serving APs.
Further, most of the works in the literature compare the
traditional Cell-Free deployment with a variant of the Cellular
system, i.e., small cell deployment, where a large number of
uncooperative BSs serve only one UT.

Taking into account the aforementioned gap in the litera-
ture, this paper aims to reconsider the comparison between
User-Centric Cell-Free and Co-Cellular system deployments
under practical scenarios and realistic system specifications.
The contribution of this paper can be summarized as follows:

• System modeling: In this work, we consider the uplink
of a LS-MU-MIMO system with finite capacity fron-
thaul links. To capture the impact of no-cell structure on
the achieved performance, we present a point-to-point
comparison between user-centric Cell-Free and conven-
tional Co-Cellular system architectures. The two system
deployments are mathematically modeled and numeri-
cally simulated. The objective of this study is to give a
further understanding and a comprehensive comparison
of both system deployments under more realistic and
practical system considerations. Unlike previous works,
and to maintain fairness in the comparison, we provide
unified settings that can be applied for both system
deployments to preserve the same network density (i.e.,
the same number of antenna elements and the same
number of UTs).

• Physical layer signal processing: We identify the
main physical layer operations in the deployment of
LS-MU-MIMO uplink transmission, including uplink
signaling, CSI estimation, data detection, and fronthaul
signaling. In continuity with previous works, this paper
focuses on the case of sub-6 GHz carrier frequencies,
leaving higher frequencies for future research.

• Performance analysis: Under spatially correlated chan-
nels and imperfect CSI, we quantitatively evaluate the
User-Centric Cell-Free system’s performance in com-
parison to that of Co-Cellular systems. We analyze the
SE and Area-SE (ASE) performances of both network
deployments for a dense urban scenario that can sup-
port low-to-moderate channel dispersion and mobility.
This is a reasonable consideration in Cell-Free net-
work deployments since the APs are deployed near
the UTs. Simulation and numerical results are given
for three Scalable linear detectors in Cell-Free: Partial
MMSE (PMMSE), Partial RZF (PRZF), Centralized
MR (MR-Cent.). They are also given for four lin-
ear detectors in Co-located Cellular: Multicell-MMSE
(MC-MMSE), Single-cell MMSE (SC-MMSE), single-
cell RZF (SC-RZF), and MR. This allows us to get
insights into the system performance and investigate
the system behaviour with different scenarios, i.e., net-
work density, pilot scaling factor, and the ratio of
Antenna-UT.

• Analysis of twoCell-Free implementations:Based on the
above analysis, we adopt three Cell-Free system imple-
mentations, namely, fully centralized, local distributed,
and two-stage local distributed. We study how com-
petitive the local distributed-based combining schemes
are to centralized-based schemes in spectral efficiency
and overall system performance. Extensive simulation
results evaluate the system’s achieved SE performance
of the three implementations from different aspects
(e.g., the impact of scaling the pilot length and the
number of deployed APs) and for different combining
schemes: PRZF, Local PRZF (LPRZF), and distributed
MR (MR-Dist.).
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FIGURE 1. Paper structure.

TABLE 1. Notations and symbols.

C. PAPER ORGANIZATION AND NOTATION
The paper structure is illustrated in Fig. 1, and the rest
of this paper is organized as follows: The LS-MU-MIMO
system model for both network deployments is described
in section II. Section III presents the signal processing in
Cell-Free and Co-located Cellular physical layer. The fron-
thaul requirements and the channel model considered in
this work are presented in sections IV and V, respectively.
The simulation results and the discussion are presented in
section VI, followed by the conclusion in section VII. This
paper uses the notions and symbols listed in table 1.

II. SYSTEM DESCRIPTION
This section introduces the uplink transmission scenario
in two Cell-Free and Co-located Cellular deployments of
LS-MU-MIMO. A large number of single-antenna APs dis-
tributed in a large geographic area are considered in the
former, and a few BSs deployed with a large number of
co-located antennas are considered in the latter. Fig. 2 shows
the system deployment in both scenarios. The two networks
operate in a TDD mode, where each AP (or BS) estimates

the uplink channels from UTs depending on their transmitted
uplink pilots. Due to the reciprocity in the TDD mode, these
estimates can also be used for the downlink channels.

For both network deployments considered in this work,
we use the following definitions in the system model
description:
Definition 1: In a given geographical area, a cell-Free

LS-MU-MIMO system consists of:

- A large number of single-antenna APs;
- More APs than active users: L � K or L

K > 1;
- All APs connected to one CPU.

Definition 2: In a given limited area, a Co-Cellular
LS-MU-MIMO system consists of:

- N ≥ 2 cells, each cell has a single BS;
- M ≥ 64 antenna in each BS;
- K ≥ 8 active user terminals (UTs) per cell and overall
M � K or M

K > 1.

We assume that the APs in the Cell-Free and the BSs in the
Co-Cellular LS-MU-MIMO are deployed in a dense urban
scenario and consider all its propagation conditions. Further,
the channels in the two deployments are modeled as block
fading, where the channels are constant and frequency flat
in one coherence block and changes between blocks. In each
coherence block, the channel takes one independent realiza-
tion. The length of this coherence block depends on many
factors: carrier frequency, mobility, the propagation environ-
ment, etc. In the block fading model, each coherence block
consists of τc complex-valued samples used for uplink pilot
training

(
τp
)
, uplink data transmission(τ u), and downlink

data transmission (τ d). The channel model includes two main
effects: small-scale fading and large-scale fading, where the
small-scale fading is assumed to be constant in one coherence
block and independently changes between the consecutive
blocks.

The large-scale fading changes slower than the small-
scale fading and can be static for several coherence blocks.
The channel responses between the l th AP (or the mth BS’s
antenna), and the k thUT is assumed to have a correlated
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FIGURE 2. Comparison between ‘(a) Co-located cellular and (b) cell free’ large scale MU-MIMO systems.

rayleigh fading distribution, which can be modeled as,

hX ∼ NC (0,RX ) . (1)

where the two fading effects are composed in the spatial
correlation matrix RX and the indices of h and R follow the
corresponding system deployment.

A. CELL-FREE DEPLOYMENT
Consider a multi-user Cell-Free systemwith L single-antenna
APs randomly distributed in the area of coverage and simul-
taneously serving K single-antenna UTs, which are also
randomly located in the area. The UT k in the cell-free
deployment is served by a group of APs, i.e., the set Qk ⊂

{1, 2, . . . . . . ,L}, which is the set of APs that cooperate to
serve the UT k . As illustrated in Fig. 2 (b), all the APs in the
Cell-Free (CF) system are connected to a central processing
unit (CPU) through fronthaul links. The CPU collects the
pilots and the transmitted data received at all APs to perform
channel estimation and data detection.

Let xi be the transmitted signal from the UT i to the AP l
and the corresponding superposition of the received signals
at the AP l denoted by yCFl and given by [71]

yCFl =
√
pu
∑K

i=1
hilxi + wl . (2)

where pu denotes the average uplink power transmitted by
UTs, and wl denotes the additive independent receiver noise,
which is modeled as wnoise ∼ NC

(
0, σ 2

)
.

In the Cell-Free deployment, each user is being served by
a sub-group of APs. Hence, the operations performed by the
CPU have to deal with all the transmitted signals received by
the same group of APs.

Let yCFcpu denotes the collective transmitted signals received
by all APs, which is related to UT i and given by

yCFcpu =
[
yCF1 , yCF2 , . . . .., yCFL

]T
=

∑K

i=1
hixi + w. (3)

where w is a vector that includes all the received noise in all
APs, which is related to the UT i, i.e.,

w =
[
wT1 ,w

T
2 , . . . ..,w

T
L

]T
. (4)

Suppose, for now, that the channel statistics are known at the
network. Hence, to detect the transmitted signal xi, the CPU
has to select an appropriate receive combiner to separate the
desired transmitted signal from the interference and noise. Let
aHk Dk be the vector used to find the estimate of the received
signal xi, where aHk is the receive combining vector, andDk is
a block diagonal matrix introduced to ensure that only the
APs serving UT k will be involved in the signal detection
process. Simply stated, Dk is the identity matrix if the AP
belongs to the set of APs that serve the UT k and are allowed
to take part in the signal detection at the CPU and zero
otherwise. Hence, the estimate of the transmitted signal at the
CPU can be written as,

x̂k = aHk Dky
CF
cpu.

= aHk Dkhkxk +
∑K

i=1
i6=k

aHk Dkhixi + a
H
k Dkw. (5)

where the first term represents the desired transmitted signal,
the second represents the interference from other users, and
the third term is the noise.

B. CO-CELLULAR DEPLOYMENT
This section describes the Co-Cellular system deployment
for comparative study with respect to the Cell-Free sys-
tem deployment presented in section A. In the conventional
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Co-Cellular LS-MU-MIMO system, the UT can only be
served by one BS at a time (except during handover). Con-
sider a multi-cellular network with N cells; each cell has
a single BS equipped with M array antennas, communi-
cating simultaneously with single-antenna K UTs. In the
Co-Cellular deployment (Co-Cell), the BS j receives signals
from UTs in the uplink scenario and is commonly expressed
as [72]

yCo−Cellj =
√
pu
∑N

n=1

∑Kn

k=1
hjnkxnk + wj. (6)

where pu and wj are defined in the same way as in (2). Also,
similar to (5), the estimated transmitted signal at BS j can be
detected by selecting a receive combiner aHk to separate the
desired signal from the interference and noise. Analytically,
it can be expressed as

x̂k = aHjky
Co−Cell
j .

=
√
pu
∑N

n=1

∑Kn

k=1
aHjkh

j
nk
xnk + aHjkwj.

=
√
pua

H
jkh

j
jkxjk +

√
pu
∑K

i=1
i6=k

aHjkh
j
jixji

+
√
pu
∑N

n=1
n6=j

∑Kn

i=1
aHjkh

j
ni
xni + aHjkwj. (7)

where the first term represents the desired transmitted signal,
the second and third terms represent the interference from
the user’s own cell and the interference from different cells
respectively, and the fourth term is the noise. As can be
seen from (7), and in contrast to Cell-Free, all BSs in the
Co-Cellular system are involved in the signal processing.

III. PHYSICAL LAYER SIGNAL PROCESSING
This section presents the main signal processing operations
for LS-MU-MIMO systems for comparative performance
evaluation of the considered network deployments. In the
LS-MU-MIMOuplink transmission, these operations include
uplink signaling, channel estimation, and data detection as the
main physical layer processing operations.

A. UPLINK TRAINING
In the uplink training phase, a similar training process takes
place between the UTs and the APs in both system deploy-
ments. The UTs send training symbols known as pilot sym-
bols to the APs (or BSs in the case of Co-Cellular). The pilot
sequence is assumed to be of length τp for each user. Also,
there are τp orthogonal pilot sequences available in the net-

work, i.e., we have 9 =
[
ψ1,ψ2, . . . . . . .,ψτp

]
orthogonal

pilot sequences. However, the number of UTs is assumed
to be larger than the available orthogonal pilot sequences
(K > τp), leading to the reuse of the same pilot sequences by
more than one UT. The sharing of the same pilot sequences
is the reason behind a well-known problem in the LS-MU-
MIMO systems called pilot contamination.

In the Cell-Free LS-MU-MIMO, let Ypilot
l be the matrix

of the received pilot training signals at the AP l and can be

written as

Ypilot
l =

√
pp
∑K

i=1
hilψH

ti +W l . (8)

where pp denotes the power of the transmitted pilot,ψH
ti is the

pilot sequence transmitted by the ith UT, andW l denotes the
additive white Gaussian noise, which is i.i.d with zero mean
and unity variance. The received signal Ypilot

l correlated with
ψ∗tk , which is the conjugate of the pilot sequence of thei

th UT,
leading to ypilottk l , given as

ypilottk l = Ypilot
l ψ∗tk

=

∑K

i=1
hilψH

ti ψ
∗
tk +W lψ

∗
tk . (9)

In the Co-Cellular system deployment, the received pilot
signal can be generated in the same way as in (9). Hence, the
processed received pilot signal for both system deployments
can be further normalized and simplified as follows,

ypilottk l/j

= DS + UI +W

=



√
ppτphkl +

∑
i∈℘k\{k}

√
ppτphil +W lψ

∗
tk .

CF
√
ppτph

j
jk +

∑
(n,i)∈℘k\{j,k}

√
ppτph

j
ni +W jψ

∗
tk .

Co− Cell
(10)

where the first term represents the desired pilot (DS), the
second term is the interference from sharing the same pilot
between UTs (UI), and the last denotes the noise (W ). Note
that ℘k is the set of UTs that share the same pilot sequence as
UT k . The processed signal ypilottk l/j is the statistics that the CPU
(in Cell-Free) and the BS (in Co-Cellular) use to estimate the
channel.

B. LMMSE CHANNEL ESTIMATION
Since the channel statistics are not exactly known in practical
scenarios, the received pilot signal ypilottk l/j in the Cell-Free and
Co-Cellular systems are used to estimate the channels to UTs.
The LMMSE estimator is employed in both deployments to
estimate the channel coefficients between the UTs and the
APs (or the BSs). For simplicity, let hχ denotes the channel to
be estimated in both system deployments, where hχ = hkl in
Cell-Free system and hχ = hjk in Co-Cellular system. Based
on the estimation theory, the channel hχ between the UT k ,
and the AP (or the BS) can be expressed as [73]

ĥχ =
√
ppτpRχQcorry

pilot
tk l/j . (11)

where Rχ is the spatial correlation matrix of the channel
intended to be estimated, and Qcorr is the inverse of the
normalized correlation matrix of ypilottk l/j and can be given as

Qcorr = E
{
ypilottk l/j

(
ypilottk l/j

)H}
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TABLE 2. Linear detectors to maximize the SINR in cell-free and co-cellular.

=


(∑

i∈℘k
ppτpRil + σ 2

)−1
CF(∑

(n,i)∈℘k\{j,k}
ppτpRni+σ 2IMj

)−1
Co-Cell

(12)

Note that the indices of Qcorr will be the same as the indices
of the corresponding processed received signal ypilottk l/j for both
system deployments.

Let eχ = hχ−ĥχ be the estimation error that occurs during

the estimation process and the expectation E
{∥∥∥hχ − ĥχ∥∥∥2}

is the quality of the estimation process in the LMMSE estima-
tor, which can be given by taking the trace of the correlation
matrix of eχ . In the LMMSE estimation process, both the esti-
mation and the estimation error are statistically independent
random variables. The covariance matrices of the channel
estimate ĥχ and the channel estimation error eχ for the two
system deployments can be given as follows

Cest. = E
{
ĥχ
(
ĥχ
)H}
= ppτpRχQcorry

pilot
tk l/jRχ (13)

Cerr. = E
{
eχ
(
eχ
)H}
= Rχ−ppτpRχQcorry

pilot
tk l/jRχ (14)

Finally, in the Cell-Free system and similar to the anal-
ysis in section II, the collective statistics of the channels
from UT k to all corresponding APs have to be avail-
able for processing to estimate the channel at the CPU.
Where Dk ĥk =

[
Dk1ĥk1 . . . ..,DkL ĥkL

]
is the estima-

tion of the channel hk from UT k to all its serving APs
(Qk ). Consequently, the matrices Rk , Qtk l and Cerr. are
defined as diag (Rk1, . . . .,RkL), diag

(
Qtk1, . . . .,QtkL

)
, and

diag (Cerr.1, . . . .,Cerr.L), respectively.

C. UPLINK COMBINING AND DATA DETECTION
After the channels to the active UTs are estimated, the UTs
send the uplink data signals. These uplink signals are received
at the APs (or BSs) and processed to detect the transmitted
signal x̂k in the same way as in (5) and (7). Let DS denotes the
desired signal, and UI denotes the multi-user interference, the
estimated signal after applying the receive combining vector
aHk can be written as

x̂k = aHk (DSk + UI + w) (15)

where aHk is defined similarly as in section II for Cell-Free and
Co-Cellular systems, and DSk is the desired received signal
through the estimated and estimation error channels and can
be expressed as

DSk = aHk
(
ĥχ + eχ

)
xk = aHk ĥχxk + aHk eχxk (16)

The interference from different users (UI ) is given as

UI =



∑K
i=1
i6=k

aHk Dkhixi

CF∑K
i=1
i6=k

aHjkh
j
jixji +

∑N
n=1
n6=j

∑Kn

i=1
aHjkh

j
ni
xni

Co-Cell

(17)

where in the Cell-Free system, the UI term contains inter-
ference from UTs communicating with a set of Qk ⊂

{1, 2, . . . . . . ,L} only. However, in the Co-Cellular system,
the multi-user interference in (17) contains the interference
from the cell’s own users (first term) and interference from
users in the different cells (second term).

Since the vector aHk contains the combining vectors of
all APs serving the desired UT k , the detection process
in Cell-Free is limited to that group of APs (i.e., Qk ⊂

{1, 2, . . . . . . ,L}), while the detection process in the Co- Cel-
lular system involves all the BSs in the processing.

The exact expression of the ergodic capacity in
LS-MU-MIMO system remains unknown. However, bounds
on the ergodic capacity, also known as achievable spectral
efficiency (SE), are available and can be used as a perfor-
mance metric.

In this section, we employ an asymptotic lower bound to
investigate the scaling behavior of the UT k average uplink
capacity with Cell-Free andCo-Cellular system deployments.

The achievable SE of UT k is introduced in lemma 1.
Lemma 1: When using LMMSE channel estimation and

linear processing, an achievable uplink SEs of Cell-Free and
Co-located system deployments of UT k are given as (18)
and (19), shown at the bottom of the next page, where SINR
denotes the uplink signal to interference and noise ratio of
UT k and is given by (20a) and (20b) (shown at the bottom
of the next page) for Cell-Free deployment and Co-Cellular
deployment, respectively.

Proof: The proof follows from the same procedure of
lower-bounding adopted in [16] for Cell-free system deploy-
ment and [25] for the Co-Cellular system deployment. It is
noteworthy that the expression in (18) and (19) can be com-
puted using instantaneous Channel realizations. The ratio
inside the logarithm in both expressions can be interpreted as
the uplink effective instantaneous SINR because it includes
both instantaneous estimated CSI and average over CSI esti-
mation errors. Since this average over CSI estimation errors is
not available instantaneously, the SINR can not be measured
at any particular coherence block. As a result, the achievable
SE in (18) and (19) are effectively equivalent to that of a
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fading channel, where the CSI is perfectly known at the
receiver.

In the centralized operation of the Cell-Free system, the
received uplink signals are forwarded to the CPU through a
fronthaul link. The CPU estimates the channels and selects
the combining vector to detect the transmitted data. In the
detection process, the optimal combining vector is the vector
that maximizes the instantaneous SINR in (18) and (19).
Since these expressions are generalized Rayleigh quotients
with respect to ak , we consider three scalable linear detectors
to maximize the SINR for UT k: Minimum Mean-Squared
Error (MMSE), Regularized Zero-Forcing (RZF), and Max-
imum Ratio (MR). Table 2 summarizes the three combining
detectors considered in this section, distinguishing between
the case of Cell-Free and Co-Cellular system deployments.

Note that in Cell-Free system, the considered Partial-
MMSE (PMMSE) detector is a scalable detector obtained
from the optimalMMSE. The difference is that, in the approx-
imated scalable PMMSE detector, the CPU uses only the sig-
nals transmitted from users sharing the same set of APs as UT
k in the processing. Partial Regularized Zero-Forcing (PRZF)
detector is an alternative detector with less complexity than
scalable PMMSE. It can be obtained by neglecting the corre-
lation matrix of the signals received by unknown channels in
the PMMSE detector, i.e.

∑
i∈Sk piDkCerrDk = 0.

In the Large Scale Co-Cellular deployment, the combining
process and data detection are carried out at the same place.
The multi-cell MMSE (MC-MMSE) is an optimal detector
for Co-Cellular deployment in the sense that it maximizes the
expression (19). A simpler linear detector known as single-
cell MMSE (SC-MMSE) can be obtained by considering an
isolated BS that estimate channels and process signals only
from its own UTs. It can be obtained by replacing the channel
estimation statistics in the multi-cell MMSE detector with
its average. Another detector with less complexity than SC-
MMSE is a single-cell RZF (SC-RZF), which can be obtained
by neglecting all the correlation matrices in the expression of
SC-MMSE detector.

Due to the expectations in (18) and (19), the closed-form
solution of the spectral efficiency (SE) can not be computed

using the MMSE linear detector. Hence, we proceed numeri-
cally, using the Monte Carlo simulation approach to compute
the SE for both system deployments.

IV. FRONTHAUL REQUIREMENTS
In practice, the achievable SE is limited by the capacity of the
wireless channels and the capacity of the fronthaul links. Note
that the Cell Free deployment with a centralized approach
can reduce the fronthaul load compared to the cellular dis-
tributed LS-MU-MIMO systems. Further reduction can be
achieved by enabling the local distributed implementation
in the Cell-Free systems, where some processing is carried
out at the APs. Motivated by this argument, this section
investigates different local combining techniques for Cell-
Free deployment with limited fronthaul capacity, taking into
account the effects of imperfect CSI and spatially correlated
fading.

Unlike the centralized implementation considered in sec-
tion III, in the distributed operations, each AP exploits its
received pilots and estimates the channels locally. The data
detection in the distributed operation involves two layers.
In the first layer, for each UT, the AP uses channel esti-
mates to select a receive combining vector and then com-
pute the local estimate of the transmitted data (Only this
local data estimate will be sent to the CPU). In the sec-
ond layer, the CPU decodes the transmitted data with the
help of a large-scale fading decoding (LSFD) scheme, which
involves the use of receiver weighting coefficient vectors. The
CPU can find the optimized weights to maximize the SE.
This process can be summarized as follows. Based on the
received signal given in (2), an estimate of the transmitted
data symbols can be obtained by applying a local linear
combiner as

x̂l,k = al,kyCFl = aHl,khl,kxk +
∑K

i=1
i6=k

aHl,khl,ixi + a
H
l,kwl .

(21)

Based on the local estimation in (21), the CPU uses the LSFD
weight vector

{
vl,k : l = 1, . . . ,L

}
to centrally estimate the

SECFk =
(
1−

τp

τc

)
E
{
log2

(
1+ SINRCFk

)}
(18)

SECo−Cellk =

(
1−

τp

τc

)
E
{
log2

(
1+ SINRCo−Cellk

)}
(19)

SINRCFk =
pk
∣∣∣aHk Dk ĥk ∣∣∣2∑K

i=1
i6=k

pi
∣∣∣aHk Dk ĥi∣∣∣+ aHk (∑K

i=1 piDkCerrDk
)
ak + σ 2 ‖Dkak‖2

(20a)

SINRCo−Cellk =

pjk
∣∣∣aHjk ĥj,jk ∣∣∣2∑N

n=1
∑Kn

i=1
(n,i)6=(j,k)

pni
∣∣∣aHjk ĥjni∣∣∣+ aHjk (∑N

n=1
∑Kn

i=1 pniCerr

)
ajk + aHjk

(
σ 2IMj

)
ajk

(20b)
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transmitted data as

x̂k =
∑L

l=1
v∗l,k x̂l,k .

=

∑L

l=1
v∗l,ka

H
l,khl,kxk +

∑L

l=1
v∗l,ka

H
l,k

∑K
i=1
i6=k

hl,ixi

+

∑L

l=1
v∗l,ka

H
l,kwl (22)

Unlike the analysis in section III, we adopt a different
capacity bound, where the achievable spectral efficiency of
UT k is introduced in lemma 2.
Lemma 2: When using LMMSE channel estimation and

linear processing, an achievable uplink SE of the k th UT in
a Cell-Free system with distributed implementation is given
as (23), shown at the bottom of the page, with the effective
SINR given in (24), as shown at the bottom of the page.

Proof: The proof follows from the same technique
of lower-bounding adopted in [16]. The main differences
between this capacity bound and the one in (18) are: 1) It
can be applied for any channel fading distribution; and 2)
The transmitted data can be detected as if transmitted over
a non-fading channel with gain E

{
aHl,kDl,khl,k

}
; hence, all

the terms in (24) are deterministic and can be computed.
The expression in (24) can be further maximized by

replacing the vector aHl,k in (22) with aHl,kDl,kand choose

vk as vk = pk
(∑K

i=1 pi
{
gi,kg

H
i,k

}
+ σ 2Fk

)
, which leads

to the maximized effective SINR given as (25), shown at
the bottom of the page, where,Dk = dig

(
D1,k , . . . ,D1,k

)
,

gi,k = [aH1,kD1,k
h1,k , . . . .., aHL,kDL,khL,k ]

T, and Fk =

dig
({∥∥D1,kaH1,k

∥∥} , . . . .., {∥∥DL,kaHL,k∥∥}).
Similar to the analysis for the fully centralized operation,

different combining schemes result in different spectral effi-
ciencies and computational complexities. We consider two
combining schemes with low signal processing complexity:

i) Local Maximum Ratio (MR) Combining, which has the
lowest detection complexity. The MR combining vector con-
structed by the lAP for UTs in Qk is given as

aMRl,k = Dl,k ĥl,k . (26)

It maximizes the receive signal power without taking into
account the existence of other UTs. To make the system more
performance-efficient, sophisticated combining schemes are
employed to suppress the inter-user interference;

ii) Local partial regularized ZF (LPRZF), which gives
better performance when there is interference from other
UTs in the LS-MU-MIMO systems. This combining scheme

provides weighting between interference suppression and
maximizing the desired signal. Following the same arguments
in [40], the LPRZF combining vector for user UT k at AP l
is given as

aLPRZFl,k = pk
(∑

i∈Dl
piĥil ĥ

H
il + σ

2INAP
)−1

Dkl ĥkl . (27)

The matrix form of LPRZF, which gathers the combining
vectors for all UTs can be written as

ALPRZFl,k = DklĤDl

(
ĤDl Ĥ

H
Dl + σ

2P−1Dl

)−1
. (28)

where the matrix ĤDl is constructed by stacking together all
the vectors of the estimated channels ĥil having the indices
i ∈ Dl , and P is a diagonal matrix containing all the transmit
powers pi for i ∈ Dl .
After combining with the LPRZF vectors, all the estimated

signals will be sent to the CPU via fronthaul links. Then,
the CPU applies the LSFD scheme to decode the transmitted
data. By substituting (28) into (25), the achievable spectral
efficiency of UT k is obtained by (23).

V. SPATIAL CORRELATION MODEL
This section aims to generate RX since the channel response
hX is considered to have a correlated Rayleigh fading dis-
tribution modeled as hX ∼ NC (0,RX ), where RX is the
correlation matrix of the channel response hX . We consider
a geometric-based channel model, which takes into account
the correlation between antennas, the array geometry, and
the distribution of the scatterers around users and APs (or
BSs). Gaussian Local Scattering scheme, where the scattering
process only happens around the UTs, is considered in this
paper. Due to this scattering, the APs (or BSs) will receive
the transmitted signal from different paths (Z). The correla-
tion matrix can be viewed as an expectation of all channel
responses in all paths and written as [72]

RX = E
{∑Z

i=1
αiα

H
i

}
. (29)

where αi represents the response of ith path and for a partic-
ular (l,m) element of the RX matrix can be written as,

[R]l,m =
∑N

i=1

×E
{
|gi|2

}
E
{
e2jdH (l−1)sin(ϕi)e−2jdH (m−1)sin(ϕi)

}
(30)

SECFk =
(
1−

τp

τc

)
E
{
log2

(
1+ SINRCFk

)}
(23)

SINRk =
pk
∣∣vHk E {gk,k}∣∣2∑K

i=1 piE
{∣∣vHk gi,k ∣∣2}− pk ∣∣vHk E {gk,k}∣∣2 + σ 2vHk Fkak

(24)

SINRk = pk
{
gHk,k

}
×

(∑K

i=1
pi
{
gi,kg

H
i,k

}
+σ 2Fk − pkE

{
gk,k

}
E
{
gHk,k

})−1 {
gk,k

}
(25)
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where gi denotes the average gain for the ith multipath com-
ponent that arrives from a certain angle ϕ, and dH represents
the spacing between antenna elements.

Following the same definitions in [42], if the scatterers
around the UTs are located in a Gaussian distribution, the
spatial correlation matrix can be expressed as

[R]l,m =
∑N

i=1
E
{
|gi|2

} ∫ ∞
−∞

e2jdH (l−m)sin(ϕ)

×
1

√
2πσϕ

e
−
(ϕ−ϕ)2

2σ2
ϕ dϕ (31)

where
∑Z

i=1 E
{
|gi|2

}
is the average gain of all multipath

components. Further, by letting ϕ = ϕ + ϑ , (31) can be
written in a more simplified form as,

[R]l,m = β
∫
∞

−∞

e2jdH (l−m)sin(ϕ+ϑ) 1
√
2πσϕ

e
−

ϑ2

2σ2ϕ dϑ (32)

where β =
∑N

i=1 E
{
|gi|2

}
, ϕ, ϑ and σϕ are the nominal

angle-of-arrive, the variation around the nominal angle and
the angular standard deviation around the nominal angle,
respectively.

VI. RESULTS AND DISCUSSION
In this section, the performance of Cell-Free and Co-Cellular
LS-MU-MIMO systems is evaluated using Monte-Carlo
simulations in different scenarios with different combining
schemes.We focus on the transmission in the uplink scenario,
and the transmit power of each UT is pk = 20 dBm. Further,
the assumption of imperfect CSI (described in section III)
is adopted for combining design. In the two network con-
figurations, to maintain fairness in the comparison, settings,
such as coverage area, total radiated power, user density,
antenna density, and propagationmodel are set to be the same.
We consider the system topologies shown in Fig. 2, where
each network deployment is assumed to be deployed in a
square area of 1000m×1000m. This area is representative of
a dense urban environment, which supports low-to-moderate
mobility and channel dispersion. The coverage area is also
assumed to be wrapped around at the edges to simulate an
area with no boundaries and prevent any location-related
issues.

In Cell-Free network deployment, the APs and the UTs
are distributed in the area uniformly at random with density
λ[L/km2]. Unless stated otherwise, all APs and all UTs are
equipped with a single antenna. Moreover, for Co-Cellular
deployment, all BS antennas are co-located at the center of
each cell. The BSs and the UTs are also uniformly placed
randomly in the area, and each BS covers 1

N ×
1
N square

meters, with total network density λ[Mt/km2], where Mt
denotes the total number of antenna elements in the network.

In the simulation setups, the communication bandwidth
B (in MHz), the carrier frequency f0 (in GHz), and several
other key system parameters that we have chosen are sum-
marized in Table 3. The results in each figure have been

FIGURE 3. Per-Terminal Average SE as a function of ηratio with total active
UTs in the area K = 128. We consider the pilot length τp = 8 and the
angular standard deviation σϕ = 15.

averaged over 50 random setup realizations, and the locations
of all APs, BSs, and UTs are generated independently in
each system setup. This random realization of all APs, BSs,
and UTs locations in both network configurations determines
the large-scale fading coefficients in the network. The spatial
correlation model given in section V is considered in all the
simulations. The path loss model is used as given in [16],
which is mathematically written as,

βχ [dB] = Ad0 − 10γ log10

(
dχ
d0

)
+ Fχ . (33)

where Ad0 denotes the average channel gain at d0 reference
distance, γ is the path loss exponent, which determines
how the distance will affect the path loss increasing; dχ
represents the separation distance, Fχ ∼ N

(
0, σ 2

shadow

)
is a zero-mean Gaussian distributed random variable, and
the shadowing effect modeled by σ 2

shadow. In the following
subsections, we define the system settings and present the
corresponding simulation results. In Fig. 3 to Fig. 8, we focus
on the system performance with a centralized implementation
comparing the SE of Cell-Free and Co-Cellular using differ-
ent system configurations: Antenna-UT ratios, pilot scaling
factors, and network densities. Next, we consider the channel
estimation quality of both network deployments and study
the effect of increasing the Antenna-UT ratio on the channel
estimation accuracy. Then, we investigate the impact of the
channel spatial correlation on the system performance of
Cell-Free and Co-Cellular network configurations and the
uncorrelated channel model, where Rχ = βχ I is consid-
ered as a reference for performance comparison. Finally,
from Fig. 9 up to Fig. 11 we study the effect of distributed
implementation on the system performance of Cell-Free sys-
tem deployment and compare the result with the centralized
implementation.
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TABLE 3. System parameters for the simulation.

A. PER-TERMINAL SE
Taking the achieved spectral efficiency as a system perfor-
mance metric, this section aims to investigate and evaluate
the performance of the system with different Antenna-UT
ratios (ηratio), pilot scaling factors (ζ ), and network densi-
ties (λ). Hence, we compare the performance of Cell-Free
and Co-Cellular system deployments as ηratio, ζ , K , and λ
increase with a constant ratio when a fully centralized imple-
mentation is used. Different linear detectors are considered
during the simulations: PMMSE, PRZF, and MR for Cell-
Free deployment;MC-MMSE, SC-MMSE, SC-RZF, andMR
for Co-Cellular system deployment.

Note that with MR combining, the intra-cell interference
is a drastic limiting factor for the achievable Per-Terminal
SE regardless of the system deployment adopted. Therefore,
due to their ability to suppress the inter-user interference, the
MMSE and ZF significantly outperform theMR scheme in all
approaches. The results show that the Cell-Free approach sig-
nificantly outperforms the Co-located Cellular deployment
in terms of uplink Per-Terminal SE with less performance
variations. In the following subsections, we focus on the
average Per-Terminal SE performance and compare the two
system deployments as the Antenna-UT, pilot scaling factor,
and network density grow larger.

1) ANTENNA-UT ANALYSIS
In LS-MU-MIMO systems, the number of antenna elements
has to be large enough compared to the number of active
users. The Antenna-UT ratio (ηratio) is a key parameter in
LS-MU-MIMO systems, which is defined as the ratio of

the antenna elements to the active users. As mentioned in
definitions 1 and 2, this ratio has to be larger than 1 in
LS-MU-MIMO systems. We assume that the antenna-UT
ratio taking the values as ηratio = 2n, where n = [1, 2, . . . , 5]
for both system deployments. The total active terminals in the
area are fixed (K = 128), L = K×ηratio, andMt = K×ηratio
in the Cell-Free and Co-Cellular systems, respectively.

Based on ηratio, Fig. 3 presents the achievable per-terminal
spectral efficiency in the deployments of Cell-Free and
Co-Cellular LS-MU-MIMO systems with the total number of
active users K = 128. It can be seen that both systems offer
better performance when the ratio of Antenna-UT (ηratio) is
increasing. The average Per-Terminal SE increases linearly
with ηratio in Cell-Free and Co-Cellular systems. In Cell-Free,
the PMMSE and PRZF detectors provide almost the same
Per-Terminal SE, especially when ηratio grows higher. How-
ever, both detectors provide significantly higher SE compared
to the MR detector.

For the Co-Cellular system, the MC-MMSE detector pro-
vides slightly better performance than SC-MMSE, and the
SC-MMSE provides a slightly higher SE than SC-RZF when
ηratio is small. However, for large ηratio, the largest SE is
achieved by MC-MMSE. Also, in contrast to the Cell-free
system, the gap in the performance between MMSE and RZF
schemes increases as ηratio grows higher.

2) PILOT SCALING ANALYSIS
In the LS-MU-MIMO systems, UTs that share the same
pilots are the reason behind the pilot contamination effect.
This effect is one of the challenges that limit the multi-
cell LS-MU-MIMO system’s performance. In Cell-free
LS-MU-MIMO, an AP is allowed to serve up to UTS =
τp. Hence, large τp will result in a reduction in the pilot
contamination. In the Co-Cellular, the pilot reuse mitigation
process is considered, where the frequency of pilot reuse
in the network is increased. Let ζ be the scaling factor ruling
the length of the pilot in a Cell-Free system and determining
the frequency of pilot reuse in the Co-Cellular system. This
section illustrates the effect of scaling the pilot length on the
system performance. In both network configurations, we can
write the length of the pilot as

τp = ζ × τ0. (34)

where τ0 = L
K and τ0 =

Mt
K in Cell-Free and Co-Cellular

systems, respectively. Fig. 4 illustrates the Per-Terminal SE
as a function of ζ for both network configurations.We choose
ζ = 2n where n = [0, 1, . . . , 4]. As can be observed,
different scaling factors achieve a different amount of Per-
Terminal SE. In Cell-Free deployments, increasing ζ results
in improvement in the Per-Terminal SE. This improvement
can be interpreted as follows. Since the AP is only allowed
to serve up to τp terminals, the increase in ζ will increase
τp, allowing the AP to serve more UTs, which means less
sharing to the same pilots and hence less pilot contamination.
However, as can also be observed from Fig. 4, the increase
in ζ after a certain limit no longer improves the Per-Terminal
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TABLE 4. SE and ASE for cell-free and co-cellular systems with network density λ. We consider ηratio = 8 for both systems.

FIGURE 4. Per-Terminal Average SE as a function of pilot scaling factor ζ .
The total UTs in the network K = 128 and the total of APs in Cell-Free and
the antenna elements in Co-Cellular L = Mt = 1024. We consider
τ0 = 8 and the angular standard deviation σϕ = 10.

SE, and performance degradation can be observed. The rea-
son behind this is that higher values of ζ make the pilots
consume a substantial portion of the available samples. Both
linear detectors (PMMSE and PRZF) achieve almost the same
SE in the Cell-Free system and substantially outperformMR.
While Pmmse and PRZF achieve their best performance at
ζ = 8, mr achieves its best performance at ζ = 1.

In Co-Cellular deployment, and similar to Cell-Free,
improvement in SE can be observed when increasing ζ within
a specific range. However, we can observe that there is a
significant difference in the SE between all the detectors.
Among all the considered detectors, MC-MMSE can achieve
the largest SE, and its optimal pilot scaling factor (reuse
factor) is ζ = 4.

3) NETWORK DENSITY
This section aims to investigate the impact of network density
on the system performance. For both system architectures, the
network density (λ) can be realized by having many APs in
the Cell-Free deployment (λ[L/km2]) and many antenna ele-
ments in the Co-Cellular deployment (λ[Mt/km2]). To main-
tain fairness in the comparison, the ratio of Antenna-UT
(ηratio) in Fig. 5 and 6 is fixed for each value of λ, i.e., as the
number of APs (or antenna elements) increases, the number
of UTs increases accordingly. Also, the density of APs (in

FIGURE 5. Per-Terminal Average SE vs. Network Density for ‘Cell-Free and
Cellular’ LS-MU-MIMO deployments with ηratio = 8.

Cell-Free), the density of antenna element (in Co-Cellular),
and the UTs increase with a constant ratio. For example, for
a fixed value of ηratio, the density of the network increases
in the form of λ = 2n and the total UTs in the form of
K = λ

ηratio
. The simulation result in Fig. 5 is generated based

on (18) and (19) for MMSE and RZF combining schemes
in both network deployments. The achievable Per-Terminal
average SE is plotted under different values of the network
density and the number of active users K with a fixed ratio
of Antenna-UT. As we can observe from this figure, the
increase in the AP density (λ[L/km2]) contributes more to the
outperformance of Cell-Free deployment against Co-Cellular
deployment with antenna element density (λ[Mt/km2]). This
outperform is a result of the cooperation among the APs, and
the improvement of the coverage probability in the Cell-Free
system as the AP density increases.

After a certain limit, the increase in the network density
results in a non-increasing Pre-Terminal SE in both systems.
The main reason for the SE decrease is the pilot contam-
ination, which increases as the number of active users K
increases and becomes more severe for higher values of λ.

In the Cell-Free system, the PMMSE achieves slightly
better performance than PRZFwith higher values of λ. For the
Co-Cellular system, the three considered detectors achieve
almost the same SE in less densified networks (smallλ).
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FIGURE 6. Area-SE vs. Network Density (λ) for ‘Cell-Free and Cellular’
LS-MU-MIMO deployments with ηratio = 8.

However, the detectors are performed differently in higher
network densities. Due to its ability to suppress the inter-
ference from different cells, the MC-MMSE has the best
performance when λ grows higher.

Further, we consider the Area-Spectral Efficiency (ASE),
which is defined as the sum of the SE of all UTs per unit area
and mathematically can be written as,

ASE =


L

ηratio
× SE CF

Mt

ηratio
× SE Co− Cell

(35)

From Fig. 6, we can clearly see that both network deploy-
ments can achieve significant ASE as λ grows higher. How-
ever, one can observe that as the network density increases
the performance gap between the two system deployments
increases. This is basically due to two reasons: First, the
network coverage provided by Cell-Free is always higher
than Co-Cellular, which helps in eliminating the edge-users
problem and results in a better ASE performance in Cell-Free
system. Second, the Cell-Free system performs better than
Co-Cellular when the multiuser interference increases.

Since the total number of active users K increases as λ
increases in our ystem setup, the larger the number of active
users, the higher the resultant interference. Cell-Free system
deployment takes the advantage of the coordinated multi-
point processing (CoMP), which is more robust at higher
multiuser interference.

Table. 4 shows an example of the system performance vari-
ations on Per-Terminal SE and ASE with different network
densities (λ). We also observe that while the Per-Terminal SE
has a non-increasing behaviour with higher network densi-
ties, the ASE increases withλ.

B. CHANNEL ESTIMATION ACCURACY
Since the estimated channels include some estimation error
(as stated in section III), in this section, we analyze the

FIGURE 7. The empirical cumulative density function (CDF) of the
normalized MSE in the channel estimation for an arbitrary UT. The result
shown for different ηratio, (Notice the reverse logarithmic scale).
We consider τp = 10 and the angular standard deviation σϕ = 10.

channel estimation accuracy of the investigated Cell-Free and
Co-Cellular system configurations. We adopt a normalized
mean square error (MSE) as an accuracy metric for both
systems, which is given as [27]

MSEχ =
tr
(
Cχ
)

tr
(
Rχ
) . (36)

where the error correlation matrix Cχ and the spatial correla-
tion matrix Rχ are defined as in section III.
Higher values of MSE mean that the channel estimation

becomes less accurate. Fig. 7 shows the empirical probability
CDF for a correlated channel as a function of the normalized
MSE with different values of Antenna-UT (ηratio).

When comparing the estimation accuracy of the two
considered systems, we notice that a system with a large
number of single-antenna distributed APs achieves better
estimation accuracy than a system with a few numbers of BSs
deployed with a large number of antenna elements. Hence,
the Cell-Free deployment achieves better estimation accuracy
than the Co-Cellular deployment. Moreover, it can be seen
that the system with a higher ηratio has smaller normalized
MSE, which means that the estimation accuracy can be
improved by adding more APs in the Cell-Free systems and
more antenna elements in the Co-Cellular systems. This is
a result of the key properties of LS-MU-MIMO system, i.e.,
channel hardening and favorable propagation.

C. CHANNEL CORRELATION EFFECT
Here we investigate the system’s behaviour through Per-
Terminal average SE achieved by an arbitrary UT according
to the level of the channel correlation. Angular standard devi-
ation (σϕ) is the parameter for channel spatial correlation,
and it reflects how correlated the channels are. Channels with
higher correlation have small σϕ , and vice versa.
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FIGURE 8. Cumulative Distribution Function (CDF) as a function of
Per-Terminal average SE for minimum mean-squared error (MMSE)
combiner, with L = Mt = 256, K = 32, and τp = 10.

Fig. 8 shows the comparison between the two considered
LS-MU-MIMO system architectures, taking into account
the difference in the spatial distribution of APs (in Cell-
Free), and antenna elements (in Co-Cellular). It shows the
cumulative distribution as a function of Per-Terminal SE for
PMMSE and MC-MMSE combining schemes in Cell-Free
and Co-Cellular network deployments, respectively. Each AP
in the Cell-Free system is equipped with 4 antennas, and
the total antenna elements in both systems L = M t = 256.
We observe that a higher Per-Terminal SE can be achieved
as the level of the channel correlation increases (small σϕ).
In contrast, as σϕ increases, the channels become closer to the
uncorrelated case, hence less Per-Terminal SE. The reason is
that the channel estimation accuracy decreases as the spatial
correlation decreases.

D. CELL-FREE DISTRIBUTED PROCESSING
At the cost of extra fronthaul traffic, the highest Per-Terminal
SE is achieved in centralized processing, where the channel
statistics are sent to the CPU. However, to alleviate the burden
on the fronthaul links, the distributed implementation, where
the processing is rather carried out locally at the APs, is inves-
tigated in this section. Unless stated otherwise, the simulation
settings are the same as presented for the centralized imple-
mentation. In all the experiments, each UT is served by a
limited set of APs located around it.

For Cell-Free deployment, Fig. 9-11 show a performance
comparison for the following implementations: 1) Fully cen-
tralized, where APs forward data and CSI to the CPU; hence,
the channel estimation and data detection are carried out at the
CPU. 2) Local Distributed (one stage), where channels and
data estimation are carried out locally at the APs; therefore,
only local data estimates forwarded to the CPU and not
the CSI. 3) Local Distributed (Two stages): where the CPU

FIGURE 9. The empirical cumulative density function (CDF) for an
arbitrary UT as a function of Per-Terminal average SE. We consider
L = 256, K = 32, τp = 8 and the angular standard deviation σϕ = 10.

performs another round of data estimation, using the local
data estimates forwarded by APs.

The results for different distributed detection schemes are
obtained through Monte Carlo simulations, and the central-
ized case is shown as a reference case. For all Cell-Free imple-
mentations, two detection schemes are considered: LPZF
and MR combining schemes. In the following, simulation
results are shown in terms of Cumulative Distribution Func-
tion (CDF) for an arbitrary UT and in terms of average Per-
Terminal SE as the number of APs and the scaling factor grow
higher.

For a better understanding of the effect of the combining
schemes on all implementations’ comparison, Fig. 9 plotted
the empirical cumulative distribution as a function of the
Per-Terminal uplink SE. The simulation results are presented
for fully centralized, local, and local with LSFD distributed
implementations under the same fronthaul limits. The total
active UTs in the area K = 32, L = 256, and τp = 8. We also
assume that each AP is equipped with a single antenna in all
the implementations. It can be observed that the gap in the
performance between the ZF-based and MR-based schemes
is significant and different for each system implementation.
The reason is the lack of ability to suppress the multiuser
interference in the MR combining schemes. For example,
compared withMR combining in the distributed implementa-
tion, LPRZF scheme gives around 40% higher improvement
in the Per-Terminal SE. Furthermore, Fig. 9 shows that the
performance of the LPRZF and MR can be significantly
improved by adding LSFD as a second detection stage at
the CPU.

Fig. 10 illustrates the effect of pilot length scaling on
the achieved performance when the local distributed detec-
tion approaches are employed. We assume that each AP is
equipped with a single antenna, the total active users K =
128, and the total number of APs in the network L = 1024.
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FIGURE 10. Per-Terminal Average SE as a function of pilot scaling factor
ζ . The total UTs in the network K = 128 and the total APs L = 1024.
We consider τ0 = 8 and the angular standard deviation σϕ = 10.

As mentioned earlier, scaling the pilot length will result in
a reduction in the pilot reuse; therefore, the pilot contam-
ination is reduced. Thus, the achieved SE performance’s
improvement continues up to a certain point. As can be seen
in the figure, different combining schemes have different
saturation points, after which the performance starts declin-
ing with more increase in the scaling factor. The saturation
points of the centralized schemes (PRZF and MR-Cent.) are
8 and 2, respectively. For the distributed implementation, the
two schemes (LRZF and MR-Dist.) are saturated at 2, when
LSDF is used as a second stage detection. On the other hand,
the two schemes are saturated at 2 and 1, when LSDF is not
used.

Focusing on the average uplink SE, Fig. 11 depicts the Per-
Terminal SE of PRZF, LPRZF, and MR as a function of the
number of APs. We assume that the total active users K = 8,
the number of APs (L) increases with a constant ratio, and
each AP is equipped with either one antenna (dashed line)
or four antennas (solid line). As can be observed from the
figure, a substantial gain in the average Per-Terminal SE can
be achieved for all schemes as the number of APs (L) grows.
This is a result of the increase in the diversity gain when the
number of APs increases. In addition, we can observe that
PRZF, LPRZF and LPRZF with LSFD schemes gain more
improvement in the performance compared to theMR scheme
as the number of APs increases. This is expected due to
the ability of ZF-based schemes to suppress the interference,
which becomes more severe as the channel gain of other
UTs increases. Compared to other combining schemes in the
distributed implementation, LPRZF with LSFD provides the
highest Per-Terminal SE.

The results in Fig. 11 show that deploying each AP with
four antennas (solid line curves) instead of a single antenna
(dashed line curves) increases the average Per-Terminal SE.
This is because the increase in APs’ antennas improves the

FIGURE 11. Per-Terminal Average SE as a function of the number of APs
(L). The total UTs in the network K = 8. We consider τ0 = 8 and the
angular standard deviation σϕ = 10.

ability to suppress the interference; as a result, per-terminal
SE is increased.

VII. CONCLUSION
The paper has presented a comparative study of Cell-Free
and Co-located Cellular LS-MU-MIMO deployments, given
the same network density in a dense urban environment.
In both system configurations, to achieve a good perfor-
mance, many factors have to be taken into account, such as
the Antenna-UT ratio, the correlation between the channel
coefficients, channel estimation, antenna elements density,
and pilot design. Considering more realistic scenarios, sev-
eral simulations were carried out to evaluate and highlight
the uplink performance of the two deployments. Compared
to Co-Cellular LS-MU-MIMO systems, simulation results
show that Cell-Free LS-MU-MIMO systems can signifi-
cantly improve the achieved uplink performance, and this
improvement becomes more noticeable as the number of
APs grows higher. Moreover, for a given number of active
UTs, a Cell-Free system can provide higher Per-Terminal
SE while ensuring robust and uniform connectivity for all
UTs (i.e., less performance variations). It is also clear that
MMSE and RZF can achieve almost the same performance in
a low-to-moderate densified network. However, among all the
considered detectors, MMSE has the best performance when
the network is more densified in Cell-Free and Co-Cellular
systems. Moreover, the results also confirm that channel
estimation accuracy in the correlated fading is higher than
uncorrelated fading and can be improved further with a higher
ratio of Antenna-UT. Finally, numerical results indicate that,
in the distributed implementation of the Cell-Free system,
the two-stage detection, (i.e., local schemes with LSDF),
outperform the other schemes, and further improvement can
be achieved by deploying the APs with more antennas.
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