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ABSTRACT Aptamers are oligonucleotides that may attach to amino acids, polypeptide, tiny compounds,
allergens and living cell membrane. Therapeutics, bio sensing and diagnostics are all sectors where the
aptamers may be used. In this work, we present a model based on Random Forest Algorithms to predict
the interaction of aptamer and target proteins by combining their most prominent characteristics. Amino
Acid Composition and Psuedo Amino Acid Composition were utilized to express desired data by employing
physicochemical and structural features of the amino acids. The dominant features were selected using
feature importance classifiers such as random forest and eXtreme Gradient Boosting. Compared to these,
principal component analysis techniques yielded a good feature set. As a result, 98% accuracy is obtained
for 50 principal components. Many relevant characteristics in defining aptamer target protein interactions
were discovered after analysing the best set of features. Our prediction approach is expected to become a
valuable tool for discovering aptamer-target interactions, and the traits chosen and studied in this work might
give helpful insight into the process of Aptamer Protein interactions.

INDEX TERMS Aptamers, random forest algorithm (RFA), random forest feature importance (RFFI),
XGBoost feature importance (XGBFI), principal component analysis (PCA), psuedo amino acid compo-

sition (PseAAC).

I. INTRODUCTION

Aptamers are single-stranded DNA or RNA molecules that
may attach to amino acids, polypeptide, tiny compounds,
allergens and living cell membrane as mentioned in refer-
ence[1]. Due to their proclivity for forming side chains and
solitary loops, aptamers can take on a variety of geome-
tries. They’re incredibly adaptable and have a high level of
specificity and selectivity when it comes to binding targets.
Aptamer affinity is deduced from its tertiary structure instead
of its basic nucleotide. Receptor detection and binding are
affected by dimensionality, texture affinities, water molecules
etc.

Benefits of aptamers are: a) Aptamer synthesis: Aptamers
may be produced in large quantities with high precision and
repeatability using chemical processes once they’ve been
chosen; b) Firmness: Upon renaturation, aptamers regain
their natural structure and may attach to targets. They may be
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utilised in a variety of test circumstances; c) Low resistance:
aptamers appear to be low-immunogenic and low-toxic sub-
stances because DNA molecules are not typically recognised
as third parties by the body’s immune system as mentioned in
reference [1]; d) Diversification of spot: Aptamers can be pro-
duced in adequate numbers in the case when poisons or other
compounds that do not provoke robust immune responses.
It has a high affinity and specificity for ligands that antibodies
can’t identify such ions or tiny compounds.

Aptamers can be synthesised with the biological process.
SELEX is a technique that selects compatible oligonucleotide
for a particular target from a huge oligonucleotide pool.
Bacteria samples will be added to the large aptamers pool
and it will be washed with the chemical solution. Aptamers
that do not bind to the desired target are eliminated, while
those that do are enlarged for the next process as mentioned
in reference [1]. By using polymerase chain reaction (PCR)
method billions of copies of a DNA sample will be created in
a short amount of time and then fluorescent will be added to
this to identify the pathogen in food.
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The pool of possible interactions would be reduced to
a slice of possible typical pairings using computational
approaches. Interaction pair of protein-protein and aptamer-
protein can be predicted with the aid of machine learning. The
result will act as a platform for additional laboratory research.
Rapid innovations have indeed resulted in the creation of
networks, including all of the protein-protein interactions
which may be used to identify protein complexes in certain
disorders using computational approaches as mentioned in
reference [2].

SVM and KNN are a type of supervised ML technique
that would be employed to solve classification and regression
problems [26], [27]. It is employed to solve categorization
difficulties. Researchers depict every piece of data as just
a point in n-dimensional spaces in the SVM method, with
feature vector becoming the values of a certain coordinates.
Then we accomplish categorization by locating the hyper-
plane, which clearly distinguishes the 2 groups. Where as in
KNN, initially number K of the neighbor will be selected and
Euclidean distance will be calculated. As per the calculated
distance, take the K-nearest neighbor and count the number
of data points in the category. Finally, assign the new data
points to that category for which the number of the neighbor
is high. Extreme Gradient Boosting and Random forest algo-
rithm are tree based structures which performs well on huge
dataset. Therefore, with the help of various machine learning
techniques, PPI and API can be predicted by considering
Physiochemical properties of the proteins.

Il. LITERATURE SURVEY

Analysis of the Physiochemical properties of the proteins is
essential to predict the protein aptamer interaction. With the
help of SELEX (Systematic Evolution of Ligands by Expo-
nential Enrichment) cycle new aptamers can be identified but
it is quite costly. By employing machine learning algorithms,
protein and protein-protein interactions can be predicted.
DNA aptamer is identified for inconsiderable lung carcinoma
cells with plasma membrane markers as mentioned in refer-
ence [3]. A549 i.e., the adenocarcinoma cell line of human
was utilized for selection with multiple cycles in SELEX
whereas blood leukocytes are employed for negative selection
and CD90 antibody cells employed for constructive selection.
The acquired patterns were issued to in silico study, depend-
ing upon binding affinity, stability and structural motifs.

The deliberated phylogenetic tree exhibited that A549 cell
and aptamer A155_18 have an immediate structural rela-
tionship with strong binding affinity. Therefore, the aptamer
A155_18 is considered as one of the diagnostic tools, rec-
ognizing NSLC cells. By cell SELEX method HF3_58 and
HAS_68 are the two aptamers which are generated in opposi-
tion to A2780T which is a paclitaxel resistant ovarian can-
cer cell line with robust affinity and high selectivity [4].
On the cell surface of A2780T, the two aptamers were
explanatorily exhibited to be two different glycoproteins. The
aptamers were bound independently of divalent ions, temper-
ature and nuclease. Aptamers applied for the identification
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of drug-resistant ovarian cancer cells in human serum as
mentioned in reference [2].

Angiogenesis takes an important part in the extension
and expansion of cancer cells, but Ang2 has a unique role
in regulating angiogenesis [5]. Computational simulation is
carried out to show aptamers with high binding ability for
Ang2 (angiopoietin-2) as mentioned in reference [5]. This
is the initial study against Ang2 using in silico selection
with the ZRANK scoring function, which helps to maximize
the coherence of selected aptamers with good target-binding
ability. Here obtained RNA sequences are converted into
the 3 D structure and then the ZRANK and ZDOCK func-
tions are applied. Based on ZRANK, the top three sequences
are selected. 189 sequences were generated with two point
mutations and it is simulated with Ang2. Later, in order to
test three mutant sequences of maximum ZRANK scores SPR
(Surface Plasmon Resonance) is used.

15-mer aptamers were traced for cytochrome P450 S1A1
by employing simulation and molecular docking as men-
tioned in reference [6]. The approach employed here is in
silico where three stages were involved, i.e., identifying a
possible binding area, plotting the identification and sys-
temic portion of the aptamers and estimating the experimental
affinity. SPR biosensors showed that investigational estima-
tion of the synthesized aptamers interaction with cytochrome
P450 51A1 with Kd values in the range of [1076 — 1077] M
as mentioned in reference [6].

For the estrogen receptor (ER) alpha an aptamer is discov-
ered by employing computational docking as mentioned in
reference [7]. ERE has a power to form solid hairpins and
it was considered as one of the main benchmark to acquire
aptamer-alike sequences. Single stranded RNA analogs of
human estrogen response elements (EREs) were formed and
their possibility to appear as ER aptamer was inspected by
employing HADDOCK, PatchDock and AutoDock Vina. The
entire work is verified by calculating the thermodynamic con-
stants of ER. A candidate RNA owns a binding constant (Ka)
of 1.02 £0.1 x 108 M-1 is selected as an ER-aptamer based
on the in silico and in vitro results. The high specificity and
affinity can be used in identification of ER in breast cancer
and associated diseases as mentioned in reference [7].

The discrete prognostic model is necessary to forecast
PPIs of latest hosts and virus because the available computa-
tional method is restricted to single virus and host [8]. Most
statistical approaches for forecasting PPIs are designed for
interactions in species instead of interactions in the middle of
species such as virus-host cell protein interactions. Despite
poor sequence similarity between test and training dataset
proteins, the forecasting model performed well, comparable
to the best results of other approaches for single virus-host
PPIs. The forecasting model is evaluated on a separate dataset
of virus-host PPIs that were not included in the model’s
testing and have a poor sequence similarity to any protein in
the model’s training datasets.

More enhanced foregoing method of presentation and
identified strong attribute for forecasting virus-human
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protein interactivity has been discussed in reference [9].
RFAT, AC and FDAT is represented in human proteins and
virus in vector of the function. The most popular method
to forecast PPIs is AC. However, in the middle of host and
virus proteins FDAT and RFAT was employed in this research
work to forecast interactions of virus-host protein. SVM
model was created in order to forecast human proteins that
interact with HPV and HCV and it yielded 66.9% accuracy.
Using the new features and representation process, a large
volume of data involved in PPIs is expressed in function
vectors of minimal and fixed dimension, but still it achieved
significantly better performance than previous computational
methods. Other forms of heterogeneous PPIs can be predicted
using the features and representation process.

A number of statistical approaches for locating aptamers
have been proposed. Many of those approaches, though, can’t
be used to find latest aptamers for a target as long as they’re
either classifier for deciding whether a specific set of RNA
sequences and protein interacts or they’re restricted to a
single target. The latest computational technique has been
represented to construct strong RNA aptamers for a protein
target employing many attributes of proteins and secondary
structure of RNA has been discussed in reference [10]. A ran-
dom forest model is built by choosing few features which
showcased good performance in both independent testing and
cross validation. The proposed method decreases the cost
spent on in vitro and time by considerably decreasing the
nucleic acid sequence pool’s primary dimension.

AptaNet is unusual in that it predicts API by combin-
ing sequence-based functionality for oligonucleotides with
conformational and physicochemical properties for goals has
been discussed in reference [11]. AptaNet outperforms other
approaches in terms of precision. AptaNet has shown the abil-
ity to offer biological observations into the existence of APIs,
which can be beneficial to all oligonucleotides researchers
and biologists. The forecasting model was built employing a
DNN for 3404 instances, 640 features, and the random forest
algorithm was used to pick the best attributes. As a result,
the research dataset achieved a 91.38% accuracy. AptaNet
outperformed the competition on a built-in aptamer-protein
benchmark dataset.

By taking into account essential properties of protein
molecules, the Random Forest model may be utilised to pre-
dict possible RNA aptamers for a protein target has been dis-
cussed in reference [12]. With the aid of RF model, ranks of
38,327 RNA sequences were identified in its secondary struc-
ture and dominant 10 RNA aptamers were selected. Later,
the built SVM and RF prediction model is tested using cross
validation and independent testing method. RF and SVM
model achieved 97.76% and 96.08% accuracy for 10 fold
respectively.

Ensemble classifier can be used to predict the aptamer pro-
tein interaction has been discussed in reference [13] because
it gives good result by combining numerous basic classifiers.
Feature extraction is carried out for 2900 protein aptamer
interaction pair which is collected from an aptamer database

VOLUME 10, 2022

with pseudo K-tuple nucleotide composition methods. The
Relief-Incremental Feature Selection (IFS) was used to select
prominent features. The ensemble model achieved 73.2% of
accuracy after performing feature selection method.

The properties produced from the Pseudo Amino Acid
Composition technique can be used to forecast aptamer-target
interaction pairs has been discussed in reference [14]. The
ideal 220 features were picked for 2900 instances employ-
ing the maximum relevance minimal redundancy (mRMR)
approach and the incremental feature selection (IFS)
approach, and the predictor was built using Random Forest.
Achieved 81.34% and 77.41% accuracy for the training and
testing dataset respectively.

Interactions between aptamers and proteins are signifi-
cant in physiological activities and molecular identification.
Despite various uses of aptamers, determining AP interaction
pairs is difficult and restricted. With the help of sparse auto
encoder the features of target sequences can be extracted
has been discussed in reference [15]. Dominant features
were selected using GBDT and incremental feature selection
method. The obtained 616 features were used to train and test
SVM model and it achieved 75.7% accuracy.

By considering the dataset of different species protein-
protein interaction can be predicted has been discussed in
reference [16]. The comparative analysis is done on Human,
S. cerevisiae, E. coli, C. elegans, H. pylori and M. musculus
datasets. Based on the physiochemical properties of amino
acid, the features were extracted using dipeptide composition
methods. 5-layer fully connected DNN is built with the acti-
vation function ReLu and the PPI is predicted for 256 features
with 60567 instances. For the benchmark dataset 99.57%
accuracy is achieved.

Prediction of human-virus protein-protein interaction is
carried out using various machine learning techniques has
been discussed in reference [17]. The positive and nega-
tive samples taken from HPIDB are treated with CD-HIT
to remove the redundancy. The retrieved 291,726 sequences
were used for training. The unsupervised doc2vec embedding
learning model is used to extract additional features of protein
sequence has been discussed in references [17] and [32]. The
performance of RF, SVM and Adaboost models were anal-
ysed with 20% and 80% testing and training sets respectively.
Random forest model achieved 93.23% accuracy for doc2vec
vector features.

The random Forest algorithm performs well with mRMR
feature selection method to predict the PPI has been discussed
in reference [18]. 25,856 instances were selected after remov-
ing redundant and homologous sequences. By considering
all the physiochemical properties of proteins, their features
are extracted and prominent features was selected using
mRMR method [19]-[33]. The obtained 51 features were
used for training and testing the RF model. Obtained accuracy
is 67.29%.

The performance of different algorithms and the dataset
details is presented in Table 1. The experimental procedure
for detecting PPIs takes a long time and are costly. SVM and
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KNN models can be used to predict protein interactions. The
binary coding method can be used to construct the features of
3,271 binary interactions. 2,338 proteins provide a prediction
accuracy of 98,11% for KNN classifier and 86.99% for SVM
model. FIGURE 1 exhibits the accuracy obtained for different
ML algorithms when different datasets are used.

TABLE 1. Performance comparison of different algorithms to predict API.

Paper FS method and Algorithm | Dataset Accuracy
Emami Netal[11] | RF and DNN 3404x640 | 91.38%
W. Lee etal[12] RF and SVM 38327x10 | 97.76%
Zhang etal.[13] RIFS and Ensemble Clas- | 2900x304 73.2%
sifier
Li BQ etal,[14] mRMR and RFA 2900x290 | 77.41%
Qing Yang | GBDT and RFA 2900x616 | 75.7%
etall5]
Lei Yang etal[16] | DC and DNN 60567x256 | 99.57%
Xiaodi Yang | Doc2vecLM and RFA 291,726seq | 93.23%
etal[17]
LiBQ etal [18] mRMR and RFA 25,856x51 | 67.29%
You Z | SVM and KNN 2338seq 98%
etal[20][21]

lll. METHODLOGY

Aptamers are molecules that bend towards specific structures
and attach to certain receptors like proteins. They usually
restrict protein—protein interactions in related sites, which can
result in medicinal properties like antagonism. Identifying
the aptamer-protein interaction pairs with the aid of machine
learning reduces the clinical process costs. FIGURE 2 shows
the block diagram of the proposed model.

100%%
0%
30%%
0%
603
50%
40%,
305
20%,
10%

0%

B Acouracy

DMN FF& PBF& SVM SVM  EC

FIGURE 1. Performance of ML algorithms in API prediction.

Drata Collection ‘ﬂ{ Feature Construction ‘H Feature Selection |

M odel Building

FIGURE 2. Block diagram of the proposed model.

A. DATA COLLECTION

ApatmerBase [22] is a community source of information
regarding oligonucleotides, including different experimental
settings and reference to main scientific literature has been
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discussed in reference [23]. 1638 records were found from
the AptamerBase out of which 257 were target proteins and
1638 were aptamers. Sequences of those entries were col-
lected from NCBI and RCSB website for the best matching
Id. Molecular docking is performed by arbitrarily making par-
ing of the proteins and aptamers. Finally 2900 instances were
considered with 2175 negative and 725 positive instances.
Therefore 2900 instances were used for feature construction.

B. FEATURE CONSTRUCTION

In this section, PseudoAminoAcidComposition (PseAAC),
AminoAcidCompoistio (AAC) and NucleotideComposi-
tion (NC) are discussed in detail. The target protein sequences
were encoded using amino acid composition and pseudo
amino acid composition method, whereas the aptamer
sequences were encoded using nucleotide composition.

1) NUCLEOTIDE COMPOSITION (NC)

The four base pairs of DNA and RNA are ATGC and AUGC
respectively. Every aptamer was represented numerically as
a 20-dimensional variable by using the Nucleotide Composi-
tion Method.

2) AMINO ACID COMPOSITION (AAC)

It computes the number of occurrences of amino acid in a
given residue with the Eq-1 where T is the type of amino acid
and M is the total number of amino acid in the residue.

Freq(T) = (M(T))/M ey

3) PSEUDO AMINO ACID COMPOSITION (PSEAAC)

It is used to extract features from the sequences construc-
tively. If PR is the protein with the chain M then its residues
can be represented with the Eq-2.

PR = Rsl, Rs2, Rs3,..up to RsM 2)

Sequence order effect can be computed by a collection of
distinct correlation factors [12] as shown in Eq-3. The cor-
relation factors are 61, 02,03 ...,0A

1 -1 o
01 = (ﬁ)zi=1 O(Rsi, Rsi + 1)
1 -2 S
02 = (—l1 — 2)25:1 O(Rsi, Rsi + 2)
1 n—-x
01 = (m)zi=1 (Rsi, Rsi + 1) 3)
The correlation function can be computed by using
Eq-4. P1(Rsi), P2(Rsj), Ms(Rsi) etc., are the physiochem-
ical properties of amino acids and Eg-5 is used to change
each of these values from their original values P1(i),
P2(i), Ms(i).
1
O(Rsi, Rsj) = (g)[[Pl(RSj)-Pl(Rsi)]2 + [P2(Rs))
— P2(Rsi))* + [Ms(Rsj) — Ms(Rsi)]*] ~ (4)
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P1G) — Y i = 17°P1(i)/20

P1(i) = ]
Y i=120[P1G) — Y i = 12°P1(i)/20
N . 120 .
P = P2(i) — Y i = 172°P2(i)/20 |
Vi = 1291P23i) — Y i = 12°P2(i) /20
N . 120 .
Ms(i) = Ms(@) — Y i = 1""Ms(i)/20 |

i = 129Ms() — Y i = 12°Ms(i)/20
o)

Finally, a vector vecl, vec2.. May be used to depict the protein
PR’s PseAAC with 20 + A dimensions as shown in Eq-6

[vecl, vec2,vec3...... vec20 + A]TrWhere, Trtranspose

(6)

We have considered 18-Physiochemical properties and it
is collected from references [24] and [25]. Properties such
as bulkiness, buriability, molecular weight, melting point,
hydrophobicity, unfolding entropy, enthalpy and gibs free
energy, polarity, sidechain mass, volume of residue, etc., are
used in our work [24], [25].

C. FEATURE SELECTION

Selection of features is a fundamental topic in learning algo-
rithms that have a significant influence on the model’s effi-
cacy [30]. The attributes we use for training the models do
have significant impact on the results we get. Prediction
accuracy can be harmed by unrelated attributes. The feature
selection process reduces the error rate, improves perfor-
mance and training time is cut in half has been discussed in
reference [31]. After performing PseAAC method 290 fea-
tures were extracted for 2900 instances. Compared to KNN,
XGB and SVM, Random forest model yielded 80% accuracy
for all 290 features and it is shown in FIGURE 3.

100%

20% - | =—

= Precision
" aRscal
— =Fl- Score

60% -
0%

o = Acouracy

0%

KMNN SWI ZGB RF&

FIGURE 3. Performance of ML algorithms for all 290 features.

Methods that give a rank to input characteristics depending
on how valuable they are at detecting a class label are known
as feature importance. In order to analyse the result RFFI and
XGBFI are used. Both the decision tree feature importance
model give the property feature_importances_ and it is used
to get the relative relevance ratings to every attribute in the
input. FIGURE 3 shows the top 20 and FIGURE 4 shows the
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FIGURE 4. Selection of features using RFFI method.
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FIGURE 5. Selection of features using XGBFI method.

top 23 features based on its score using RFFI and XGBFI
method respectively.

One of the common dimensionality reduction methods is
principal component analysis. It aids there in the extraction of
a vector of features from a huge number of existing compo-
nents. Principal Components (PC) are the key parameters that
have been retrieved and are combined in a linear fashion. The
very first PC is retrieved in such a manner that it describes
the highest variance there in the data source. The second
PC, which has nothing to do with the very first, attempts to
describe the exceptional variance in data sources. The third
PC, which has nothing to do with the second, attempts to
describe the exceptional variance in data sources and so on.

While performing PCA, we are allowed to randomly men-
tion the number of attributes (n) which we want to retain.
Out of 290 features, we have done this experiment to retain
principal 20, 25, 50, 100, 150 and 200 features to analyse
the performance of various machine learning models. For the
mentioned attributes variance will be calculated and it keeps
adding the attributes until a cutoff point. Later, it sorts the
characteristics according to the amount of variance they rep-
resent and then plot the cumulative proportion of variance for
the first n components. FIGURE 6, FIGURE 7 and FIGURE 8
shows the principal 20, 25 and 50 components, respectively.

FIGURE 9, FIGURE 10 and FIGURE 11 shows the prin-
cipal 100, 150 and 200 components respectively.

D. MODEL BUILDING
Performance analysis is carried out for the various machine
learning models choosing the different set of features which
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is obtained after performing RFFI, XGBFI and PCA. The
dominant 20 features which is retrieved after performing
RFFl is considered along with 2900 instances and 75% of the
dataset was used as training set and the rest 25% as testing
set.

SVM, KNN, XGB and RF models were built and trained
with the training dataset. The type of kernel used in SVM is
linear and when n_neighbors of KNN is set to 8 it yielded
75% accuracy. Result of XGB and RF was good when
n_estimators was set to 60 and 8 respectively. The Fig.12
shows the performance of ML models for 20 features and
2900 instances. SVM, XGB and KNN models yielded 75%
accuracy.

The dominant 23 features which is retrieved after perform-
ing XGBFI was considered along with 2900 instances and
75% of the dataset was used as training set and the rest 25%
as testing set. The FIGURE 13 shows the performance of ML
models for 23 features and 2900 instances. RF model yielded
72% accuracy, whereas the other three models yielded 75%
accuracy.

F i)

oo 15 50 L5 wme 125 150 175

FIGURE 6. Principal 50 components.

=]

o 5 ! 15 m =
FIGURE 7. Principal 200 components.

Computational time will be reduced when the dominant
features are selected and used for the prediction. The perfor-
mance of the model is also based on the number of attributes
which support the instances. After performing a PCA differ-
ent set of principal features were selected and the same has
been used for prediction. The obtained 20, 25, 50,100,150
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FIGURE 8. Classifiers Vs Accuracy for the prominent features selected
through RFFI method.

and 200 features were considered along with 2900 instances.
KNN, SVM and XGB will not much show any changes
in its result when principal 100,150 and 200 features are
employed, but the accuracy of the RF model will decrease.
Hence, RF model gives best result for principal 50 features
with 2900 instances when n_estimators is set to 7.

KNN, SVM and XGB will not much show any changes
in its result when principal 100,150 and 200 features are
employed, but the accuracy of the RF model will decrease.
Hence, RF model gives best result for principal 50 fea-
tures with 2900 instances when n_estimators is set to 7.
FIGURE 17, FIGURE 18, and FIGURE 19 show the result
of the classifiers when 100, 150 and 200 principal features
are selected.

100 1

A0

df 4

o

o 2 40 60 a0 1]

FIGURE 9. Classifiers Vs Accuracy for the prominent features selected
through XGBFI method.

E. EVALUATION

The confusion matrix helps determine model’s correctness.
Precision, Recall, F1-Score and Accuracy can be calculated
by using Eq-7, Eq-8, Eq-9 and Eq-10 respectively.

o TrPos
Precision = ——— 7)
TrPos + FalPos
TrPos
Recall = — (®)
TrPos + FalNeg
Preci Recall
F1_Score — 2 % recison x Reca ©)

Precision + Recall
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FIGURE 10. Classifiers Vs Accuracy for 50 principal components.
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FIGURE 11. Classifiers Vs Accuracy for 200 principal components.
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FIGURE 12. Principal Components Vs Accuracy of RFA model.
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FIGURE 13. Accuracy Vs n_estimators of RFA.

TrN + TrP
Accuracy = (10)
TrN + TrP + FalP + FalN

KNN, SVM, and XGB models yielded 75% accuracy for
top 20 and 23 features after performing RFFI and XGBFI
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respectively. Features were retrieved based on their score.
The performance of ML algorithms was analysed when those
features were considered with the 2900 instances. The perfor-
mance of classifiers is as shown in Table 2 and Table 3.

TABLE 2. Performance of classifiers for selected features using RFFI.

Classifiers|| Precision | Recall F1 Score | Accuracy
KNN 75% 100% 86% 75%
SVM 75% 100% 86% 75%
XGB 75% 100% 85% 75%
RFA 72% 86% 75% 64%

TABLE 3. Performance of classifiers for selected features using XGBFI.

Classifiers|| Precision | Recall F1 Score | Accuracy
KNN 75% 100% 86% 75%
SVM 75% 100% 86% 75%
XGB 75% 100% 85% 75%
RFA 75% 95% 84% 72%
1007%,
A couracy
209,
Al -
0% 4
0% 4
0% 4
SVNI HGB

FIGURE 14. Classifiers Vs Accuracy for 20 principal components.
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a0

A0 A

40% -

0% A

0% -
EMW 5V HGB FFA

FIGURE 15. Classifiers Vs Accuracy for 25 principal components.

With in testing set, KNN finds the distance among a
demand and then all the instances in the dataset, selects the
given lot of instances (K) nearest towards the enquiry, and
afterwards decides for its most common label. In the case of
classification and regression, we found that the best way to
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FIGURE 16. Classifiers Vs Accuracy for 50 principal components.

TABLE 4. Performance of KNN for principal components.

PCs Precision | Recall F1 Score | Accuracy
20 79% 95% 86% 78%
25 79% 94% 86% 78%
50 80% 90% 85% 76%
100 78% 94% 85% 76%
150 78% 94% 85% 75%
200 76% 97% 85% 75%
1005,
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FIGURE 17. Classifiers Vs Accuracy for 100 principal components.
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FIGURE 18. Classifiers Vs Accuracy for 150 principal components.

choose the correct K for our data is to try a few different Ks
and see which one performs best. Performance of KNN for
the chosen principal components depicted in Table 4. In our
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FIGURE 19. Classifiers Vs Accuracy for 200 principal components.

work, KNN model has given a maximum of 78% accuracy
for 20 principal components. The Support Vector Machine,
is a linear classifier that may be used to solve regression and
classification tasks. It can handle both linear and nonlinear
problems and is useful for a wide range of applications.
SVM is a basic concept: The method split the entire dataset
into categories by drawing a line or hyperplane. Performance
of SVM for the chosen principal components depicted in
Table 5. In our work, SVM model has given a maximum of
74% accuracy for 20 principal components.

TABLE 5. Performance of SVM for principal components.

PCs Precision | Recall F1 Score | Accuracy
20 74% 100% 85% 74%
25 74% 100% 85% 74%
50 74% 100% 85% 74%
100 74% 100% 85% 74%
150 74% 99% 85% 74%
200 74% 99% 85% 74%

TABLE 6. Performance of SVM for different kernel functions at each
principal components.

PCs RBF Sigmoid | Plynomial| Linear
20 74% 64% 74% 74%
25 74% 73% 82% 74%
50 75% 73% 76% 74%

SVM techniques are based on a collection of mathematical
functions known as the kernel. The kernel’s job is to take data
and turn it into the needed format[28], [29]. Table 6 shows
the performance of SVM for different kernel functions for
the principal components.

XGBoost is a method of ensemble learning. It may not
always be enough to depend on the findings of a single
machine learning model. Ensemble learning is a method for
combining the predictive capacity of several learners in a sys-
tematic way. The end result is a single model that combines
the outputs of many models. Performance of XGBoost for
the chosen principal components depicted in Table 7. In our
work, XGB model has given a maximum of 76% accuracy for
25 principal components.
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TABLE 7. Performance of XGB for principal components.

PCs Precision | Recall F1 Score | Accuracy
20 74% 100% 85% 75%
25 75% 99 % 86% 76%
50 75% 100% 86% 75%
100 75% 100% 86% 75%
150 75% 100% 86% 75%
200 76% 99% 86% 76%
TABLE 8. Performance of RFA for principal components.
PCs Precision | Recall F1 Score | Accuracy
20 81% 94% 87% 80%
25 80% 92% 86% 79%
50 97 % 100% 98 % 98 %
100 80% 98% 88% 80%
150 79% 98% 87% 79%
200 78% 98% 87% 78%

Random forests is a method for supervised learning. It has
the ability to be utilised for both classification and regression.
It’s also the most adaptable and user-friendly algorithm. The
trees make up a forest. A forest is believed to be more
strong the more trees it has. RF constructs decision trees from
arbitrarily chosen samples, receives predictions from each
tree, and votes on the right answer. Performance of RFA for
the chosen principal components depicted in Table 8. In our
work, RF model has given a maximum of 98% accuracy for
50 principal components.

Kernel PCA projects a sample into a greater feature map,
where it may be linearly separated, using a kernel function.
The Table 9 and Table 10 shows the performance of KNN and
GB respectively for 20,25,50,100,150 and 200 principal com-
ponents. Both the models yields good result with 50 principal
components as shown depicted.

TABLE 9. Performance of KNN after applying KernelPCA.

PCs Precision | Recall F1 Score | Accuracy
20 79% 94% 86% 77%
25 79% 95% 86% 78 %
50 80% 90% 85% 76%
100 78% 92% 85% 75%
150 79% 94% 86% 77%
200 76% 97% 85% 75%

TABLE 10. Performance of XGB after applying KernelPCA.

PCs Precision | Recall F1 Score | Accuracy
20 74% 100% 85% 74%
25 75% 100% 86% 75%
50 76% 100% 86% 76%
100 76% 100% 86% 76%
150 76% 99% 86% 76%
200 76% 99% 86% 76%

KNN and GB model yields good performance with prin-
cipal 25 and 50 components respectively. Table 11 and
Table 12 shows the result of SVM and RFA respectively
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for the principal components. Bothe the models yields good
result with 50 principal components.

TABLE 11. Performance of SVM after applying KernelPCA.

PCs Precision | Recall F1 Score | Accuracy
20 75% 100% 85% 75%
25 77% 98% 86% 77%
50 79 % 96 % 87 % 78%
100 74% 100% 85% 74%
150 74% 99% 85% 74%
200 74% 99% 85% 74%

TABLE 12. Performance of RFA after applying KernelPCA.

PCs Precision | Recall F1 Score | Accuracy
20 81% 93% 87% 79%
25 82% 93% 87% 79%
50 97 % 100% 98 % 97 %
100 81% 97% 88% 81%
150 81% 97% 88% 81%
200 78% 98% 87% 78%
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FIGURE 20. Principal Components Vs Accuracy of RFA model.
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FIGURE 21. Accuracy Vs n_estimators of RFA.

IV. RESULTS AND DISCUSSION

Sequences of the aptamers and proteins were collected
from the NCBI website. After the docking study, we got
2900 instances with 2175 negative and 725 positive instances.
These were used for future construction and it is carried
out by PseAAC method. We have used 18 physiochemi-
cal properties to compute correlation function as a result
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290 features were constructed. When the performance of the
classifiers is analysed for 290 features, we observed that the
RF model gave 80% accuracy compared to KNN, SVM and
XGB. Feature selection process plays an important role and
it makes the model to perform well. XGBFI and RFFI are
the feature importance classifiers which calculate the ranks or
scores for each feature. Based on the XGFI score, dominant
23 dimensions were selected out of 290 and used along with
2900 instances to analyse the result. The same experiment
is conducted with RFFI and we got 20 features. We achieved
maximum of 75% accuracy for all the three models i.e. KNN,
SVM and XGB in both the methods; results are shown in
Table 2.

One of the common dimensionality reduction methods is
principal component analysis. It aids there in the extraction
of a vector of features from a huge number of existing
components. While performing PCA, we are allowed to ran-
domly mention the number of attributes (n) which we want
to retrieve. When this experiment is carried out we observed
that Random forest gives 98% accuracy for 50 principal
components. The FIGURE 20 shows the result of RF model
for various principal components and FIGURE 21 shows the
accuracy with respect to the n_estimators.

V. CONCLUSION

Interactions between aptamers and proteins are significant
in physiological activities and molecular identification. Our
method took into account not only the genetic material from
oligonucleotides, but also the conventional and the pseudo
amino acid composition of target protein. With the help
of dimensionality reduction method, principal components
were selected and performance evaluation was carried out.
We achieved 98% accuracy for the Random Forest model
for 50 principal components. These attributes may provide
guidance for building unique and effective aptamers that bind
to specific targets, allowing for a better understanding of the
mechanics of interaction among aptamers and their target.
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