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ABSTRACT As chaotic systems are widely used in many fields, the study of them is becoming more
and more in-depth. This paper first presents a new single-equilibrium chaotic system which is only three
terms, and some fundamental dynamical feature of the new chaotic system are discussed, such as equilibria,
dissipativity, Poincaré diagram, bifurcation graph, etc. Secondly, a new finite-time controllers is designed
by using Lyapunov stability theory, and it can be used for bound synchronization of the general chaotic
systems. In contrast to the current finite time controller of the chaotic system, the designed controller in
this paper does not contain exponential term, it can be simple and eliminate the chattering phenomenon
during synchronizationis, which may be easier to implement in practical application. In addition, under the
finite time controller, the bound of control energy consumption of the chaotic system is estimated. Finally,
the finite-time controllers for the new chaotic system are advanced using the design method of finite-time
controller of the general chaotic system, and the result of numerical simulation is given to check its validity
by the designed method.

INDEX TERMS Chaos, bifurcation, synchronization.

I. INTRODUCTION
Since the first chaotic attractor has been discovered by
Lorenz, Lorenz system [1] has been extensively and deeply
studied as a typical chaotic model. The 1970s and 1980s
were the period of the development of chaotic theory. During
this period, Rössler constructed a simple three-dimensional
chaotic system [2]. Buskirk and Jeffries presented a chaotic
oscillator by using the exponential function [3]. In 1999, Chen
successfully proposed a Chen system similar to the Lorenz
system but not topologically equivalent by using chaotic anti-
control method [4]. In 2002, Lü et al. discovered Lü system
and unified chaotic system by utilizing chaotic anti-control
method [5]. Later, chaos in engineering was gradually shifted
from being a scientific exploration to a potential engineer-
ing application [6]–[9]. Therefore, purposeful generation of
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chaos is not only the need for chaos theory research, but also
the key problem of chaos application [6].

In recent decades, many new continuous chaotic systems
have been discovered in three-dimensional differential sys-
tems by using various chaotic construction methods, such as
chaotic systems with six terms [10], chaotic systems without
linear terms [11], chaotic systems with only no-equilibrium
point [12], chaotic systems with signum nonlinearity [13],
chaotic systems with absolute nonlinearity [14], chaotic sys-
tems with exponential nonlinearity [15], chaotic systems with
hyperbolic tangent nonlinearity [16], chaotic systems with
exponential nonlinear term [15], [17]–[20], etc. Generally,
how many terms are required for a 3D dynamical system
to produce chaotic characteristics? It has always been an
interesting topic.

At present, various control methods of chaos system have
been discussed, like sliding mode control [21], backstepping
control [22], active control [23], passive control [24], adaptive
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control [25], fuzzy control [26], etc. However, finite-time
control of complex systems have attractedmuch attention due
to their good robustness and anti-disturbance performance in
recent decades [27]–[29]. Stability of finite time refers to the
system condition always does not exceed a given threshold in
a given initial condition and a known finite time. Generally,
the shorter the synchronization time between two chaotic sys-
tems, the less the control cost. In order to shorten the control
time of chaotic systems, people pay more and more atten-
tion to finite-time control technology, so various finite-time
control methods are proposed [27], [32]–[35]. In the existing
finite-time control methods, the general controller contains a
symbolic function, which is a discontinuous functional con-
troller [31], [32]. In order to eliminate this phenomenon, con-
tinuous finite-time controller has been proposed successively
[32], [33], [35], [37], [38]. However, in the design of finite
time controllers for complex systems, they have a common
feature, that is, the designed controller contains exponential
form. In other words, the controller generally adopted non-
linear feedback controller. Then, whether the linear feedback
controller can also realize the finite-time control of complex
systems is also a very meaningful problem.

So far, there are few chaotic systems with one equilibrium
and three terms discussed in three-dimensional ordinary dif-
ferential equations. One of the contributions of this paper is
to propose a new three terms coupled chaotic system in ordi-
nary differential equations. It has just one equilibrium point,
and some basic dynamic characteristics of the system are
discussed. In addition, since most of the existing finite-time
controllers contain exponential terms, the second contribu-
tion of this paper is to design a novel finite-time controller
with only linear terms to study its bounded synchronization.
Finally, control energy consumption of chaotic system is also
estimated.

The structure and main content of the article is divided into
five sections: in the second section, a new chaotic system
is given, and a few fundamental dynamical feature are dis-
cussed. In the third section, the finite-time synchronization
condition of chaotic system. In the fourth section, an illustra-
tive example is provided. See the fifth section for conclusions.

II. A SINGLE EQUILIBRIUM NEW CHAOTIC SYSTEM
The following dynamical system is discussed

ẋ = ln (a+ hexp (y− x)),
ẏ = − ln (b+ exp (xz)),
ż = ln (c+ exp (xy− d)),

(1)

which x, y and z indicate the state variables of the system,
and when the parameter a = 0.1, b = 0.1, c = 0.1, d = 0.9,
h = 9, the system (1) is chaotic (See Figs.1-4).
Remark 1: At present, in the three-dimensional dynamic

system, most chaotic systems contain four terms or more
terms [1], [2], [4]–[7], [10], but few have only three expres-
sions. We have constructed a chaotic system with only three
terms in this paper. Of course, whether we can construct a

FIGURE 1. The system (1) in x-y-z plane.

FIGURE 2. The system (1) in x-y plane.

FIGURE 3. The system (1) in x-z plane.

simpler chaotic system with only three terms will be our
future research topic.

Obviously, when a = b = c = 0, the system (1)
conversion to the system (2), and the system (2) is not chaotic
for the starting values (1, 3, 3) (See Fig.5).

ẋ = y− x + ln h,
ẏ = −xz,
ż = xy− d .

(2)

Next, the basic characteristics of the system (1) are
analyzed.
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FIGURE 4. The system (1) in y-z plane.

FIGURE 5. The system (2) in x-z plane.

A. EQUILIBRIA
Let 

ln (a+ hexp (y− x)) = 0,
− ln (b+ exp (xz)) = 0,
ln (c+ exp (xy− d)) = 0.

(3)

When a, b, c < 1, the system (1) has an unique equilibrium
point

E =
(

d + ln (1− c)
1+ ln (1− a) /h

, 1+ ln (1− a) /h,

ln (1− b) (1+ ln (1− a) /h)
d + ln (1− c)

)
.

If a = 0.1, b = 0.1, c = 0.1, d = 0.9, h = 9, then
E = (−0.6100,−1.3026, 0.1727).

For E = (−0.6100,−1.3026, 0.1727), Jacobian matrix is
obtained by linearization system (1)

J =


−

hexp (y− x)
a+hexp (y−x)

hexp (y− x)
a+hexp (y−x)

0

−
zexp (xz)

b+ exp (xz)
0 −

xexp (xz)
b+ exp (xz)

yexp (xy− d)
c+exp (xy−d)

xexp (xy− d)
c+exp (xy−d)

0


If |λI − J |E = 0, then

λ1 = −1.2245,

λ2 = 0.1231+ 0.8601i,

λ3 = 0.1231− 0.8601i. (4)

Therefore, E is unstable.

FIGURE 6. Frequency spectrum diagram.

B. DISSIPATIVITY
For the system (1),

∇ · V =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −

hexp (y− x)
a+ hexp (y− x)

,

as − 9exp(y−x)
0.1+9exp(y−x) < 0, so the system (1) is a dissipative

system, and an exponential contraction of the system (1) is
exp

(
−

9exp(y−x)
0.1+9exp(y−x)

)
.

C. CHAOTIC BEHAVIOR OF THE SYSTEM (1)
If the initial value is (1, 3, 3), the Lyapunov exponent of the
system (1) is L1 = 0.1635,L2 = 0.2245,L3 = −0.1656,
since the system (1) has two positive Lyapunov exponents.
It has chaotic characteristics.

In addition,

DL = j+
1∣∣Lj+1∣∣

j∑
i=1

Li = 2+
L1 + L2
|L3|

= 2+
0.3880
|−0.1656|

= 4.3430,

so the Lyapunov dimension of the system (1) is fractional.
The continuous broadband characteristics of the spectrum

of system (1) is shown in Fig.6. For z = 0, x = −0.15
and y = −2.5, the Poincaré diagram of the system (1) are
shown in Figs.7 (a)-(c), respectively, and several attractor
graphs are shown. When the parameters of the system change
in an interval, the bifurcation graph can better induce the
complex evolution behavior of the system (1). Fig.8 shows
the Lyapunov exponents of the system (1) for 0.5 ≤ d ≤ 1.5.
Fig.9 shows the bifurcation evolution of the system (1) for
0.5 ≤ d ≤ 1.5.

III. FINITE-TIME SYNCHRONIZATION OF THE NEW
CHAOTIC SYSTEM
Considering the following chaotic system

u̇ = f (u, t) , (5)

where u = (u1, · · · , un)T is the state variable of the system,
f (u) : Rn→ Rn means continuous function.
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FIGURE 7. Poincaré diagram for (a) z = 0, (b) x = −0.15, (c) y = −2.5.

FIGURE 8. Lyapunov exponents diagram of system (1) for 0.5 ≤ d ≤ 1.5.

FIGURE 9. Bifurcation diagram of system (1) for 0.5 ≤ d ≤ 1.5.

The controlled chaotic system is

v̇ = f (v, t)+ r (u, v, t) , (6)

where v = (v1, · · · , vn)T is the state variable of the system,
r (u, v, t) means the controller.

As can be seen from equations (5) and (6), the error system
may be described as follows

ė = f (v, t)− f (u, t)+ r (u, v, t) . (7)

Assumptions 1 (A1): Assuming f satisfies

|f (v, t)− f (u, t)| ≤ ρe, ρ ∈ R,

where e = (e1, e2, · · · , en)T = (v1 − u1, v2 − u2, · · · ,
vn − un)T .
Theorem 1: Under A1, the systems (5) and (6) come true

finite-time bound synchronization by the controller designed
as follows

r (t) = −k1e. (8)

Then the settling time is

T ≤
1

2 (k1 − λ− η)
ln
(
1+

2 (k1 − λ− η)
k2

v (0)
)
,

and the estimation of energy consumption

E ≤
k2k21
λ

T ,

where k1 > η + λ, λ > 0, k2 > 0.
Proof: Let

v (t) =
1
2
eT (t) e (t) ,

then

v̇ = eT (t) ė (t) = eT (t) (f (v (t))− f (u (t))+ r (t))

≤ ηeT (t) e (t)− k1eT (t) e (t)

= −2 (k1 − λ− η) v (t)− k2 − 2λv (t)+ k2,

so v̇ (t) ≤ −2 (k1 − λ− η) v (t) − k2 if v (t) > k2
2λ . From

the results in [37], the decrease of in finite-time drives the
trajectories of v (t) the closed-loop system into v (t) ≤ k2

2λ ,

that is, |e (t)| ≤
√

k2
λ
, so the settling time T can be estimated

as

T =
∫ T

0
dt ≤ −

∫ 0

v(0)

dv (t)
2 (k1 − λ− η) v (t)+ k2

=

∫ v(0)

0

dv
2 (k1 − λ− η) v (t)+ k2

=
1

2 (k1 − λ− η)
ln
(
1+

2 (k1 − λ− η)
k2

v (0)
)
.

In [37] and [38], the authors discuss the energy consump-
tion of complex systems, the energy consumption is defined

E = lim
t→T

∫ t

0
‖r (s)‖2 ds,

so the estimation of energy consumption is

E = lim
t→T

∫ t

0
‖−k1e‖2 ds
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= lim
t→T

(
k21

∫ t

0
‖e‖2 ds

)
≤ lim

t→T

∫ t

0

(
k21

∫ t

0

k2
λ
ds
)

=
k2k21
λ

T . (9)

The proof is completed.
Remark 2: In the existing finite time control research for

complex systems, the controller generally adopts nonlinear
feedback controller. For example, in [27], [32]–[35], the
controller contains exponential term, |e(t)|θ , this kind of con-
troller is discontinuous controller, while another kind of con-
troller contains exponential term and symbolic function, such
as sign(e(t)) |e(t)|θ in [30] and [31], this kind of controller is
continuous controller. Theorem 1 only uses linear feedback
controller to realize finite time control of chaotic system.
This kind of controller contains neither exponential term nor
symbolic function. Obviously, the controller in Theorem 1 is
simpler than the existing controller in [27], [30]–[35].
Remark 3: In [21], the finite-time synchronization of

chaotic systems was realized based on the integral dynamic
sliding mode control method, which has better response
speed. Similar to [21], the controller (8) can also eliminate
the chattering phenomenon during synchronization.
Theorem 2: Under A1, the systems (5) and (6) come true

finite-time bound synchronization by the controller designed
as follows

r (t) = −k1e+
k3

‖e‖2 + α
e, (10)

then the settling time is

T ≤
1

2 (k1 − η)
ln
(
1−

2 (k1 − η)
k3

v (0)
)
,

and the estimation of energy consumption

E ≤
k3k21T

k1 − η
+
k23T

α
,

where k1 > η, k3 > 0, α > 0.
Proof: Let

v (t) =
1
2
eT (t) e (t) ,

then

v̇ = eT (t) ė (t) = eT (t) (f (v (t))− f (u (t))+ r (t))

≤ ηeT (t) e (t)− k1eT (t) e (t)+
k3

‖e‖2 + α
eT (t) e (t)

≤ −2 (k1 − η) v (t)+ k3 (11)

so v̇ (t) < 0 when v (t) > k3
2(k1−η)

. From the results in [36],
it can be concluded that the time derivative of v (t) is negative
outside a compact residual set 2, 2 =

{
v (t) ≤ k3

2(k1−η)

}
.

From Inequality (11)

v (t) ≤ e−2(k1−η)tv (0)+
k3

2 (k1 − η)

(
1− e−2(k1−η)t

)
,

when t → T , let v (t) → 0, that is, e−2(k1−η)tv (0) +
k3

2(k1−η)

(
1− e−2(k1−η)t

)
≤ 0. So, in compact residual set 2,

the settling time T can be estimated as

T ≤
1

2 (k1 − η)
ln
(
1−

2 (k1 − η)
k3

v (0)
)
,

the error bound is

|e (t)| ≤

√
k3

k1 − η
,

and the estimation of energy consumption is

E = lim
t→T ∗

∫ t

0

∥∥∥∥−k1e− k3
‖e‖2 + α

e

∥∥∥∥2 ds
≤ lim

t→T

(∫ t

0
‖−k1e‖2 ds+

∫ t

0

∥∥∥∥ k3
‖e‖2 + α

e

∥∥∥∥2 ds
)

≤ lim
t→T

k21

∫ t

0
‖e‖2 ds+ lim

t→T
k23

∫ t

0

‖e‖2 + α∥∥‖e‖2 + α∥∥2 ds
= lim

t→T
k21

∫ t

0
‖e‖2 ds+ lim

t→T
k23

∫ t

0

1∥∥‖e‖2 + α∥∥ds
≤ lim

t→T
k21

∫ t

0

k3
k1 − η

ds+ lim
t→T

k23

∫ t

0

1
α
ds

=
k3k21T

k1 − η
+
k23T

α
. (12)

The proof is completed.
Remark 4: From the energy consumptions (9) and (12), the

control energy consumption required by the system will be
different due to different controllers of the systems.

IV. NUMERICAL SIMULATIONS
Let the master and slave systems are as follows

u̇1 = ln (a+ hexp (u2 − u1)),
u̇2 = − ln (b+ exp (u1u3)),
u̇3 = ln (c+ exp (u1u2 − d)) ,
v̇1 = ln (a+ hexp (v2 − v1))− k1e1,
v̇2 = − ln (b+ exp (v1v3))− k1e2,
v̇3 = ln (c+ exp (v1v2 − d))− k1e3.

For

f (v)− f (u)

=


ln
[
(a+ hexp (v2 − v1))

/
(a+ hexp (u2 − u1))

]
ln
[
(b+ exp (v1v3))

/
(b+ exp (u1u3))

]
ln
[
(c+ exp (v1v2 − d))

/
(c+ exp (u1u2 − d))

]
 .

If

exp (v2 − v1) > exp (u2 − u1) > 0,

then

1 <
a+ exp (v2 − v1)
a+ exp (u2 − u1)

<
exp (v2 − v1)
exp (u2 − u1)

= exp (e2 − e1) ,
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if

exp (v2 − v1) < exp (u2 − u1) ,

then

exp (v2 − v1)
exp (u2 − u1)

<
a+ exp (v2 − v1)
a+ exp (u2 − u1)

< 1.

Therefore,

ln
[
a+ exp (v2 − v1)
a+ exp (u2 − u1)

]
< ln

[
max {1, exp (e2 − e1)}

]
.

Similarly,

ln
[
b+exp (u1u3)
b+exp (v1v3)

]
< ln

[
max {1, exp (u1u3 − v1v3)}

]
,

ln
[
c+exp (v1v2−d)
c+exp (u1u2 − d)

]
< ln

[
max {1, exp (v1v2−u1u2)}

]
.

So,

‖f (v)− f (u)‖

=

∥∥∥∥∥∥∥
 ln

[
(a+ hexp (v2 − v1))

/
(a+ hexp (u2 − u1))

]
ln
[
(b+ exp (u1u3))

/
(b+ exp (v1v3))

]
ln
[
(c+ exp (v1v2 − d))

/
(c+ exp (u1u2 − d))

]

∥∥∥∥∥∥∥

<

∥∥∥∥∥∥
 −1 1 0
−v3 0 −u1
u2 v1 0

∥∥∥∥∥∥
∥∥∥∥∥∥
e1
e2
e3

∥∥∥∥∥∥ .
If the starting values of the master-slave systems are

assumed to be (2, 1, 3) and (3, 2, 1), respectively, and k1 = 10.
By estimating the simulation, we have ‖u‖ , ‖v‖ < 5, so,∥∥∥∥∥∥

 −1 1 0
−v3 0 −u1
u2 v1 0

∥∥∥∥∥∥ < 8.6701.

FIGURE 10. Error evolution.

When the system has no controller, two chaotic systems
cannot achieve synchronization, as shown in Fig 10. When
there is a controller, two chaotic systems realize synchronous
evolution, as shown in Fig 11.

FIGURE 11. Synchronization of the drive and the response system.

V. CONCLUSION
Firstly, the chaotic dynamic system with three terms and one
equilibrium was proposed, and its basic dynamic behavior
was also studied. Secondly, the finite-time bounded synchro-
nization for the new chaotic system was discussed, and finite-
time controller designed did not contain exponential term.
Moreover, control energy consumption of the chaotic system
is also estimated. Finally, numerical simulation verifies the
effectiveness of the designed finite-time controller.

REFERENCES
[1] E. N. Lorenz, ‘‘Deterministic nonperiodic flow,’’ J. Atmos. Sci., vol. 20,

no. 2, pp. 130–148, 1963.
[2] O. E. Rössler, ‘‘An equation for continuous chaos,’’ Phys. Lett., vol. 57A,

no. 5, pp. 397–398, 1976.
[3] R. Van Buskirk and C. Jeffries, ‘‘Observation of chaotic dynamics of

coupled nonlinear oscillators,’’ Phys. Rev. A, Gen. Phys., vol. 31, no. 5,
pp. 3332–3357, May 1985.

[4] G. Chen and T. Ueta, ‘‘Yet another chaotic attractor,’’ Int. J. Bifurcation
Chaos, vol. 9, no. 7, pp. 1465–1466, 1999.

[5] J. Lü, D. Cheng, S. Celikovsky, and G. Chen, ‘‘Bridge the gap between the
Lorenz system and the Chen system,’’ Int. J. Bifurcation Chaos, vol. 12,
pp. 2917–2926, Dec. 2002.

[6] G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives
and Applications. Singapore: World Scientific, 1998.

[7] B. Munmuangsaen and B. Srisuchinwong, ‘‘A new five-term simple
chaotic attractor,’’ Phys. Lett. A, vol. 373, no. 44, pp. 4038–4043,
2009.

[8] S. Li, M. Gu, L. Cheng, X. Chi, and M. Sun, ‘‘An accelerated divide-and-
conquer algorithm for the bidiagonal SVD problem,’’ SIAM J. Matrix Anal.
Appl., vol. 35, no. 3, pp. 1038–1057, Jan. 2014.

[9] J. Wen and H. Li, ‘‘Binary sparse signal recovery with binary matching
pursuit,’’ Inverse Problems, vol. 37, no. 6, 2021, Art. no. 065014.

[10] W. Zhou, Y. Xu, H. Lu, and L. Pan, ‘‘On dynamics analysis of a new chaotic
attractor,’’ Phys. Lett. A, vol. 372, no. 36, pp. 5773–5777, Sep. 2008.

[11] Y. Xu and Y. Wang, ‘‘A new chaotic system without linear term and
its impulsive synchronization,’’ Optik, vol. 125, no. 11, pp. 2526–2530,
Jun. 2014.

[12] E. E. Mahmoud and F. S. Abood, ‘‘A new nonlinear chaotic complex
model and its complex antilag synchronization,’’ Complexity, vol. 2017,
Aug. 2017, Art. no. 3848953.

[13] A. Sambas, S. Vaidyanathan, S. Zhang, and M. Mamat, ‘‘A novel
3-D chaotic system with line equilibrium: Dynamical analysis, coexisting
attractors, offset boosting control and circuit design,’’ in Proc. IOP Conf.,
Mater. Sci. Eng., 2019, vol. 567, no. 1, Art. no. 012009.

[14] A. Sambas, S. Vaidyanathan, T. Bonny, S. Zhang, Y. Hidayat, G.
Gundara, and M. Mamat, ‘‘Mathematical model and FPGA realization
of a multi-stable chaotic dynamical system with a closed butterfly-
like curve of equilibrium points,’’ Appl. Sci., vol. 11, no. 2, p. 788,
Jan. 2021.

[15] V. K. Yadav, V. K. Shukla, and S. Das, ‘‘Difference synchronization among
three chaotic systems with exponential term and its chaos control,’’ Chaos,
Solitons Fractals, vol. 124, pp. 36–51, Jul. 2019.

48158 VOLUME 10, 2022



Y. Wei et al.: Finite-Time Bound Synchronization of New Chaotic System With Energy Consumption Estimation

[16] L. K. Kengne, J. Kengne, J. R. M. Pone, and H. T. K. Tagne, ‘‘Symmetry
breaking, coexisting bubbles, multistability, and its control for a simple
jerk system with hyperbolic tangent nonlinearity,’’ Complexity, vol. 2020,
Apr. 2020, Art. no. 2340934.

[17] F. Yu and C. Wang, ‘‘A novel three dimension autonomous chaotic system
with a quadratic exponential nonlinear term,’’ Eng., Technol. Appl. Sci.
Res., vol. 2, no. 2, pp. 209–215, Apr. 2012.

[18] V.-T. Pham, S. Vaidyanathan, C. K. Volos, and S. Jafari, ‘‘Hid-
den attractors in a chaotic system with an exponential nonlinear
term,’’ Eur. Phys. J. Special Topics, vol. 224, no. 8, pp. 1507–1517,
Jul. 2015.

[19] K.-B. Deng, R.-X. Wang, C.-L. Li, and Y.-Q. Fan, ‘‘Tracking control for
a ten-ring chaotic system with an exponential nonlinear term,’’ Optik,
vol. 130, pp. 576–583, Feb. 2017.

[20] S. Li, Y. Wu, and X. Zhang, ‘‘Analysis and synchronization of a new
hyperchaotic system with exponential term,’’ Mathematics, vol. 9, no. 24,
p. 3281, Dec. 2021.

[21] K. A. Alattas, J. Mostafaee, A. Sambas, A. K. Alanazi, S. Mobayen,
M. T. Vu, and A. Zhilenkov, ‘‘Nonsingular integral-type dynamic finite-
time synchronization for hyper-chaotic systems,’’ Mathematics, vol. 10,
no. 1, p. 115, Dec. 2021.

[22] C. M. Kang, W. Kim, and H. Baek, ‘‘Cascade backstepping control with
augmented observer for lateral control of vehicle,’’ IEEE Access, vol. 9,
pp. 45367–45376, 2021.

[23] X. Zhou, Y. Cui, and Y. Ma, ‘‘Fuzzy linear active disturbance rejec-
tion control of injection hybrid active power filter for medium and
high voltage distribution network,’’ IEEE Access, vol. 9, pp. 8421–8432,
2021.

[24] J. Li, Z. Gao, and Z. Wang, ‘‘Robust output strictly passive H-infinity
control of uncertain switched singular systems,’’ IEEE Access, vol. 8,
pp. 224260–224268, 2020.

[25] M. A. Soliman, H. M. Hasanien, A. Al-Durra, and I. Alsaidan, ‘‘A novel
adaptive control method for performance enhancement of grid-connected
variable-speed wind generators,’’ IEEE Access, vol. 8, pp. 82617–82629,
2020.

[26] C.-H. Chiu, Y.-T. Hung, and Y.-F. Peng, ‘‘Design of a decoupling fuzzy
control scheme for omnidirectional inverted pendulum real-world control,’’
IEEE Access, vol. 9, pp. 26083–26092, 2021.

[27] Y. Xu, Z. Ke, C. Xie, and W. Zhou, ‘‘Dynamic evolution analysis of
stock price fluctuation and its control,’’ Complexity, vol. 2018, Jan. 2018,
Art. no. 5728090.

[28] N. Li, X. Wu, J. Feng, Y. Xu, and J. Lu, ‘‘Fixed-time synchronization of
coupled neural networks with discontinuous activation and mismatched
parameters,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 6,
pp. 2470–2482, Jun. 2021.

[29] B. Mao, X. Wu, J. Lu, and G. Chen, ‘‘Predefined-time bounded consensus
of multiagent systems with unknown nonlinearity via distributed adaptive
fuzzy control,’’ IEEE Trans. Cybern., early access, Apr. 15, 2022, doi:
10.1109/TCYB.2022.3163755.

[30] Y. Shang and Y. Ye, ‘‘Leader-follower fixed-time group consensus control
of multiagent systems under directed topology,’’ Complexity, vol. 2017,
Mar. 2017, Art. no. 3465076.

[31] G. F. Mei, X. Q. Wu, D. Ning, and J. A. Lu, ‘‘Finite-time stabilization of
complex dynamical networks via optimal control,’’ Complexity, vol. 21,
pp. 417–425, Feb. 2016.

[32] Y. Xu, X.Wu, and C. Xu, ‘‘Synchronization of time-varying delayed neural
networks by fixed-time control,’’ IEEE Access, vol. 6, pp. 74240–74246,
2018.

[33] Y. Xu, X. Wu, N. Li, L. Liu, C. Xie, and C. Li, ‘‘Fixed-time synchro-
nization of complex networks with a simpler nonchattering controller,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 4, pp. 700–704,
Apr. 2020.

[34] H.-A. Tang, C.-X. Yue, and S. Duan, ‘‘Finite-time synchronization and pas-
sivity of multiple delayed coupled neural networks via impulsive control,’’
IEEE Access, vol. 8, pp. 33532–33544, 2020.

[35] Y. Xu, X. Wu, B. Mao, J. Lü, and C. Xie, ‘‘Fixed-time synchronization in
the pth moment for time-varying delay stochastic multilayer networks,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 2, pp. 1135–1144,
Feb. 2022.

[36] B. Vaseghi, S. S. Hashemi, S. Mobayen, and A. Fekih, ‘‘Finite time
chaos synchronization in time-delay channel and its application to satellite
image encryption inOFDMcommunication systems,’’ IEEEAccess, vol. 9,
pp. 21332–21344, 2021.

[37] Y. Xu, X. Wu, X. Wan, H. Ji, and S. Zhou, ‘‘Finite-time quasi-
synchronization of stochastic multilayer networks with energy consump-
tion estimation,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 4,
pp. 2121–2125, Apr. 2022.

[38] Y. Xu, X. Wu, X. Wan, and C. Xie, ‘‘Finite/fixed-time synchronization
of multi-layer networks based on energy consumption estimation,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 10, pp. 4278–4286,
Oct. 2021.

YIFENG WEI received the master’s degree from
the Wuhan University of Technology, China,
in 2005. Currently, he is an Associate Professor
with the School of Economy and Management,
Hanjiang Normal University, Shiyan, China. His
research interests include nonlinear finance sys-
tems dynamics and control.

CHENGRONG XIE received the master’s degree
from Central China Normal University, China,
in 2007. Currently, she is an Associate Profes-
sor with the School of Statistics and Data Sci-
ence, Nanjing Audit University, Jiangsu, China.
She has published over ten SCI journal articles in
her research areas. Her research interests include
nonlinear finance systems dynamics and control.

DONGBING TONG received the Ph.D. degree
in control theory and control engineering from
Donghua University, China, in 2014. Currently,
he is a Professor with the School of Electronic
and Electrical Engineering, Shanghai University
of Engineering Science, Shanghai, China. His
research interests include robust control theory,
time-delay systems, model reduction, and neural
networks.

YUHUA XU received the Ph.D. degree in con-
trol theory and control engineering from Donghua
University, China, in 2011. From 2012 to 2014,
he was a Postdoctoral Fellow at the School of
Computing, Wuhan University, Wuhan, China.
Currently, he is a Professor with the School
of Finance, Nanjing Audit University, Jiangsu,
China. He has published over 50 SCI jour-
nal articles in his research areas. His current
research interests include complex networks, non-

linear dynamics, nonlinear finance systems, and chaos control.

VOLUME 10, 2022 48159

http://dx.doi.org/10.1109/TCYB.2022.3163755

