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ABSTRACT Warranty data are a valuable and easily accessible data source for manufacturers to assess
the reliability of products in the field. Knowledge about the relationships between products’ reliability and
reliability factors is beneficial for manufacturers to improve products’ quality. For this motivation, based
on warranty data from an agricultural machinery manufacturing company in China, random survival forests
(RSF), which is a machine learning method for survival analysis and provides various interpretation tools,
was applied for reliability modeling in this study. The model’s performance was assessed by the Harrell’s
concordance index (C-index) and the integrated Brier score (IBS). Thirty-four factors from production and
operation were collected. Nine most important and meaningful factors were selected to show their marginal
effects and interaction effects, according to which decision rules for identifying high-risk products were
extracted using classification trees. The results showed that the RSF model trained by considering the
observed times as the age (C-index = 0.88, IBS = 0.089) outperformed that trained by considering the
observed times as the usage (C-index = 0.83, IBS = 0.15); most of the nine factors, such as ‘‘Usage Rate’’,
had nonlinear impacts on the reliability of tractors; the marginal effects and interaction effects can be used
to generate decision rules that can significantly separate high-risk products from the population. This work
provides new insights for agricultural machinery manufacturers to understand their products’ reliability and
make reliability improvement plans and marketing plans.

INDEX TERMS Agricultural machinery, failure analysis, random forests, reliability engineering, warranties.

I. INTRODUCTION
Field data about the lifetimes of products in the field are
vitally important for agricultural tractor manufacturers to
know the true reliability of their products. For reliability
analysis, agricultural tractor manufacturers usually collect
data from laboratory (reliability) tests, follow-up surveys, and
onboard end devices, which are either time-consuming or
expensive. Warranty data are a valuable and easily accessible
data source of field data for manufacturers [1]. Compared
with laboratory data, warranty data are able to capture longer
time-to-failures, actual usage profiles, and the combined
environmental exposures that are difficult to simulate in the
laboratory [2]. A warranty is a manufacturer’s assurance to
a buyer that a product will perform satisfactorily over its
designed useful life. Warranty data consist of claims data,
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which are collected during the processing of warranty claims
and servicing of repairs or replacement under warranty; and
supplementary data, such as manufacturing data, sales data,
and maintenance data [3]. As long as manufacturers run well,
warranty data can be collected without extra efforts.

One of the fundamental problems of reliability analysis
is to understand the relationships between failure times and
reliability factors. For reliability data, censoring occurs due to
time limitations or losing track during the observation period
and makes the failure times of censored products uncertain.
This leads to a problem that most methods developed for
normal tasks, such as classification and regression, cannot
be directly applied for reliability analysis (also called sur-
vival analysis in other research fields). Traditionally, sta-
tistical approaches, such as Cox regression [4], have been
widely developed to overcome the issue of censoring, but
they usually have limited power in dealing with nonlinear
relationships or interactions among factors. Many machine
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TABLE 1. Description of the factors. The factors were sorted into production-related factors and operation-related factors.

learning algorithms have also been adapted to tackle censored
data and model covariate-dependent reliability. By transfer-
ring the original outcome to hazard ratio [5]–[7] or pseudo
survival probability [8], or by using inverse probability of
censoring weighting [9], general regression models, such as
neural networks, can be employed for censored data. Other-
wise, reducing reliability analysis task to classification task
by utilizing some advanced approaches, such as multitask
learning [10]–[13], is also feasible. Specifically for time
series data, recurrent neural network was also extended for
survival analysis. These machine learning approaches usually
achieved high prediction accuracy, but their outcomes are not
intuitive. Interpretation tools for them, such as survLIME and
survNAM, were also developed. Reference [14] provided a
thorough review of statistical methods and machine learning
techniques for survival analysis where readers can get more
detailed information.

RSF [15] is an ensemble method for survival analysis
adapted from random forests (RF) and can deal with nonlin-
ear relationships. RSF is non-parametric and assumption-free
so that it is very practical when no clear theory or hypothesis
is available for testing. More importantly, RSF provides
tools for detecting important factors and interactions. RSF
has been successfully applied in various fields, such as
medical research [16], transportation research [17], political
science [18], bankruptcy prediction [19], and assets
management [20], [21].

For agricultural machinery, establishing parametric mod-
els, such as mixed Weibull distribution model, based on
data from tests or surveys is the most common approach for
reliability estimation. With the advancement of internet of
things (IoT) technology, prognostics and health management
for agricultural machinery can be achieved by monitoring the
operating condition [22], such as vibration, fuel consump-
tion, and lubricant oil consumption. However, in the field of
agricultural machinery, there are few studies that have dealt
with covariates in the reliability model or investigated the
association between the reliability and covariates.

The objective of this study is to explore the relationships
between the reliability of agricultural tractors and various
factors using RSF based on warranty data. In this study,

the 34 factors for the reliability of agricultural tractors were
collected and were sorted into production-related factors and
operation-related factors. By applying RSF on warranty data,
the important factors and their interactions were detected.
Furthermore, how they affected the reliability of tractors was
discussed according to their marginal effects and interaction
effects, based on which decision rules were also extracted.

II. MATERIALS AND METHODS
A. DATA PREPARATION
The warranty data used in this study were collected from
a Chinese agricultural tractor manufacturing company in a
period of 40 months from January 2016 through April 2019,
and consisted of 44,657 tractors’ information. Considering
its commercially sensitive nature, the data were masked to
protect proprietary information. The data were imported from
the company’s manufacturing execution system and enter-
prise resource planning system, and were aggregated into
34 factors. Table 1 lists the 34 factors and their descriptions.

The factors were sorted into production-related and
operation-related factors so that the results can give feedback
to the production and sales process. Production-related fac-
tors consist of factors that reflect products’ attributes, e.g.,
‘‘Model Type’’, ‘‘Power’’ and ‘‘Special Model Type’’; factors
that reflect assembly process, e.g., ‘‘Monthly Production’’,
‘‘Online Time’’, ‘‘Month of Production’’; and factors that
reflect component supplier, e.g., ‘‘C1 Supplier’’. Operation-
related factors consist of factors that reflect working con-
text, e.g., ‘‘Longitude’’. Most of the factors were original
data recorded by the systems, whereas some factors were
calculated, namely the ‘‘Online Time’’, ‘‘Usage Rate’’, and
‘‘Region Sales’’. Table 2 shows the descriptive statistics of
the factors.

For a given product i, the necessary data can be represented
by a triplet (Xi, ti, δi), where Xi is the factor vector; ti denotes
the observed time; δi is the binary failure-censoring indicator
for ti (taking on a value of one for a failed product and zero
for a censored product). Censoring occurs when either the
warranty expires or data collection ends. During the data
collection period, 17,766 of 44,657 tractors were reported
their first failures within the two-year warranty, whereas the
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TABLE 2. Descriptive statistics of the factors. Numerical factors are presented as the range, median and interquartile range. Categorical factors are
presented as the categories and frequency.

rest of themwere right-censored (i.e., their failure times could
only be asserted as greater than the observed times).

The observed time ti can be represented as age in days (cal-
endar time) or as usage in hours (operating time). Although
usage is more relevant for engineering purposes, both age and
usage were considered to illustrate whether the influences of
the factors keep consistent. For a product with a claim, the
age is the difference between the sale date and reporting date,
and the usage is the recorded operating hours on the first
claim. For a product with no claim, the censored age is the
difference between the sale date and the censoring date (i.e.,
minimum of the warranty expiration date and the end date of
data collection), whereas the censored usage was unknown
but can be imputed by a regression model [23].

B. PRELIMINARIES
The reliability of a product is the probability that the prod-
uct will perform its intended function for a specified time
when operating under normal (or stated) environmental con-
ditions [3]. Let T be a continuous random variable denoting

the time to the first failure of a product. The reliability func-
tion (also called survival function) R(t) is defined to be the
probability that the product survives for at least a period t ,
so that

R(t) = P(T > t). (1)

The hazard function h(t) describes the instantaneous failure
rate,

h (t) = lim
δt→0

P(t < T ≤ t + δt|T > t)
δt

. (2)

The cumulative hazard function (CHF) is then defined as

H (t) =
∫ t

0
h(u)du. (3)

The Cox regression model is the most commonly used regres-
sion approach for investigating the association between the
reliability and factors. It is built on the proportional hazards
assumption and employs partial likelihood for the parameter
estimation. The Cox regression model is given by

h (t,Xi) = h0 (t) exp(βXi) (4)

VOLUME 10, 2022 50185



Z.-L. Zhao et al.: Analysis of Factors Affecting Agricultural Tractors’ Reliability Using RSF Based on Warranty Data

FIGURE 1. The flowchart of RSF adapted from [24].

where h0 (t) is called the baseline hazard function and is usu-
ally not specified; β is the coefficient vector and indicates the
factors’ effects. The quantity of interest from aCox regression
model is the hazard ratio (HR), which is exp(β). AHR smaller
than one indicates reduced hazard of failure whereas a HR
greater than one indicates an increased hazard of failure.

C. RANDOM SURVIVAL FORESTS
RSF is a modification of RF for right-censored data and
survival analysis. Same as in RF, randomization is introduced
in RSF in two forms: growing trees using bootstrap samples
and splitting trees using randomly selected subsets of fea-
tures (factors). Randomization and ensemble enable RSF to
approximate rich classes of functions while maintaining low
generalization error. To extend RF to right-censored survival
data, the following adaptions are made on RSF: splitting trees
using the feature that maximizes survival difference between
daughter nodes and constructing a CHF using the unique
failure times at the terminal node. Fig. 1 shows the flowchart
of RSF [24]. The steps for the RSF algorithm are as follows:

1) Draw B bootstrap samples from the original data. Note
that each bootstrap sample excludes on average 37% of
the data, called out-of-bag (OOB) data.

2) Grow a survival tree for each bootstrap sample. At each
node of the tree, randomly select m candidate features.

The node is split using the feature that maximizes
survival difference between daughter nodes.

3) Grow the tree to full size under the constraint that a
terminal node should have no less than d0 > 0 unique
events (failures).

4) Calculate a CHF for each tree. Average to obtain the
ensemble CHF.

5) Using OOB data, calculate prediction error for the
ensemble CHF.

In addition, RSF is capable of handling missing values. For a
more in-depth explanation of this algorithm, see [15].

The RSF model was tuned on the training dataset (80%
of the full dataset) using grid search and five-fold cross-
validation, and then was retrained on the entire training
dataset using the best set of hyperparameters. Model perfor-
mance was evaluated on the test dataset (the rest 20% of the
full dataset). Considering the age and the usage of tractors as
the observed times, the RSF models were trained using the
identical process with fixed data partition and were denoted
as A-RSF and U-RSF, respectively.

Two important aspects of assessing the accuracy of the
survival prediction model are discrimination and calibration.
Discrimination is the ability of the model to distinguish
between high- and low-risk instances, whereas calibra-
tion refers to the agreement between the observed and
predicted outcomes [25]. The Harrell’s concordance index

50186 VOLUME 10, 2022



Z.-L. Zhao et al.: Analysis of Factors Affecting Agricultural Tractors’ Reliability Using RSF Based on Warranty Data

(C-index) [26] quantifies the discrimination accuracy of the
survival model and indicates better accuracy with a higher
value. The Brier score summarizes both calibration and dis-
crimination prediction error simultaneously [27]. The inte-
grated Brier score (IBS), which computes the cumulative
Brier score in a specific time interval, is an overall measure
for the predictive performance of the survival model at all
available times and indicates better accuracy with a lower
value. In this study, the predictive performance of the RSF
models was presented as C-index and IBS.

III. MODEL INTERPRETATION
When the RSF model was determined, factors with high
feature importance, which optimally separate instances and
contribute to the prediction, were then identified as important
factors. Two separate approaches were employed to investi-
gate the feature importance of the RSF model: permutation
variable importance (VIMP), a property related to feature
misspecification; and minimal depth [28], a property derived
from the construction of the trees within the forest. Permu-
tation VIMP measures the increase in the OOB error of the
model after permuting the feature’s OOB data, which breaks
the relationship between the feature and the true outcome, and
indicates a feature of predictive importancewith a large value.
Minimal depth measures the distance of a feature relative to
the root of the tree for directly assessing the predictiveness
of the feature, assuming that features with high impact on the
prediction are those that most frequently split nodes nearest
to the root node. Moreover, it is also possible to identify
pairwise interactions among features by calculating the min-
imal depths of second-order maximal subtrees. A second-
order maximal (w, v)-subtree is a maximal w-subtree within
a maximal v-subtree for a feature v. By considering those
features with closest maximal subtrees to the root node of
a maximal v-subtree, potential interactions with v can be
identified.

To explore the relationships between the factors and prod-
ucts’ reliability, the partial dependence plots (PDPs) [29]
were used to show how the factors and pairwise interactions
affect the RSFmodel’s predictions. The predicted outcome of
RSF can be CHF, survival function, and ensemble mortality.
Ensemble mortality is defined as the expected value for the
CHF summed over time, which has a natural interpretation
in terms of the expected total number of failures. Thus,
ensemble mortality was used as an overall indicator here
representing the failure risk of products. PDP is a global
explanation method for showing the marginal effect of one
or two features on the predictions. The marginal effect at a
particular feature value represents the average prediction if all
data points are assigned that feature value [30]. An assump-
tion of PDP is that the features were not correlated, which is
naturally valid for most of the factors considered in this study
due to their physical implication. Thus, PDP was qualified in
this scenario.

Based on the PDPs, rules for identifying high-risk products
were extracted using classification trees and were validated

on the test dataset. Points in each PDP were separated into
high- and low-risk groups by the median effect value and
were used to train a classification tree, whichwas then applied
to label products in the test dataset. Cox regression was
then performed to estimate the HR between the high- and
low-risk groups on the test dataset. The classification tree
can be linearized into decision rules for identifying high-risk
products if there is a significant difference between the two
groups.

All analyses were completed by R software version 3.6.3
(http://www.r-project.org). The RSF method was imple-
mented by ‘‘randomForestSRC’’ package; evaluation of the
model performance was finished using ‘‘pec’’ package; the
Cox regression were performed by ‘‘survival’’ package;
visualization was completed using ‘‘ggplot2’’, ‘‘ggpubr’’,
‘‘parttree’’, and ‘‘rpart.plot’’ packages.

IV. RESULTS AND DISCUSSION
After tuning and retraining the RSF model on the training
dataset, A-RSF and U-RSF were determined by consider-
ing the observed times as age and usage, respectively. Both
the two models used 1000 trees (B = 1000), 32 ran-
domly selected features for consideration at each node split
(m = 32), log-rank splitting rule, and the minimal terminal
node size of one (d0 = 1). A-RSF achieved 0.88 C-index
and 0.089 IBS on the test dataset, whereas U-RSF achieved
0.83 C-index and 0.15 IBS. The result that A-RSF had better
accuracy than U-RSF may result from the imputation error of
censored usage.

A. FEATURE IMPORTANCE OF THE FACTORS
Two separate measures, VIMP and minimal depth, were used
to investigate the feature importance for A-RSF and U-RSF.
The VIMP and minimal depth rankings of all the 34 factors
for both the two models are provided in Fig. 2. The points
along the red dashed line indicate where the two measures
agree. Points below the red dashed line are ranked higher
by VIMP than by minimal depth, indicating the factors are
more sensitive to misspecification. Those above the line have
a higher minimal depth ranking, indicating they are better at
dividing the instances. The further the points are from the line,
the more the discrepancy between the two measures.

As shown in Fig. 2, the results were somewhat different
as VIMP and minimal depth use different criteria. But the
feature importance for A-RSF and U-RSF were generally
similar. RSF uses the mean of the minimal depth distribution
as the threshold value for deciding whether a feature’s mini-
mal depth value is small enough for the feature to be classified
as important. The threshold values of A-RSF and U-RSF
were 14.9 and 16.8, respectively. The minimal depths of ‘‘C2
Supplier’’, which were ranked last, of A-RSF and U-RSF
were 7.8 and 7.7, respectively, indicating that all 34 factors
are important and should be remained. More specifically,
regardless of the measure and model, the three most impor-
tant production-related factors were ‘‘Power’’, ‘‘C8 Sup-
plier’’ and ‘‘Monthly Production’’; the three most important
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FIGURE 2. The rankings of VIMP and minimal depth of the 34 factors for (a) A-RSF and (b) U-RSF. Points below the red dashed line indicate
factors identified as more important by VIMP than by minimal depth, and those above indicate factors identified as more important by minimal
depth. The values of VIMP and minimal depth of several points are annotated.

operation-related factors were ‘‘Usage Rate’’, ‘‘Region
Sales’’ and ‘‘Longitude’’.

For detailed illustration, in addition to the six factors
mentioned above, another three less important factors, i.e.,
‘‘Latitude’’, ‘‘Month of Sale’’ and ‘‘User Type’’, were also
selected to perform in-depth analysis, considering both their
feature importance and physical implication.

B. MARGINAL EFFECTS OF THE FACTORS
The PDPs of the nine factors for A-RSF and U-RSF are given
in Fig. 3. Mortality represents the estimated failure risk for
each individual calibrated to the scale of the number of fail-
ures, and indicates a high risk with a high value. PDP shows
how the average prediction of the RSF model varies over the
specific feature’s value. Marks (for numerical factors) and the

ratio (for categorical factors) along the x-axis indicate the data
distribution of each factor.

As shown in Fig. 3, the effects of the nine factors were
almost consistent betweenA-RSF andU-RSF. The six numer-
ical factors showed nonlinear relationships with mortal-
ity: high ‘‘Power’’ generated high failure risk (mortality)
(Fig. 3a); either too large or too small ‘‘Monthly Production’’
led to high failure risk (Fig. 3b); extremely low ‘‘Usage Rate’’
caused abnormally high failure risk (Fig. 3d); the relationship
between failure risk and ‘‘Region Sales’’ showed a ‘‘W’’
shape curve (Fig. 3e); the effects of ‘‘Longitude’’ (Fig. 3g)
and ‘‘Latitude’’ (Fig. 3h) showed that tractors that worked in
the central regions of China had lower failure risks.

The relationship between failure risk (mortality) and
‘‘Power’’ was almost monotonic, whereas other numerical
factors had more complex effects. The result of ‘‘Power’’
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FIGURE 3. PDPs for A-RSF and U-RSF of the nine factors: (a) ‘‘Power’’, (b) ‘‘Monthly Production’’, (c) ‘‘C8 Supplier’’, (d) ‘‘Usage Rate’’, (e) ‘‘Region
Sales’’, (f) ‘‘Month of Sale’’, (g) ‘‘Longitude’’, (h) ‘‘Latitude’’, and (i) ‘‘User Type’’. Marks (for numerical factors) and the ratio (for categorical factors)
along the x-axis indicate the data distribution of each factor. Mortality represents the average failure risk calibrated to the scale of the number of
failures.

was consistent with the company’s previous surveys, in which
their engineers concluded that customers of heavy-duty trac-
tors were likely to overload tractors. The effect of ‘‘Usage
Rate’’ was understandable (failure risk increases as usage rate
increases) except for the abnormally high failure risk when
‘‘Usage Rate’’ was low, which may be due to the coarseness
of warranty data. The effects of ‘‘Longitude’’ and ‘‘Latitude’’
may have something to do with agricultural mechanization
level’s region difference, as previous researches [31], [32]
showed that China’s central regions had a medium level
of agricultural mechanization. But more dedicated works
are required to validate this inference. The primary purpose
of exploring the effects of ‘‘Longitude’’, ‘‘Latitude’’ and

‘‘Region sales’’ is to offer some insights into marketing plan
making, such as what regions the company should put more
maintenance resources in and how many products should be
released in each region. And the effects of ‘‘Monthly Produc-
tion’’ can also suggest a reasonable production intensity.

For categorical factors, tractors equipped with component
C8 supplied by C8S1 had the highest reliability (Fig. 3c);
tractors sold in March and April had lower failure risk
(Fig. 3f); tractors operated by group users (i.e., enterprise
and state farm) were more likely to fail (Fig. 3i). In fact,
C8 refers to the tractor’s front axle, which encounters the
worst load conditions of the whole tractor. The result of ‘‘C8
Supplier’’ suggested that, for the company, the front axle’s
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FIGURE 4. Minimal depth interaction matrices of the nine factors for (a) A-RSF and (b) U-RSF. The diagonal entries are the
normalized minimal depth of factor relative to the root node, whereas the off-diagonal entries indicate the normalized minimal
depth of a co-factor with respect to the maximal subtree for a factor.

quality affected the tractors’ reliability most compared to
other components and C8S1 should be the preferable supplier
of the front axle. Group users are eager to achieve economies
of scale [33]. Some possible reasoning for the effect of ‘‘User
Type’’ is that group users may use tractors more frequently
than individual users or they were more likely to report war-
ranty claims to reduce the costs. Considering that the tractors
usually failed several months after being bought, the ‘‘Month
of Sale’’ partly reflects what seasons the tractors worked
in. (The month of failure was not considered because this
information of the censored tractors is unknown.) The result
showed that the tractors sold in March and April had lower
failure risks. Since April is the busy month for agricultural
production in China, the tractors sold in March and April
would go through busy months and cause high risks for the
first failures. This counter-intuitive result reminds readers of
the fact that all effects describe the behavior of the models
and are not necessarily causal in the real world.

C. INTERACTIONS OF THE FACTORS
Using the minimal depths of second-order maximal subtrees
of the RSF model, it is also possible to calculate measures of
pairwise interactions among factors. The interaction matrices
of the nine factors for A-RSF and U-RSF are given in Fig. 4.
The diagonal entries are the normalized minimal depth of
factor relative to the root node (normalized with respect to the
size of the tree), whereas the off-diagonal entries indicate
the normalized minimal depth of a co-factor with respect to
the maximal subtree for a factor (normalized with respect
to the size of the factor’s maximal subtree). Small diagonal
entries indicate predictive factors. For each row, a small off-
diagonal entry having a small diagonal entry is a sign of
interaction between the factor and co-factor.

As shown in Fig. 4, the results were similar concerning
the most important interactions for each factor. Since not all
interactions with high importance were meaningful, only six

pairs of factors for A-RSF were selected to show the interac-
tion effects for illustration as given in Fig. 5. The interactions
of ‘‘Usage Rate’’ vs. other factors were also not considered
because the marginal effect of ‘‘Usage Rate’’ was so strong
that the interaction effects always seemed less obvious.

Fig. 5 shows the two-factor PDPs for A-RSF of the six
pair factors. The intersected lines indicate the presence of
interaction effects between the pair of factors. Tractors that
worked in the central regions of China had lower failure
risks (Fig. 5a). And heavy-duty tractors that worked in low
longitude regions had higher failure risks (Fig. 5b), imply-
ing that more maintenance resources of heavy-duty tractors
should be placed in low longitude regions. In high longitude
regions, tractors equipped with component C8 supplied by
C8S3 had the highest reliability (Fig. 5c), which differs from
the marginal effect of ‘‘C8 Supplier’’. Tractors with the rated
horsepower of 160 or 180 seemedmore compatible with com-
ponent C8 supplied by C8S3 (Fig. 5e). The overlap between
lines in Fig. 5d indicates the interaction effect of ‘‘User Type’’
vs. ‘‘Longitude’’, and the failure risks of tractors owned
by different type of group users in central region had little
difference. The interaction effect of ‘‘User Type’’ vs. ‘‘Month
of Sale’’ was weak since there is no intersection in Fig. 5f.

D. RULES FOR IDENTIFYING HIGH-RISK PRODUCTS
According to information on high-risk products, manufac-
turers can make pertinent reliability improvement plans and
marketing plans. To make the above findings into decision
rules for identifying high-risk products, points in each PDP
were separated into high- and low-risk groups by the median
mortality and were used to train a classification tree. Take the
interactions of ‘‘Longitude’’ vs. ‘‘Latitude’’ as an example,
the decision boundary and visualization of the classification
tree are provided in Fig. 6a and Fig. 6b, respectively, which
are intuitive and understandable for decision-makers to know
what region they should place more maintenance resources
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FIGURE 5. Two-factor PDPs for A-RSF of (a) ‘‘Longitude’’ vs. ‘‘Latitude’’, (b) ‘‘Longitude’’ vs. ‘‘Power’’, (c) ‘‘Longitude’’ vs. ‘‘C8 Supplier’’,
(d) ‘‘Longitude’’ vs. ‘‘User Type’’, (e) ‘‘Power’’ vs. ‘‘C8 Supplier’’, and (f) ‘‘Month of Sale’’ vs. ‘‘User Type.’’

in according to the high failure risks. The conditions along
the path in the decision tree can form a conjunction in the
if-clause when the decision rule is required in text form. The
classification treewas then applied to label products in the test

dataset and log-rank test was performed to evaluate the sur-
vival difference between the two groups on the test dataset for
validation. The log-rank test result and survival plot of prod-
ucts in the test dataset are given in Fig. 6c. Considering the
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FIGURE 6. (a) Decision boundary and (b) visualization of the classification tree trained using the data of PDP for A-RSF of ‘‘Latitude’’ vs.
‘‘Longitude’’. (c) Survival plot and log-rank test result of high- and low-risk groups in the test dataset.

TABLE 3. Univariable Cox regression results of rules extracted from PDPs of A-RSF and U-RSF. Results are presented as the related factor of each rule and
the corresponding hazard ratio estimated by Cox regression.

significance level as 5%, the significant difference between
high- and low-risk groups suggested that the classification
tree was a reasonable rule for identifying high-risk products.

The univariable Cox regression results of rules extracted
from other PDPs are also given in Table 3. Those rules with
HR greater than one, such as rules #1, can significantly
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identify high-risk products and keep consistent with the
PDPs.

Considering the observed times as age and usage, the
results of the two consideration were similar concern-
ing feature importance, marginal effects, and interaction
effects. Since A-RSF had better accuracy, age should be
the preferable choice for the observed times in this sce-
nario; however, usage might be preferable for other pur-
poses, such as calculating mean time to failure. Noting
that RSF is a data-driven method, the results can vary
when the model is trained on different datasets from dif-
ferent scenarios; and all effects describe the behavior of
the model and may not be necessarily causal in the real
world.

V. CONCLUSION
To understand the relationships between the reliability of
agricultural tractors and the 34 factors from production and
operation, RSF was applied on warranty data considering
the observed times as age and usage. Although the factors
seemed to contain more information about age, the overall
results of the two considerations were similar. All 34 factors
were identified as important by the RSF models. According
to the marginal effects of the factors, some of the most
important factors, including ‘‘Usage Rate’’, had nonlinear
relationships with mortality. The interactions effects among
the production-related factors and operation-related factors
existed. Furthermore, decision rules, which can significantly
classify tractors into high- and low-risk groups and keep
consistent with the results of univariable Cox regression, can
be extracted from the marginal effects and interaction effects
of factors.

RSF is a promising method for analyzing factor effects
on agricultural tractors’ reliability, where high dimensional
data and nonlinear relationships exist. Manufacturers will
get insights about production and sales from the results. For
further study, more information regarding production and
operation, such as the primary jobs (e.g. tillage) of tractors,
can be fed into the model to offer further insights. And with
the development of general interpretation tools for reliability
models, other appropriate machine learning methods can be
performed to offer comparisons. Moreover, it is also feasi-
ble to consider the failure modes into the reliability model
(i.e., multi-state model).
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