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ABSTRACT Process monitoring has played an increasingly significant role in ensuring safe and efficient
manufacturing operations in process industries over the past several years. Chemical process data is highly
correlated and has multiscale characteristics in general. Extensive work has been carried out to overcome
this concern for multiscale process monitoring of process plants during the past two decades. The recent
success of multiscale methods in monitoring and controlling manufacturing processes has sparked interest
in investigating these methods for process monitoring. This article aims to present a concise and critical
overview of the applications of multiscale process monitoring methods in chemical processes. First objective
is to identify the importance of multiscale methods for process monitoring. The second and main objective
is the statistical and critical analysis of methods implementation, application area, types of data used, and
various issues mentioned by previous researchers. In addition, the most important critical issues have been
identified, and the capabilities and limitations of each method are discussed and highlighted. The reported
literature focusmainly on fault detection and do not investigate the root-cause diagnosis of the detected faults.
Further, the challenges and prospects in multiscale process monitoring in the chemical process industry have
been discussed for advancement.

INDEX TERMS Chemical process systems, feature extraction; fault detection, fault diagnosis, multivariate
statistical process monitoring, multiscale process monitoring, wavelet transforms.

I. INTRODUCTION
A. PROCESS MONITORING AND ITS IMPORTANCE
Process monitoring in process industries is a cutting-edge
technology that ensures process safety and product qual-
ity [1]. Due to recent technological advances in modern
industry, manufacturing processes have increased in size,
complexity, and intelligence [2]. Early fault detection and
diagnosis (FDD) can increase product quality, less down-
time, and increase plant safety [3], [4]. Moreover, establish-
ing comprehensive process monitoring systems in process
industries may save billions of dollars [5]. A fault diagnos-
tic system must have several characteristics to be effective.
These characteristics are advantageous for comparing and
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standardizing various methods to improve the design and exe-
cution of the design system. These characteristics may also
aid in the development of effective fault diagnostic methods
based on useful parameters [6]. The process monitoring and
fault diagnosis system’s characteristics are shown in Figure 1.

B. PROCESS MONITORING TECHNIQUES
Process monitoring methods are classified in various ways
and available in the literature [6]–[8]. These methods include
analytical model-based, knowledge-based, and data-driven
methods [9]. Figure 2 shows the classification of fault detec-
tion and diagnosis methods. Model-based approaches are
based on the primary principle of constructing the math-
ematical model of the system. These approaches include
an awareness of the system’s physical characteristics in the
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FIGURE 1. Features of the process monitoring system [8].

problem identification and diagnostic process. However, cre-
ating accurate models of large-scale and complex systems
is difficult and sometimes impossible [10], [11]. Addition-
ally, knowledge-based approaches use expert systems that are
rule-based and depend on the skill and experience of plant
operators. However, developing a comprehensive knowledge
base is time-consuming and difficult, especially in the large-
scale processes [12], [13]. Data-driven techniques do not
need a mathematical model or expert knowledge. These
approaches have been more popular in recent years, partic-
ularly for complex systems with difficulties creating models
and expert knowledge [14]–[16].

Multivariate statistical process monitoring (MSPM) tech-
niques are capable and are increasingly implemented in mon-
itoring chemical processes [17]–[19]. The key idea behind
the MSPM techniques is to extract process features through
a specific multivariate analysis process. Highly dimensional
information is then projected into less dimensional space,
and the statistics are evaluated. Leading MSPM techniques
are the principal component analysis (PCA) [14], [20], [21]
and partial least squares (PLS) [22], [23], commonly used for
the monitoring of the chemical processes. Although, these
techniques for monitoring chemical processes have been
very effective, they have certain limitations, such as the pre-
sumption of linear relationships among variables, as essen-
tial details can be overlooked when nonlinear systems are
considered. However, most of these assumptions can easily
be infringed in reality. Therefore, several improvements of
MSPM techniques for process monitoring have been made in
recent years. Although conventional MSPM techniques and
extensions have been successful in many practical situations,
they are generally limited to the single-scale analysis of
events corresponding to the sampled frequency.Most existing

methods are based on fixed-scale data, while the multiscale
scheme uses decomposition techniques to depict data on
several scales. However, a systematic review of these recently
developed MSPM methods has not been reported yet.

C. PREVIOUS REVIEWS AND THE AVAILABLE GAP
Many excellent review articles in process monitoring have
been published in the past. Fault diagnostic approaches based
on quantitative models [6], qualitative models [7], and his-
torical process knowledge [8] have been thoroughly ana-
lyzed in a series of papers. Qin [24] has reviewed data-based
process monitoring methods for fault detection, identifica-
tion, reconstruction, and diagnosis. Ge et al. [13] reviewed
data-based process monitoring methods for nonlinear, non-
Gaussian, multimode, and dynamic processes. Gao et al. [25],
[26] have systematically investigated the use of fault diag-
nostic methods. A comprehensive bibliometric analysis of
data-based fault detection and diagnostic methods for process
systems has recently been presented [27]. Nor et al. [28] have
reviewed data-based FDD methods for chemical processes.
Other significant data-based fault detections and diagnostic
studies have also been reported [29]–[34]. The above reviews
cover different aspects of data-based fault detection and diag-
nosis methods by various aspects, as shown in Table 1.

The purpose of this review paper is to guide the selec-
tion of multiscale fault detection and diagnosis procedures.
As mentioned earlier, none of the available reviews covered
the multiscale process monitoring methods. Therefore, this
review paper aims to provide a comprehensive insight into
multiscale fault detection and diagnosis methods for chemical
processes. Thus, this work offers excellent knowledge for
those interested in developing a multiscale fault detection
and diagnostic framework for the chemical process. It would
serve as inspiration for the future valuable addition in the
state of knowledge relevant to recent developments in fault
detection and diagnosis in chemical processes.

The rest of the paper is structured as follows. The moti-
vation for multiscale process monitoring is provided in
Section II. Multiresolution techniques used in multiscale pro-
cess monitoring methods are discussed in Section III, fol-
lowed by a statistical analysis of multiscale fault detection
and diagnosis methods in Section IV. A detailed review of
multiscale process monitoring methods based on the promis-
ing issues has been discussed in Section V. Finally, some
future challenges and recommendations are discussed in
Section VI, followed by the findings of this review article.

II. MOTIVATION FOR MULTISCALE PROCESS
MONITORING METHODS
Multiscale process monitoring is an important extension of
the statistical process monitoring methods used for highly
correlated, noisy data. These methods have been widely used
tomonitor chemical processes in recent years. Themotivation
for the multiscale process monitoring is presented in the
following sub-sections.
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FIGURE 2. Classification of fault detection and diagnosis methods [9].

A. UNIVARIATE STATISTICAL PROCESS MONITORING
Univariate statistical process monitoring methods, often
known as statistical process control (SPC) methods, evaluate
each variable individually [41]. Walter Shewhart invented
the first SPC chart, which is used for process monitoring
without the usage of a filter. This chart identifies the typi-
cal significant faults. Other SPC charts, such as the cumu-
lative sum (CUSUM) and exponentially weighted moving
average (EWMA), detected minor faults using linear fil-
ters. While these techniques continue to be prevalent in the
process industry, their efficacy degrades when highly cor-
related variables are used [42]. Multivariate extensions of
Shewhart control charts are used when process parameters of
the underlying process are known or unknown. Multivariate
CUSUM (MCUSUM) and multivariate EWMA (MEWMA)
have been developed for the detection of small changes [43]
and have provided unsatisfactory results for highly correlated
process variables [44].

B. MULTIVARIATE STATISTICAL PROCESS MONITORING
Multivariate process monitoring (MSPM) methods can be
used to evaluate highly correlated and high-dimensional
process data. The main concept of MSPM methods is the
characteristics of the process that can be achieved through
a particular analysis process. Thus, higher dimensional infor-
mation is projected into a less dimensional space, followed
by the evaluation of statistics [45]. Figure 3 shows the classi-
fication of well-known MSPM methods.

PCA and PLS are the most widely used MSPM methods.
PCA-based monitoring methods consider all process faults,
while PLS-based monitoring methods emphasis on quality-
related faults. As the complexity of industrial processes have

increased due to the recent technological advances in mod-
ern industry, it is necessary to ensure process safety, prod-
uct quality and production efficiency [2]. Therefore, quality
related process monitoring is much more significant than
simply monitoring the fluctuations and anomalies of process
variables [46], [47]. Both methods presume that the Gaussian
distribution obeys the data. Independent component analy-
sis (ICA) requires high-level statistics to solve non-Gaussian
problems. More important information can be revealed in
non-Gaussian data [48]. Gaussian Mixture Model (GMM)
is another way of handling non-Gaussian data by treating a
complex process as a linear combination of several Gaussian
models [49].

C. RECENT DEVELOPMENTS IN MSPM METHODS
Generally, two types of processes are used in industry
including batch processes and continuous processes. The pro-
cess data obtained from process industry exhibit multimodal
distribution, dynamics, nonlinear relationships between vari-
ables, non-Gaussian, and time-varying and multiscale [13].
Several enhancements to conventional MSPM approaches
have been made in recent years, and many other data-
based methods have also been introduced for process
monitoring [50]–[52].

In practical applications, the process data are always con-
taminated by random noises. Therefore, it is essential that
process monitoring should also be carried in a statistical man-
ner, and the monitoring decisions are made through a proba-
bilistic way. To address this problem, PCA based monitoring
method formulated into a probabilistic framework known as
probabilistic PCA (PPCA) [53]. In the probabilistic models a
unified likelihood-based monitoring statistic is used instead
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TABLE 1. Recent review papers coverage in comparison with this review paper.

of the T2 and SPE control charts [54]. Furthermore, PPCA
framework has also been extended to handle non-Gaussian
data to improve the fault detections [55].

The process data collected from chemical processes usu-
ally involve high noise levels and autocorrelation and may
also vary from normality and impact MSPM process mon-
itoring methods [56]. Such techniques are also based on a
single-scale representation of measurements and cannot cap-
ture the information from multiscale representations of mea-
surements [57].Wavelet-basedmultiscale processmonitoring
methods have been developed to address these problems.

Process monitoring models have been developed in
these techniques by using wavelet coefficients at each
scale [57]–[59]. Instead of wavelet transforms (WT), some
researchers used empirical mode decomposition (EMD) and
singular spectrum analysis (SSA) to decompose the process
variables before MSPM methods [60], [61]. EMD and SSA
both are merely relying upon data-adaptive basis functions.
Thus, these techniques are more helpful in analyzing the
nonstationary signals emanating from nonlinear systems [62].
Multiscale process monitoring techniques have effectively
been used to analyze chemical processes over the last two
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FIGURE 3. Multivariate statistical process monitoring methods and their modifications [63].

decades. Various multiscale process monitoring techniques
have been applied based on the process data obtained from
different chemical processes.

III. MULTIRESOLUTION TECHNIQUES IN MULTISCALE
PROCESS MONITORING METHODS
The demand for operational safety and product quality are
critical issues in modern industrial processes. Although, the
widespread use of sensor networks, advanced data acquisi-
tion technology, and the extensive use of distributed con-
trol systems (DCS) have added significant benefits to all
process industries [44], they are becoming increasingly inte-
grated, automatic, more complex, and intelligent opera-
tions. These developments in modern industrial processes
increase the need of efficient process monitoring systems [2].
Conventional MSPM techniques and their extension focus
on analyzing single-scale phenomena, typically the sampling
frequency. Therefore, the applications of these techniques
are restricted to only a single scale and cannot derive the
amount of information from process data showing multi-
scale phenomena [64]. The multiscale approach can obtain
information through different decomposition techniques in
different scales.

WT is the most effective multiresolution analysis (MRA)
tool and helps decompose the original process measurements
into their multiscale components according to time and fre-
quency characteristics [14]. The process signals, which have
distinct physical patterns or disruptions, decompose, and are
viewed as several signals at different resolution scales.

The scaled version of the original signal is achieved by
projecting it on an orthogonal signal to obtain coarse approx-
imate coefficient scale and is given as [65]:

ϕij(t) = 2−j/2ϕ(2−j/2t − k) (1)

where, k and j are discretized translation and dilation param-
eters, respectively. The discrete wavelet function for detail
scale is given as [65]:

9ij(t) = 2−j/29(2−j/2t−k ) (2)

The coarse approximate and detail signal coefficients are
computed using the low pass filter (H) and high pass filter
(G) given as [66]:

as = Has−1, ds = Gas−1 (3)

where, as and ds are the approximate and detail scale coeffi-
cients, respectively. The original signal can be obtained by
computing the sum of the last scaled signal and all detail
signals:

x(t) =
n2−j∑
k=1

ajkϕjk +
j∑

j=1

n2−j∑
k=1

djk9jk (t) (4)

where j and n are the level of decomposition and original
signal length, respectively.

In WT, determining the optimal decomposition level is
important. At the highest decomposition level, the approxi-
mation function adequately reflects the actual deterministic
signal with the least amount of noise. Each variable in a
multivariate scenario may have a distinct optimum decom-
position level. For computational simplicity, only a single
decomposition level will be applied to all variables in most
practical applications. As a result, the decomposition level
chosen must be appropriate or optimal to ensure that the
underlying characteristics of each variable are appropriately
retained in the approximation function with the least amount
of noise [67].
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FIGURE 4. The basic idea in multiresolution analysis with wavelet
transform.

Multiscale representation of signal up to level 3 is
illustrated in Figure 4. First, the original signal (S) is decom-
posed into approximation and detail coefficients. The approx-
imation function low-frequency signal, which contains the
essential underlying deterministic features. The detail func-
tion includes the high-frequency component, which is mainly
noises. The approximation function is further decomposed
into even coarser approximation until the average signal has
been approximated. This reconstruction perfectly composes
the original signal if all wavelet coefficients are used.

Recently EMD has attracted much attention when decom-
posing the time-series signal into different time scales. Unlike
wavelet-based algorithms where the signal is decomposed in
the transform domain, EMD adaptively sets the decompo-
sition functions directly from data instead of using a fixed
wavelet function across the entire analysis; therefore, this
algorithm is a better choice for handling data collected from
non-stationary processes [62]. The following are the two con-
ditions that need to be met for a component to be considered
an intrinsic mode function (IMF) [68]:

1. Total zero crossings and the total extrema in the whole
data set should be equal or vary by at most one.

2. The mean value of the envelope frommaxima and min-
ima should be equal to zero at any component interval.

Among these decomposition frameworks, the WT has
dominated the publication landscape over the years and will
be referred to more extensively.

IV. STATISTICAL ANALYSIS OF MULTISCALE PROCESS
MONITORING METHODS
The available literature based on multiscale process mon-
itoring has been statistically reviewed and summarized in
Figure 5. Various fault detection and diagnosis techniques
have been used for multiscale process monitoring. These
include conventional process monitoring methods such as
(CUSUM and EWMA), multivariate (PCA and PLS), and
their various extensions. Figure 5(a) shows the most widely
used methods involved in multiscale process monitoring.
PCA is the most widely used method in multiscale process

monitoring, followed by KPCA, PLS, KPLS, NLPCA and
KFDA.

Validation of multiscale process monitoring approaches
has been done using various applications. Figure 5(b) illus-
trates the most often used applications in this field of study.
The TE process is widely used by researchers, with a share of
about 22.22%. The CSTR system, Industrial processes, and
simulated numerical data are the next most used application
areas, with 15.15%, 16.16%, and 14.14%, respectively.

The performance of the multiscale process monitoring
methods was evaluated using process data from various
diverse application areas. Figure 5(c) shows the distribution
of data types used in multiscale process monitoring. Two
types of datasets have been used for multiscale process mon-
itoring, including real-time and simulated data. Figure 5(c)
shows that the portion of the real-time dataset used is only
23.23%, acquired from either industrial processes or pilot
plants. On the other hand, the rest of the portion includes
simulated datasets. The characteristics of simulated datasets
usually are known, which can help highlight the effectiveness
of a specific method.

Various issues arise in the application of multiscale process
monitoring. The major issues identified based on careful
study of the research articles related to multiscale process
monitoring are presented in Figure 5(d). The figure shows the
percentage of papers that dealt with each of them. Although
some of these issues are not unique to multiscale process
monitoring methods alone, we are reviewing them within
the context of multiscale process monitoring. Research arti-
cles based on multiscale process monitoring are devoted to
discussing these issues. A list of all the research articles
reviewed is then provided in Table 2. The table also shows
the decomposition technique used, the method used, the case
studies used, and, more importantly, the issues addressed. The
purpose of this table is to help the reader choose a specific
issue of interest and to browse the column for papers that deal
with it.

V. REVIEW OF MULTISCALE PROCESS MONITORING
METHODS
As identified and presented in Table 2, significant issues
related to multiscale process monitoring are thoroughly dis-
cussed in this section. We first converse why they are impor-
tant and then give examples of how many researchers have
addressed them over the years.

A. MULTISCALE METHODS FOR QUALITY-RELATED
PROCESS MONITORING
MSPM methods are more beneficial for extracting meaning-
ful information from the highly correlated process and quality
variables because quality variables are measured at lower
frequencies and typically have significant time delay [69].
Monitoring quality variables is essential for preventing sys-
tem breakdowns and evading substantial financial losses.
A few researchers have also developed a quality-related mul-
tiscale process monitoring technique.
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FIGURE 5. (a) commonly used methods involved in multiscale process monitoring, (b)-Types of case studies used in multiscale process
monitoring, (c)-Frequently used application area in multiscale process monitoring, and (d)-Issues arise in multiscale process monitoring.

Partial least squares (PLS) technique is the MSPMmethod
associated with quality-relevant monitoring, and it finds a
relationship between the process and quality variables [70].
Teppola and Minkkinen [71] proposed a quality-related mul-
tiscale process monitoring scheme combining wavelets with
PLS. The PLS model is based on filtered measurements
obtained by removing low-frequency scales in this approach.
Lee et al. [72] proposed a multiscale technique combining
PLS and WT for sensor fault detection. The feasibility of the
proposed techniquewas confirmed by using the real industrial
dataset from the biological wastewater treatment process.
The monitoring results were also compared to those of the
standard PLS method.

Madakyaru et al. [73] proposed a MSPLS model based on
generalized likelihood ratio (GLR) tests. In this approach,
a modelling framework is created by integrating WT with
PLS, and then GLR testing is used to improve the fault detec-
tion. The proposed methodology proved immensely influ-
ential in the early detection of minor faults with incipient
behaviour in distillation columns. Similar work is proposed
by Botre et al. [74], where efficiency and robustness are
demonstrated through simulated continuous stirred tank reac-
tor (CSTR) and Tennessee Eastman process (TEP) data.

Zhang and Hu [75] proposed a multiscale KPLS
(MSKPLS) method combining kernel PLS (KPLS) and
wavelet analysis for investigating the multiscale nature of the

nonlinear process. The feasibility of the proposedmethodwas
tested for a real industrial data set, and the process monitoring
abilities were compared with the standard KPLS method.

B. MULTISCALE METHODS FOR NONLINEAR PROCESS
MONITORING
Multiscale process monitoring frameworks using conven-
tional MSPM methods have been used effectively in the pro-
cess industry. Conventional MSPM methods underperform
in complex industrial processes with nonlinear features due
to their assumption of linear correlations in the process data.
In recent years, nonlinear process monitoring has become a
hot area of research in this field, and some nonlinear multi-
scale approaches have been developed.

Shao et al. [76] proposed a multiscale NLPCA process
monitoring approach based on input-training neural network
(IT-NN) where non-parametric control limits were employed
instead of linear control limits to improve online perfor-
mance monitoring. This technique was modified using a
multi-level wavelet decomposition to enhance the process
monitoring [77]. Geng and Zhu [78] proposed an adap-
tive multiscale NLPCA approach to monitor slow and weak
changes in process variables. Maulud et al. [67], [79] have
developed a new multiscale approach using optimal wavelet
decomposition and the orthogonal NLPCA. They only used
approximation and highest detail functions, simplifying the
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overall model structure and improving interpretation at each
scale. In this work, optimal decomposition level was deter-
mined by a PCA based graphical method.

The kernel learning methods recently received signifi-
cant attention in the chemical industry and have been cou-
pled with conventional MSPM process monitoring methods
[80]–[83]. Several researchers have proposed KPCA and
KPLS based multiscale nonlinear process monitoring meth-
ods [84]–[86]. Choi et al. [84] proposed a new multi-
scale nonlinear process monitoring technique using KPCA
to detect and identify faults. This approach has been
extended by Deng and Tian [85] to nonlinear dynamic pro-
cesses that can effectively extract autocorrelation, cross-
correlation, and nonlinearity from the process data. Zhang
and Ma [86] further developed this approach to improve
diagnostic capabilities. Further study proposed a nonlinear
system monitoring approach based on KPLS at different
levels. Zhang and Hu [75] have extended this approach to
monitoring online processes in nonlinear processes.

The Fisher discriminant analysis (FDA) does better than
the PCA approach to classification problems in many cases.
Although it shows limited performance in nonlinear systems
due to its linearity, it is better suited to classification prob-
lems [87]. Liu et al. [88] proposed a multiscale classification
method to obtain the most discriminatory characteristics of
the scale. The effects of feature extraction investigated the
classifier performance, and a multiscale classifier was devel-
oped to classify the faults better. This method can be applied
to relatively large multi-class issues. Nor et al. [89] pro-
posed a novel multiscale approach by combining KFDA with
wavelets for nonlinear process monitoring. In this approach,
XmR and T2 statistics used fault detection. This approachwas
further extended to enhance the performance of fault classi-
fication and developed a robust multiscale feature extraction
and fault classification method [90].

C. MULTISCALE METHODS FOR DYNAMICS PROCESS
MONITORING
Due to random noise and process disturbances, a dynamic
relationship exists among process variables in modern chem-
ical processes. Information on this dynamic behaviour is not
included in conventional process monitoring methods, lead-
ing to misleading results. Changes in dynamic relationships
among process variables can not be investigated efficiently,
resulting in significant process failure due to dynamic rela-
tionships, intermittent noises, and other disturbances. Sub-
stantial research has improved monitoring performance in
dynamic industrial processes in recent years.

Haitoa et al. [91] proposed a multiscale framework for
monitoring dynamic multivariate processes at different scales
by combining wavelets and PCA. This framework enhances
the suitability of PCA for monitoring processes based on
auto-correlated data. Yoo et al. [92] have developed a mul-
tiscale approach to dynamic processes using dynamic PCA
for WWTP. Similar faults have been detected and isolated by
incorporating D statistics into the algorithm. Alabi et al. [93]

have developed a multiscale dynamic process monitor-
ing approach by integrating WT with generic dissimilar-
ity measure (GDM) to improve performance monitoring.
Kini and Madakyaru [94] developed a multiscale DPCA
framework where T2 and SPE statistics were used for fault
detection. The effectiveness of this framework is demon-
strated by using dynamic multivariate data acquired from
the TEP.

D. MULTISCALE METHODS FOR INCIPIENT FAULT
DETECTION
Early detection of incipient faults inmodern chemical process
systems is increasingly becoming important, as these faults
can slowly develop into severe abnormal events, which leads
to the failure of critical equipment. It is critical to detect even
the most minor irregularities to ensure the safety of the pro-
cess and the highest level of product quality. Detecting minor
or incipient anomalies in modern chemical process systems is
essential for process safety and maintaining product quality.
Because they are camouflaged by noise and process control,
these faults are difficult to detect early. They are common
in complex processes and may quickly increase if no action
is taken. Multiscale methods for detecting minor faults are
reviewed as follows.

Kano et al. [18] proposed a multiscale method for incip-
ient fault detection using dissimilarity analysis (DISSIM).
Although DISSIM is mathematically comparable to PCA, its
statistical index differs from T2. A newmultiscale fault detec-
tionmethod based on Ensemble EmpiricalModeDecomposi-
tion (EEMD) is proposed, effectively detecting three specific
faults in the TEP that were previously undetectable using
previously reported methods [95]. In this method, faults sig-
natures are extracted using EEMD based PCA, and then half-
normal probability and Cumulative Sum (CUSUM) are used
for fault detection. The proposed method is further extended
where CUSUM based on T2 and SPE statistics improves fault
detection [60]. Recently, a new multiscale framework has
been proposed to detect incipient faults. In this framework,
wavelet-based PCA is used to extract the fault signatures, and
then CUSUM and EWMA based on T2 and SPE statistics
are developed to improve the fault detection. The results
show that EWMA based SPE statistics successfully detect
the incipient faults present in the simulated data obtained
from the CSTR system [96]. Žvokelj, et al. proposed a
multivariate and multiscale fault detection methods to detect
incipient failure of large slewing bearings based on Acoustic
Emission (AE) signals by integrating EEMD with PCA [97],
KPCA [98] and ICA [99].

E. MULTISCALE METHODS FOR FAULT DIAGNOSIS
Multiscale methods for fault detection have been thoroughly
reviewed in previous sections. Although fault diagnosis is
essential in process monitoring, it is relatively limited while
employing multiscale methods. It is challenging to analyze
the simultaneous impact of multiscale variables on monitor-
ing statistics. Generally, fault diagnosis is accomplished via
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TABLE 2. Comprehensive overview of published literature on multiscale fault detection and diagnosis.
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TABLE 2. (Continued.) Comprehensive overview of published literature on multiscale fault detection and diagnosis.
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TABLE 2. (Continued.) Comprehensive overview of published literature on multiscale fault detection and diagnosis.

fault identification and classification. In fault identification,
the faulty variables are identified based on their influence on
the value of the statistical index. Identifying faulty variables
is beneficial for highly integrated, large-scale, and complex
plants [10]. There is no need for fault information for diagno-
sis through fault identification. If prior knowledge about the
fault is available, the learning problem would be to find the
boundary between normal and faulty samples. This learning
problem is related to fault classification, and the three com-
mon approaches are similarity factors, discriminant analysis,
and support vector machines (SVM).

Contribution plots are the most popular tool for identifying
which variables push the statistics beyond control limits.
Shao et al. [76] proposed a wavelet-based nonlinear PCA
algorithm for process monitoring and applied differential
contribution plots to find faulty variables of an industrial
drying process. Many researchers have also used contribu-
tion plots with MSPCA process monitoring approaches to
determine the faulty variables [100]–[102]. Zhiqiang and
Quanxiong [103] used contribution plots for fault iden-
tification in the wavelet-based adaptive MSPCA method.
Many researchers applied contribution plots to identify the
faulty variables using kernel-based nonlinear multiscale tech-
niques [75], [84], [86], [104]. Similarity factor was integrated
with MSPCA to identify the fault type and reveal the fault
source [85], [105].

Lau et al. [106] have implemented Adaptive Neuro-Fuzzy
Inference System (ANFIS) fault classification with MSPCA
to diagnosis selected fault cases in the TEP. Nor et al. [107]
proposed a new multiscale fault diagnosis method by com-
bining the multiscale KFDA and the ANFIS classification
model. The fault classification performance was evaluated
using the TEP, and the results indicated that the proposed
multiscale KFDA-ANFIS framework improved over the mul-
tiscale PCA-ANFIS and FDA-ANFIS.

SVM is a well-known classification tool, proposed initially
by Cortes and Vapnik [108]. Liu et al. [88] proposed a multi-
scale fault diagnosis method and applied the SVM classifier
based on classification distance, using 4-fold to obtain the
optimal parameters. Nor et al. [90] incorporated the SVM
classifier withmultiscale KFD, and the performance accuracy

was compared to the multiscale KFD-GMM of the faults in
the TEP.

F. MULTISCALE METHODS FOR BATCH PROCESS
MONITORING
Batch processes often operate in different phases of
operation. The batch operations are becoming increasingly
complicated due to frequent start-ups and shutdowns. As a
result, monitoring tasks in batch processes are becom-
ing more challenging to perform. Multiway PCA [109]
and multiway PLS [110] are still used to monitor batch
processes.

Lee et al. [111] proposed a multiway MSPCA approach
for batch processes that combines WT and multiway PCA
and has been effectively used in the sequencing batch reactor
process for biological wastewater treatment. The proposed
approach aids in detecting early faults and detecting less
apparent faults. Alawi and Morris [112] proposed a mul-
tiscale multi-block modeling approach for batch process
monitoring and compared it with the conventional MPCA
approach using simulated data obtained from the penicillin
fermentation simulation benchmark.

G. MULTISCALE METHODS FOR NON-GAUSSIAN DATA
Contrary to the eminent advances in MSPCA and MSPLS
fault detection methods, ICA has received significantly less
attention in the field of wavelet-based process monitoring
despite ICA being a better choice formonitoring non gaussian
data. A few researchers have also developed a multiscale
process monitoring methods to handle non-Gaussian data.

Salahshoor and Kiasi [113] proposed a multiscale-ICA
technique by integrating with wavelet analysis and ICA for
non-gaussian data. They used Daubechies 3 up to level 3 and
found that the proposed technique was effective for TE pro-
cess data. Zvokelj et al. [99] proposed a new multiscale pro-
cess monitoring technique by combining EEMD with ICA.
They found that this technique is also suitable for detecting
incipient faults in large slewing bearing systems. Recently,
Kini and Madakyaru [114] proposed a wavelet based mul-
tiscale fault detection technique by combing wavelets with
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ICA. The effectiveness of the proposed technique was illus-
trated by using three different case studies and found that
this technique can enhance the detection rate in noisy process
environments.

VI. CHALLENGES AND OPPORTUNITIES
The increasing complexity of industrial systems and their
related performance requirements have created a need to
develop new approaches for their supervision. This review
unravels how multiscale approaches have been applied for
process monitoring within various industrial applications.
Despite many advances in multiscale process monitoring
research, more challenges are still emerging. Multiscale will
likely have a role in addressing these challenges towards
safer operations in the industry. A few of these challenges
are discussed as follows.

A. ONLINE PROCESS MONITORING
Plant safety and product quality are two essential elements of
today’s process industry. Implementing a distributed control
system and modern mearing techniques adds to the com-
plexity of modern chemical plants. Therefore, it is impor-
tant to identify and correct anomalies immediately during
the process. This issue can be solved by employing online
process monitoring, which will be helpful for efficient quality
control of final products and process optimization. However,
not enough attention is given to the issue of online process
monitoring in multiscale methods. Therefore, developing a
methodology for online processmonitoring is of great interest
that needs further research in the future.

B. FAULT IDENTIFICATION AND SMEARING EFFECT
The increasing complexity of chemical process systems
makes it much more difficult to diagnose faults. A diagnostic
tool is needed for fault identification after the fault has been
detected in a process. Identifying a faulty variable is critical in
analyzing the causes of abnormalities present in the process.
In real systems, there is a possibility that avoiding a specific
fault may result in the occurrence of another subsequent fault.
Contribution plots are commonly used to determine fault
variables, but this technique suffers from the smearing effect,
which can mislead the faulty variables of the detected faults.
However, insufficient attention is paid to fault identification
inmultiscale processmonitoring. Identifying a faulty variable
correctly inmultiscale processmonitoring is an open question
that needs further research in the future.

C. ADAPTIVE FAULT DETECTION AND DIAGNOSIS
One of the most challenging monitoring processes is the
detection of minor or incipient irregularities in highly cor-
related multivariate process data. Indeed, early detection of
these incipient irregularities can help prevent significant dam-
ages and financial losses. Unfortunately, it is challenging
to detect incipient abnormalities as they are too weak to

TABLE 3. List of abbreviations.
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TABLE 3. (Continued.) List of abbreviations. TABLE 3. (Continued.) List of abbreviations.

detect conventional MSPM methods. As mentioned in the
above discussion, a few techniques attempt to handle such
irregularities. The key limitation of these studies is the use of
conventional PCAmethodology, a linear technique. However,
most chemical processes are nonlinear and may have specific
dynamic characteristics. Therefore, developing a nonlinear
multiscale method for detecting incipient faults is of great
interest in the future.

D. MULTIMODE PROCESS MONITORING
The conventional MSPM methods and their extensions
assume that the process is operated under single steady
state conditions. Since the modern industrial processes are
linked with different operations, where operating conditions
are change frequently. In this situation, the currently used
monitoring technique may not perform well and may cause
false alarm(a). Therefore, to keep the industrial process under
control, monitoring process should be updated according to
the change of operating conditions.

VII. CONCLUSION
This study aims to provide an overview of multiscale pro-
cess monitoring and its use in chemical process systems.
This review article firstly discussed the statistical process
monitoring and recent developments in MSPM methods.
A statistical analysis of the existing literature on multiscale
process monitoring methods is also presented, based on
the methods used, application area, types of data, and the
issues addressedwithin thesemethods by various researchers.
These issues include monitoring quality-related processes,
monitoring nonlinear processes, handling batch process data,
accounting for process dynamics, and performing fault diag-
nosis. Multiscale process monitoring research has signifi-
cantly progressed by addressing these issues in the last two
decades.

Finally, future research prospects for multiscale process
monitoring research have been discussed. This article shall
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contribute to a better understanding of the role of multiscale
process monitoring and provide new insights for researchers
in the field.

APPENDIX
The list of abbreviations is listed in Table 3.
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