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ABSTRACT Recognition of the modulation scheme is the intermediate step between signal detection and
demodulation of the received signal in communication networks. Automatic modulation recognition (AMR)
plays a central role in many applications, especially in the military and security sectors. In general, several
properties of the received signal are extracted and employed for AMR. Selecting the appropriate features
has a significant impact on increasing the efficiency of AMR. In this paper, we implement and compare
digital modulation recognition via multi-layer perceptrons (MLP), radial basis function (RBF), adaptive
neuro-fuzzy inference system (ANFIS), decision tree (DT), and naive Bayes (NB) algorithms. In addition,
the optimal parameters of each model are obtained by utilizing a genetic algorithm (GA). A series of
studies are conducted in this work in order to determine the efficiency of different algorithms in identifying
modulated signals with commonly used digital modulations. Numerous computer simulations are performed
in the presence of additive white Gaussian noise (AWGN) with a signal-to-noise ratio (SNR) ranging from
—10 dB to 30 dB. The simulation results and comparisons with previous studies demonstrate that applying
the proposed algorithms along with the selected features leads to a significant enhancement in the accuracy
and speed of the automatic determination of the digital modulation types at low SNRs. In addition, the
convergence rates of the models are enhanced.

INDEX TERMS Automatic modulation recognition, classification, feature extraction, genetic algorithm,

machine learning.

I. INTRODUCTION
Automatic modulation recognition (AMR) is crucial for
detecting and demodulating a telecommunication signal
[1], [2]. AMR has attracted considerable attention owing to
its wide range of applications. AMR is employed in electronic
warfare (EW) systems as a source of information for detecting
and disrupting threats [3]. Civilian applications include
software-defined radio, frequency management, transmitter
monitoring, and network traffic administration [4]-[7].

Two primary phases are considered in AMR: initial
preprocessing of the input signal and selection of the
classifier system. There are two approaches to performing
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AMR. One approach is decision-theoretic, and the other
is statistical pattern recognition (i.e., feature-based pattern
recognition) [8]. The former entails high computational
complexity and suffers from the ambiguity of the parameters.
In the second approach, certain features of the signal are
extracted first. Then decisions are made based on the
extracted characteristics. The latter is less complex compared
to the first approach. Therefore, it is more convenient to
implement the second approach in practical systems. In our
work, we focus on the pattern recognition approach.
Numerous studies have proposed investigating different
features to identify the types of modulation [9]. Hsue and
Soliman [10] propose to utilize the frequency and phase
histograms in addition to zero-crossing features and zero-
crossing variance of the received signal for modulation
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recognition purposes. The authors in [11] leverage frequency
and amplitude variances and phase difference histogram
to distinguish various digital modulation types. The work
in [12], [13] use wavelet transform and wavelet features
empowered by neural networks to recognize several modu-
lation schemes. The study in [14] uses the signal spectrum’s
fourth power and the mean of the signal envelope and
variance characteristics to classify various digitally modu-
lated signals. Moreover, other spectral characteristics (i.e.,
frequency-based features), statistical attributes, e.g., higher-
order statistics [15]-[17], together with instantaneous phase,
frequency, and amplitude [16], [18] are further examined
for AMR. We utilize six attributes, including the spectral,
temporal, and wavelet-based features, to distinguish seven
different digital modulation techniques.

Machine learning and optimization algorithms are con-
tinuously employed to provide accurate and reliable AMR.
The feature-based study in [19] exploits support vector
machine (SVM) algorithm to recognize four different digital
modulation schemes, including binary phase-shift keying
(BPSK), 8-PSK, 4-ary amplitude-shift keying (4-ASK), and
16-ary quadrature amplitude modulation (16-QAM). The
work achieves an accuracy of 100% by investigating the
two-dimensional asynchronous sampled in-phase-quadrature
histograms (ASIQ) in the presence of additive white Gaussian
noise (AWGN) with signal-to-noise ratio (SNRs) ranging
from 0 dB to 35 dB. Genetic algorithm (GA) is one of
the most well-known evolutionary algorithms used together
with other machine learning models to further enhance
AMR efficiency. Artificial neural networks (ANNs) and GA
are used in [20] to distinguish various digital modulation
techniques. An augmented genetic programming (GP) and
the k-nearest neighbor (KNN) algorithm are employed
in [21] to classify digital modulations. Zhang et al. [22],
propose GP to generate features utilized by the KNN
algorithm for multi-class modulation classification. Most
implementations are based on neural network (NN) methods
and GAs [21]-[24]. Almohamad et al. [25], utilize the SVM
model to classify nine modulation types, including BPSK,
QPSK, 8-PSK, BASK, 4-ASK, 4-QAM, 16-QAM, 32-QAM,
and 64-QAM over AWGN and Rayleigh fading channels
within a wide range of SNR values, i.e., 0 dB through
35 dB. Their proposed model simultaneously performs AMR
and estimates SNRs values by exploring two-dimensional
asynchronously sampled in-phase-quadrature amplitudes’
histograms (2D-ASIQHs).

On the other hand, we see many efforts in recent work
to employ deep learning methods in AMR [2]. In particular,
the study in [26] proposes a novel technique based on
the InceptionResNetV2 network with transfer adaptation to
distinguish between three types of phase-shift keying (PSK)
modulation, including BPSK, quadrature phase-shift-keying
(QPSK), and 8-PSK. An average accuracy of 75.99% is
achieved at SNR = 1 dB. The work in [27] achieves
99.00% accuracy at low SNRs by employing a deep
neural network (DNN) to extract different features of each
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modulation type by learning different cuamulant combinations
of ASK, frequency-shift keying (FSK), and PSK modulation
schemes.

A long short-term memory network (LSTM) and a deep
convolutional neural network (DCNN) are utilized in [28]
to form an AMR system. The authors substitute the in-
phase/quadrature (I/Q) information by exploiting high-order
statistics (HOS), i.e., I/Q and fourth-order cumulants (FOC)
which result in an average accuracy of roughly 80.00%
at SNR = 0 dB. Daldal et al. [29] designed an AMR
system by employing CNN and the short-time Fourier
transform (STFT) to recognize six distinct digital modulation
schemes automatically. The system achieves an average
accuracy of 99.19% for SNRs above 0 dB. A generalized
CNN method is proposed in [30] to identify FSK, PSK, and
QAM schemes robustly. The model is trained and utilized for
both AWGN and Rayleigh fading channels.

Some of the existing AMR frameworks based on machine
learning have been able to perform well in terms of
accuracy. However, it has been observed that these models
suffer from high computational complexity. The existing
methods necessitate additional preprocessing procedures and
possess more tuning parameters and classifiers, resulting
in slower and larger hardware. In addition, their accuracy
drops significantly at low SNRs. Consequently, their ability
to generalize is limited. Therefore, our goal is to provide
machine learning-based AMR frameworks with lower time
complexity (i.e., the running time of the algorithms) and
higher accuracy compared to existing methods, especially at
low SNRs. In this paper, various digital modulations are iden-
tified and classified by employing multi-layer perceptrons
(MLP), radial basis function (RBF), adaptive neuro-fuzzy
inference system (ANFIS), decision tree (DT), and naive
Bayes (NB) algorithms. Additionally, a GA is employed to
optimally select the tuning parameters to further enhance the
proposed system. Our selected models result in significantly
faster and more efficient AMR without compromising the
accuracy.

In light of the above, the contributions of this paper are as
follows.

o We leverage various machine learning algorithms to
automatically recognize and classify different digital
modulation schemes.

« We propose a heuristic optimization method, i.e., GA,
to optimize the tunable parameters of presented machine
learning algorithms that are employed to classify various
digital modulation techniques.

o We investigate different features to classify differ-
ent digital modulation techniques employing feature
extraction-based approaches.

« We examine the accuracy of the employed models and
perform exact and comprehensive comparisons based on
different criteria, including accuracy, complexity, and
time. Our model achieves an accuracy of 100% at SNR
of —2 dB with significantly lower complexity (i.e., the
running time of the algorithm) compared to existing
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FIGURE 1. Schematic diagram of a simplified AMR system based on the
pattern recognition method.

techniques. The obtained classification accuracy is
justified by the utilization of 10-fold cross-validation.
The remainder of the paper is organized as follows.
Section Il introduces the system model and features exploited
in this study. The machine learning algorithms employed for
the AMR are presented in Section III. Simulation analyses
are performed in Section IV. Finally, Section V provides a
summary, conclusion, and avenues for future work.

Il. SYSTEM MODEL AND SELECTED FEATURES

Without loss of generality, this study performs communi-
cation and signal transmission over the AWGN channel.
The transmitter modulates the desired signals, which are
then transmitted. After passing through the channel, the
signal is mixed with white Gaussian noise. The transmitted
signal enters the receiver block while no information is
available from the sender. The input signal is modulated as
follows [31]:

2(t) = 5(t) O 4 p(r), (1a)
5() = a(t) ef[2ﬂf(l)l+¢(l)]’ (1b)

where f. indicates the carrier frequency, ¢. is the carrier
phase, n(t) represents the AWGN, and 5(¢) designates the
envelope of baseband signal. In (1b), a(?), f(¢), and ¢(¢)
represent the instantaneous amplitude, frequency, and phase
of the signal, respectively.

Fig. 1 illustrates the modulation scheme classification
system based on the pattern classification approach con-
sisting of three subsystems. The preprocessing sub-block,
upon the arrival of the intercepted modulated signal, prepares
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the received signal for the succeeding sub-block. The
preprocessing operations include filtering to diminish the
noise level, median filtering, estimating symbol length,
signal power (i.e., SNR), carrier frequency, and balancing
the received modulated signal. Besides, the instantaneous
amplitude, frequency, and phase extraction are other parts
of preprocessing framework. The processing operations
enhance AMR performance. The selection of each task
involved in preprocessing stage depends on the classification
process.

One of the most critical tasks and perhaps the challenges
when employing machine learning for AMR is selecting
appropriate features. Equipping the system with suitable
features allows us to identify and separate various modulation
schemes accurately. In addition, given the instantaneous
operation of AMR, it is essential to utilize features that
significantly improve the operating speed of the model.
It is crucial to use features that are robust against different
signal and channel conditions such as SNR, frequency,
etc. We employ the features of [32] and [9] to reinforce
the presented machine learning algorithms for AMR to
achieve superior robustness against low SNRs. Previous
studies demonstrate that the selected features are among the
most authentic attributes employed in the existing robust
modulation recognition systems [8], [9]. In the following,
we briefly examine the selected features and provide the
mathematical expression of each.

The second-order moment of the non-linear component of
the instantaneous phase is the first feature that we utilize in
our AMR framework. The exact mathematical formula of this
attribute is stated by [8]

N,
1 s
My, = =2 000, (20)
$i=1
R0
‘PNL(Z) = (pl - 1’ (2b)

where Nj is the number of symbols, ¢, (i) indicates the
normalized-center non-linear component of the instantaneous
phase, ¢(i) denotes the instantaneous phase, and @ represents
the mean phase. The instantaneous phase of the signals
modulated by ASK contains no information, which causes
the My~ values computed for the ASK modulated signals
to be the lowest compared to that of other modulation
schemes. Consequently, the intended trait accurately differ-
entiates binary amplitude-shift keying (BASK) and 4-ASK
modulations from QAM, PSK, and FSK modulations.

The spectrum-based feature is designated as the second
characteristic employed in this work and is expressed by [8]

1 & 1 & ’
ol =— Z@) — — Z(i)) , 3)
S

where Z(i) represents the discrete-time Fourier trans-
form (DTFT) of the received signal. This feature can
accurately distinguish ASK and QAM modulations from
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other digital modulations schemes, including PSK and FSK
modulations that possess no amplitude-related information.

The third attribute used in the proposed AMR system
is the mean value of the power spectral density of the
normalized-centered instantaneous amplitude of the inter-
cepted signal segment, which is defined as [8]

1 &
7= ; 1Acn(D)1?, (4a)
aon) = 22 _ 1, (4b)
mgq
1 &
ma =5 > al), (4c)

where A., denotes the DTFT of the normalized-centered
instantaneous amplitude, a.,(i) denotes the normalized-
centered instantaneous amplitude, and m, represents the
mean value of instantaneous amplitude. The proposed AMR
models of this study utilize this trait to detach 4-ASK
modulation from BASK.

As our fourth feature, we select the standard deviation of
the normalized-centered non-linear component of the direct
instantaneous phase, containing phase-related information.
The exact mathematical expression exploited to extract the
attribute is [8]

2

1 Ny | N
= |+ (Z ng@) - (17 ZwNL@) NE)
s \i=1 5 =1

The given characteristic is employed to distinguish PSK
modulation from QPSK in hierarchical-based classifiers.
The continuous wavelet transform (CWT) forms our fifth
and sixth attributes. CWT is based on the time-frequency
analysis/conversion and is as follows [32]:

+00

CWIY (z,5) = ¥/ (1,5) = / x(t) Yl ()dt, (6a)
A 1 t—1

T, — y 6b

Ve, mlﬂ( . ) (6b)

where 7 is the transition parameter, s indicates the scale
parameter, and ¥ *(¢) represents the complex conjugate of
¥ (t). Accordingly, the correlation between the received
signal’s wavelet transform and the patterns stashed in
the system is computed. The wavelet transform-related
simulations exploit the Haar function. By comparing the
computed CWT to BASK and BFSK templates, our system
can distinguish between BPSK, QPSK, BFSK, and 4-FSK
modulations. Table 1 summarizes the role of the six presented
features. The effectiveness and roles of the selected features
are illustrated in the simulation results in Section IV. In the
following, machine learning models and algorithms used in
this work are examined.
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TABLE 1. The presented features and their roles.

Output Classes
Features
CLASS 1 CLASS 2
BFSK, BPSK, 4-FSK.
1 M, ’ i ’ BASK, 4-ASK
#NL QPSK, 16QAM
2 o? BASK 4-ASK
BFSK, BPSK, 4-FSK.
3 5 16QAM ’ ’ ’
v Q QPSK
4 Tdp BPSK QPSK
5 CWT_BASK BFSK, 4-FSK BPSK, QPSK
6 CWT_BFSK BFSK 4-FSK
Genetic
Algorithm
N
N—
Train
\ Set v
|| ——
—)
——, Type of
V ~— Classification Modulation
Tseestt Algorithm
—
—_—)

FIGURE 2. Flowchart of the proposed algorithm.

IlIl. MACHINE LEARNING ALGORITHMS

As mentioned in previous sections, the main step in
AMR is using machine learning-based classifier methods to
accurately identify various modulation techniques. In our
work, GA is utilized to acquire the optimal values of the
tuning parameters of each method. The flowchart for the
proposed model is illustrated in Fig. 2. Different artificial
intelligence (AI) and machine learning [33] approaches based
on ANNs and fuzzy logic (FL) systems are utilized for
AMR. Trial-and-error approaches consume a vast amount
of time and do not guarantee to achieve the optimal values.
The proposed models require different and unique chromo-
some coding according to their structures and parameters.
We define the tuning parameters of each algorithm to be
the genes forming the chromosomes. Our presented network
architecture is flexible and can vary in contrast to previous
studies in which the same topology is considered for all
machine learning methods. The MLP, RBF, ANFIS, DT, and
NB models are examined in the following subsections.

A. MULTI-LAYER PERCEPTRON (MLP) ALGORITHM

MLP is one of the well-known and most widely used
feedforward subclasses of ANNs in which the learning
process is accomplished by employing multilayers of neu-
rons. MLP models utilize the error back-propagation (EBP)
technique [34], one of the well-known training schemes
utilized to maximize network accuracy and achieve a superior
outcome. The exact mathematical expression for calculating
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FIGURE 4. The three-layer feedforward structure of the RBF algorithm.

the error is
P M
DY @itk - Yik)?, (7)

where p denotes the number of training data, M represents
the number of output neurons, Z; is the actual output, and Y;
indicates the model output. Fig. 3 depicts the overall structure
of the MLP network. It is worth noting that the hidden layers
are not constrained to a specific number.

B. RADIAL BASIS FUNCTION (RBF) NETWORK

The RBF algorithms are another subclass of ANNs that
possess a structure with three connected layers using
feedforward connections. The existing neurons in the hidden
layers of an RBF network employ radial basis functions
such as Gaussian functions as the activation function [35].
The multi-layer structure of the RBF models is illustrated in
Fig. 4. The mapping function that the RBF networks utilize
is as follows [36]:

N
y =Y wHjx). (8)
j=1
2
X — Cj
Hj(x) = exp (—%) , (8b)
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FIGURE 5. The 5-layer structure of the ANFIS algorithm.

where N represents the total number of hidden neurons, w;
denotes the weight allocated to the j# node, Hj(x) is the
activation function of node j, x € [x1,x2, ..., x;] represents
the input given to the algorithm, ¢; denotes the center of the Y
activation function, and o; indicates the smoothing parameter.

C. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
ANFIS is well recognized as an outstanding neuro-fuzzy
model that concurrently utilizes FL. and NN methods [37].
In fuzzy systems, the main features of the inference system
and the tuning parameters have to be adjusted, which usually
results in high computational complexity and is very time-
consuming. Therefore, NNs are employed to prevail over the
existing complications by tuning the adjustable parameters.
This cooperation of the NNs and FL forms the neuro-fuzzy
systems. Fig. 5 shows the five-layer structure of the Takagi-
Sugeno-based ANFIS algorithm. The ANFIS models acquire
their actual outputs using the following formula:
n

" > wif
Oi =) wifi="5—, ©)

i=1 wi
i=1

[Nag

where n denotes the total number of nodes, w; represents the
firing strengths of the rule layer, f; indicates the first order
polynomial with consequence parameters set of {p;, gi, i},
and wj is the output of the normalization layer.

D. DECISION TREE (DT) ALGORITHM

DT is one of the most widely used data mining algo-
rithms [38]. The DT is used in problems that can be posed
in such a way that they provide a single answer in the form
of a group or class name. There are many algorithms for
constructing DTs; one of the most popular methods in this
field is Iterative Dichotomiser 3 (ID3) [33]. In this algorithm,
the tree is constructed from top to bottom. Entropy (E) and
information gain (IG) criteria (using entropy to calculate the
desired criterion) are used to find the best feature. The entropy
or uncertainty of one system is calculated as follows:

(10a)
(10b)

E(S) = —p4log, P4 —P_log, P,
E®S) = =) _P(x)log, P(x),
xeX

where § is the set of instances, P4 represents the positive
samples in S, and P_ indicates the negative samples in S.
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FIGURE 6. Flow diagram of a DT based on ID3.
The IG or the expected reduction in entropy by splitting the
data on one attribute is defined as

Sy
> GEG, (11)

veValues(A)

IG(S, A) = E(S) —

where the set Values(A) contains all possible values for
attribute A. The set S, is a subset of S whose characteristic A is
equal to v. The general structure of the DT for a hypothetical
data set containing two properties, A and B, is depicted in
Fig. 6.

E. NAIVE BAYES (NB) ALGORITHM

In machine learning, the NB algorithm is a group of
simple classifiers based on probabilities. A simple Bayesian
classifier can be considered as a model based on conditional
probability. Suppose X = (x1,x2,...X,) is a vector
expressing n properties that are independent variables.
Therefore, the probability of the occurrence of Cy, i.e.,
p(Crlx1, x2, ... x,), can be represented as one of the states
of various event classes for distinct k, as calculated below

P(Cr) pX1C)
px)
Now, if each variable is assumed to be independent of the

other variables, provided that the Cj category is independent,
then the following equations are obtained:

<X, C) = p(xil Cr) 13)

p(ClX) = (12)

p(xilxig, - .

and

C = argmax p(Cy) [ [ pxilCr) - (14)
Cj i
An example of a two-dimensional data set is illustrated in
Fig. 7.

The presented methods possess various tuning parameters
that significantly impact the convergence, accuracy, and
speed of the AMR system. Different approaches exist
to determine the proper values of the tuning parameters.
However, it is worth mentioning that some of the utilized
algorithms are single-parameter, and therefore there is no
need to use optimization algorithms. Trial-and-error is the
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most primitive technique to adjust the tuning parameter.
Nevertheless, employing various optimization methods such
as GA [39] is more effective to obtain the appropriate values
of the parameters. In the following subsection, various GA
coding schemes are proposed and examined to determine the
optimal parameters of each model.

F. GENETIC ALGORITHM (GA)

Optimization techniques consist of the two general categories
of classical and modern approaches [40]. The classical
optimization methods benefit from the damped least-squares
(DLS) algorithm, while modern ones employ natural evo-
lution processes. In addition, the former attains the local
optimum, whereas the latter always aims to acquire the global
optimum. As stated earlier, we employ GA in this study to
optimize the tunable parameters of the presented machine
learning algorithms. GA is a well-known modern method of
optimization which Holland introduced in the 1970s [41].
Inspired by the principles of natural and gradual evolution
(Darwin’s theory), GA tries to discover an optimal solution
in a vast searching space.

This algorithm conveys inherited traits through genes;
however, these transitions of genes from one generation
to another always face some variations. The crossover
and mutation operations are two chief modifications that
the algorithm applies to the genes and chromosomes. The
presented GA leverages the crossover and mutation operators
to merge and produce new chromosomes in order to achieve
the global optimum [42], [43]. Additionally, a fitness (merit)
function is defined to detect or acquire the best chromosome
according to the requirements and demands. Fig. § illustrates
the process flow and general structure of the GA.

Providing proper coding to define chromosomes is a
critical step in GA. The presented algorithms, in addition to
the weight coefficients, possess other adjustable parameters,
including the type of fuzzy inference system (FIS), the
number of membership functions, and the number of epochs
in the ANFIS algorithm, learning rate, the number of epochs
(iteration), and the network topology for the MLP model,
the number of neurons in the hidden layer, the spread
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value, the mean squared error (MSE) factor of the RBF
network. Improper designation of the tunable parameters
of these models directly affects their convergence rate and
computational load; therefore, proper values must be detected
and assigned to them.

In light of the above, we first design appropriate cod-
ings for each of the presented models separately. The
chromosomes and their constituent genes are determined
according to the adjustable parameters of machine learning
models in the proposed codings. Next, the model evaluates
each chromosome by assessing the accuracy obtained for
the algorithm employed in the AMR system. Ultimately,
the fittest chromosomes, i.e., optimal parameters of the
algorithms, are acquired. It is worth noting that the length
of the chromosomes for all the models is constant; however,
the types of genes forming a chromosome differ from one
to the other. Fig. 9 illustrates the genes and chromosomes
defined for each of the presented models, i.e., the parameters
that the GA intends to optimize. Once the chromosome
type is defined, the algorithm proceeds to elect the primary
population.

If a small initial population is assigned for the system, the
GA will be impotent to investigate the entire search space.
In contrast, a large initial population decelerates the model.
Consequently, we must select this quantity attentively. Given
the restrictions associated with each component, the initial
generation of the model is shaped by randomly generating
30 chromosomes [39]. The chromosomes of our GA have
a structure similar to Fig. 9, the values of which for the
first generation can be selected based on prior knowledge.
As mentioned earlier, we randomly choose the initial values
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FIGURE 9. Chromosome structure formation for optimal parameter
detection. a) MLP algorithm, b) RBF algorithm, c) ANFIS algorithm.
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FIGURE 10. The proposed algorithm procedure for the production of new
generations.

of the genes in this work. Random selection of the initial
population empowers the algorithm to avoid getting trapped
on a local optimum.

Afterward, the GA reproduces the next generation by
executing the crossover and mutation operations. Fig. 10
demonstrates all the processes involved in creating a new
generation. The proposed GA model utilizes single-point
crossover with the probability of p. exchanging parts of two
single chromosomes. The mutation operator with the likeli-
hood of p,, alters the gene value in some randomly selected
chromosome locations assisting the model in avoiding loss
of genetic diversity. Consequently, after several consecutive
reproductions, the unfit chromosomes become extinct, while
the best able to survive gradually dominate the population.
Once the crossover and mutation processes are over, the
model evaluates and picks out the best chromosomes among
the offspring and parents in the selection phase to produce the
next generation.

Our proposed algorithm sets the number of new descen-
dants greater than the number of parents. The elitism strategy
is employed in the selection stage to elect the fittest children
and parents. This work utilizes the roulette wheel selection
operator [44], which first calculates the fitness function value
of each chromosome and then normalizes the computed
results. The fitness function considered for each algorithm
is the accuracy value that the algorithm calculates for
each chromosome. The algorithm assigns a random number
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between zero and one to each chromosome and calculates
the probability of selecting that specific chromosome (P;).
Eventually, the most appropriate chromosome is chosen.
Applying the above technique facilitates the selection of
the chromosomes with a greater fitness level. The exact
mathematical formula for the corresponding chromosome P;
value is

Z},l:l F] ’

where F; denotes the relevant fitness value of each chromo-
some, and n indicates the population number. We appoint
appropriate values to the other two variables parameters: the
occurrence probabilities of crossover and mutation operators
(pc and p,). Once GA implements selection, crossover, and
mutation operators, the model evaluates the fitness function
and gradually achieves the optimized parameters for the
selected machine learning models by enhancing the fitness
value. The performance of the presented GA and the relative
efficiency of the MLP, RBF, ANFIS, DT, NB algorithms in
AMR is investigated.

P; (15)

IV. SIMULATION RESULTS

We perform several experimental studies in this section to
evaluate the performance of the proposed methods. The
simulations are executed in MATLAB 2020a equipped
with NN toolboxes. The AWGN channel is considered for
the communication system. Therefore, once the transmitter
modulates and then conveys the signal through the channel,
the transmitted signal is mixed with white Gaussian noise.
The transmitted signal then arrives at the receiver block,
where no prior information from the transmitter exists.
Information regarding the proposed algorithms and utilized
signal parameters is summarized in Table 2. The efficiency
and performance of the proposed models are investigated by
considering different criteria. We first examine the selected
features and their role by performing various simulations in
the following subsection.

A. SELECTED FEATURES

The employed features are briefly studied earlier in the sys-
tem model and selected features in Section II. As illustrated in
Fig. 11, the ASK-modulated signals obtain the lowest values
after considering the second-order moment of the non-linear
component of the instantaneous phase (M‘PNL ), i.e., our first
feature, which helps to separate ASK modulations from other
schemes. Fig. 12 depicts that the spectrum-based feature
(crzz) can accurately distinguish ASK and QAM modulations
from other digital modulations schemes, including PSK
and FSK modulations that possess no amplitude-related
information. The proposed AMR models of this study
utilize the mean value of the power spectral density of
the normalized-centered instantaneous amplitude of the
intercepted signal segment (3) to detach 4-ASK modulations
from BASK, as demonstrated in Fig. 13.

50272

TABLE 2. Assumptions of input signal parameters and proposed
algorithms.

Parameters Values
1 Sampling Frequency 1200 KHz
2 Carrier Frequency 150 KHz
3 Symbol Rate 12.5 KHz
4 Number of Modulations 7
5 Number of Samples 7 x 3600
6 Continuous Wavelet Transform  Haar Function with 64 Scale Values
7 K in KNN 5
8 Smoothing Parameter in PNN 0.1
9 Topology in MLP [7—20— 6]
10 LR in MLP 0.2
11 Epochs in MLP 80
12 Neurons in RBF 300
13 Spread in RBF 0.9
14 MSE in RBF 0.1
15 FIS in ANFIS genfis2
16 Membership in ANFIS -
17 Epochs in ANFIS 80
18 DT -
19 NB Distribution Normal Distribution

2r —6—BASK
—— BFSK

-10 -5 0 5 10 15 20 25 33
SNR (dB)

FIGURE 11. The values obtained for various types of modulated signals
with respect to the first feature versus SNR.

7
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—+— BFSK
BPSK
=0 4-ASK
S5 =+ 4-FSK| 7
\ QPSK
—%— QAM

-10 -5 0 5 10 15 20 25 30
SNR (dB)

FIGURE 12. The values obtained for various types of modulated signals
with respect to the second feature versus SNR.

As shown in Fig. 14, the standard deviation of the
normalized-centered non-linear component of the direct
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FIGURE 13. The values obtained for various types of modulated signals
with respect to the third feature versus SNR.
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FIGURE 14. The values obtained for various types of modulated signals
with respect to the fourth feature versus SNR.
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FIGURE 15. The values obtained for various types of modulated signals
with respect to the fifth feature versus SNR.

instantaneous phase (o4,) is employed to distinguish PSK
modulation from QPSK in hierarchical-based classifiers.

Figs. 15 and 16 illustrate how the CWT-based features
empower our model to recognize BPSK, QPSK, BFSK, and
4-FSK modulations schemes.
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FIGURE 16. The values obtained for various types of modulated signals
with respect to the sixth feature versus SNR.

B. EVALUATION AND COMPARISON METRICS
1) ACCURACY
The accuracies of the presented models are calculated as
N l = n
Acci=—Y % (16)
m = n;
where i is the SNR value, m indicates the number of iterations
per SNR, n; represents the total number of testing instances,
and n denotes the total number of correctly classified digital
modulation schemes.

2) SPEED COMPARISON AND EVALUATION

One of the essential evaluation criteria is the algorithm’s
speed in real-time applications, i.e., time complexity. There-
fore, the computation times of the selected machine learning
models are reported to provide a detailed comparison.

3) PARAMETERS EVALUATION AND CONFUSION MATRIX
Most of the studied algorithms have an adjustable parameter.
Imprecise selection of tuning parameters, i.e., extremely
small or large, diminishes the accuracy of the model.
Therefore, the values of these parameters must be chosen
appropriately. GAs are utilized in algorithms with a large
number of parameters. In algorithms that have only one
parameter, two approaches can be used. The first approach is
to use the trial-and-error method. Furthermore, in the second
tactic, the 10-fold cross-validation technique is employed to
find values for the parameters.

In the M-fold cross-validation approach, the dataset
samples are distributed into M different subsamples of the
same size. In each step/iteration, the technique utilizes one
of the M sets for evaluation purposes, while the rest are
employed in the training process. Accordingly, the average
error per p iterations is calculated as [45]

p <Zj[{1 (Errar_Foldj)>

i=1 M

™|
Il

7)
p
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FIGURE 17. Accuracy comparison of the AMR algorithms.

We compare the results of our proposed models with
other studies, in particular [9], [32], and [46]. The work
in [9] and [32] propose a hierarchy-based support vector
machine (SVM) classifier. The authors investigate the two
approaches, namely one against one (OAQO) and one against
all (OAA). The study in [46] employs probabilistic neural
network (PNN) and KNN algorithms for AMR. In these
work, a total of six features are exploited to recognize seven
different digital modulation schemes. Fig. 17 compares the
performance of the proposed methods versus different SNRs.
Our proposed models provide robust modulation recognition
with high accuracy at very low SNRs, i.e., extremely noisy
environments. In particular, it is seen that the MLP and
DT methods achieve an accuracy of above 95% at an SNR
of —6 dB. Moreover, all the utilized algorithms provide
accuracies greater than 90% at SNR = 0 dB.

In addition, to better compare the performance of the
models, Fig. 18 shows the related accuracies of all the
algorithms at different SNRs ranging from —10 dB up
to 10 dB. The figure provides better visualization of the
accuracies obtained by the proposed models. The overlapping
lines indicate that the distinct machine learning algorithms
achieve similar accuracy at specific SNRs. Most of our
employed algorithms, including MLP, DT, and NB, achieve
an accuracy of 100% at the SNR of 0 dB.

The average accuracy obtained from 30 realizations of
simulation per SNR is given in these simulations. Table 3
provides a comparison made for a specific SNR equal to
0 dB. Our proposed models result in significantly faster and
more efficient AMR without compromising the accuracy.
In particular, the presented DT offers 96.75% speedup over
SVM-OAO and 89.13% over SVM-OAA. Other employed
models of this study provide an average speedup of 89%
and 65% over SVM-OAO and SVM-OAA, respectively.
As observed, the DT algorithm consumes the least time
to provide a suitable output. Providing the correct result
in the shortest possible time facilitates the use of the
proposed algorithms in real-time applications. Table 4 lists
the associated accuracy for various SNRs. In addition, this
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FIGURE 18. Comparison of the models performance at SNRs —10 dB to
10 dB.

TABLE 3. The speed and accuracy performance of the presented
algorithms at SNR = 0 dB.

References Time (s) Accuracy (%)
1 MLP 3.0631 100
2 RBF 5.4198 90.33
3 ANFIS 4.7347 90.24
4 DT 1.4219 100
5 NB 7.5923 100
6 KNN 5.0187 100
7 PNN 7.6358 100
8 SVM-OAO 43.7982 100
9 SVM-OAA 13.0852 100

table contains the results of some other related studies.
In the methods proposed in the comparable studies, various
machine learning and Al techniques are employed. As can
be observed, the presented techniques, even at low SNRs,
successfully offer very high accuracy. In particular, the
proposed DT, MLP, and NB algorithms provide 100%,
99.66%, and 96.66% accuracy at SNR = —2 dB, respectively.

One of the most significant achievements of the presented
study is using single-parameter methods in which trial-and-
error methods obtain the optimal parameter value. Using
algorithms with a minimum number of parameters will
increase the speed of machine learning algorithms in the
training and testing process. Moreover, for multi-parameter
models, it can be mentioned that the specific GA presented
in this work is utilized to find the optimal values of the
parameters for these approaches.

The GA exploiting the 10-fold cross-validation technique
is employed to obtain the optimal values of the adjustable
parameters. Figs. 19 and 20 examine the accuracies of the
MLP and RBF models with respect to changes in the values
of the tunable parameters, respectively. We observe that
the appropriate selection of adjustable parameters values
significantly improves the performance of the proposed
models. It is clearly seen that the optimal selection of these
parameters significantly improves the performance of the
employed models (up to 70%).
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TABLE 4. Performance comparison of various digital modulation
recognition techniques.

SNR Accuracy

References Modulations
(dB)  (Percentage %)
BASK, 4-ASK, BFSK,
Presented
1 4-FSK, BPSK, 4-PSK, -2 99.66
MLP
16-QAM
BASK, 4-ASK, BFSK,
Presented
2 4-FSK, BPSK, 4-PSK, -2 88.00
RBF
16-QAM
BASK, 4-ASK, BFSK,
Presented
3 4-FSK, BPSK, 4-PSK, -2 85.44
ANFIS
16-QAM
BASK, 4-ASK, BFSK,
Presented
4 DT 4-FSK, BPSK, 4-PSK, -2 100
16-QAM
BASK, 4-ASK, BFSK,
Presented
5 NB 4-FSK, BPSK, 4-PSK, -2 96.66
16-QAM
BASK, 4-ASK, BFSK,
6  KNNin [46] 4-FSK, BPSK, 4-PSK, -2 100
16-QAM
BASK, 4-ASK, BFSK,
7 PNN in [46] 4-FSK, BPSK, 4-PSK, -2 99.60
16-QAM
8 [26] BPSK, QPSK, 8-PSK -1 75.99
ASK, FSK, PSK,
9 [29] 0 99.19
QASK, QFSK, QPSK
BASK, BFSK, 4-FSK,
10 [47] 8-FSK, BPSK, 4-PSK, 0 100
16-QAM, 32-QAM, 64-QAM
11 [48] BPSK, 4-PSK, 8-PSK -1 99.00
BFSK, 4-FSK, BPSK,
12 [49] 9 92.60
4-PSK, 8-PSK
BASK, 4-ASK, BFSk,
13 [50] 4-FSK, BPSK, 4-PSK, 5 97.00
16-QAM
BASK, 4-ASK, BFSK,
14 [7] 4-FSK, BPSK, 4-PSK, 10 86.50
8-PSK
BPSK, 4-PSK, 16-QAM,
15 [51] 4 89.40
64-QAM
BASK, 4-ASK, BFSK,
16 [13] 4-FSK, BPSK, 4-PSK, 10 95.00
MSK, 16-QAM
BPSK, 8-PSK, 4-ASK,
17 [19] 0-35 100
16-QAM
BPSK, QPSK, 8-PSK,
BASK, 4-ASK, 4-QAM,
18 [25] 0-35 99.06
16-QAM, 32-QAM,
64-QAM
19 [52] BASK, QPSK, 16-QAM 0-35 99.83

Furthermore, it is observed that the DT classifier has the
least computation time. Accordingly, to further study the
model, Table 5 lists the results obtained for this algorithm
at SNR = —6 dB in the form of a confusion matrix. The
confusion matrix reports the prediction results of our model.
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FIGURE 19. The accuracy of the MLP at different SNRs (-5 dB, 0 dB, 5 dB,
10 dB) plotted versus the learning rate parameter.
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10 dB) plotted versus the spread value parameter.

TABLE 5. DT algorithm confusion matrix results at SNR = —6 dB (Test
Data = 900; Approximately 128 for each modulation scheme).

Confusion
R BASK | 4-ASK | BFSK | 4-FSK | BPSK | 4-PSK | 16-QAM
Matrix
BASK 124 2 2
4-ASK 3 123 2
BFSK 120 6 2
4-FSK 2 124 2
BPSK 2 5 120 1
4-PSK 1 126 1
16-QAM 1 3 124

The number of correct and incorrect predictions are listed
for each modulation scheme. As can be concluded from
the figures and tables above, the proposed models provide
excellent accuracy.

V. CONCLUSION

MLP, RBF, ANFIS, DT, and NB models are leveraged
in this study to intelligently detect and classify numerous
digital modulation schemes based on the presented key
features. Additionally, we exploit a heuristic optimization
method, namely GA, to determine the optimal values of
the tunable parameters for the machine algorithms. The
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simulation results illustrate that the proposed algorithms
have superior accuracy while employing significantly fewer
classifiers, parameters, and computations. It is observed that
the selected models successfully identify and classify the
received signals that have been modeled in different ways
in a short time and with extreme accuracy. Furthermore,
the presented approaches substantially elevate the speed of
the AMR system, in particular up to 96.75% improvement
compared to previous studies. These classical methods can
compete reasonably well with deep learning algorithms.
It can also be stated that algorithms can accurately and
robustly identify the signal modulation schemes received
at extremely low SNRs. Various channel types, including
Rayleigh and Rician fading, can be investigated in the future
to extend the work. In addition, it should be noted that the
hardware aspect of the methods should also be evaluated as
future work.

REFERENCES

[1] Z.Zhu and A. K. Nandi, Automatic Modulation Classification: Principles,
Algorithms and Applications. Hoboken, NJ, USA: Wiley, 2015.

[2] B. Jdid, K. Hassan, I. Dayoub, W. H. Lim, and M. Mokayef, ‘“Machine
learning based automatic modulation recognition for wireless communi-
cations: A comprehensive survey,” IEEE Access, vol. 9, pp. 57851-57873,
2021.

[3] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic

modulation classification techniques: Classical approaches and new

trends,” IET Commun., vol. 1, no. 2, pp. 137-156, Apr. 2007.

1. Abdel Hafiz El Rube and N. El-din El-Madany, “Cognitive digital

modulation classifier using artificial neural networks for NGNs,” in Proc.

7th Int. Conf. Wireless Opt. Commun. Netw. (WOCN), Sep. 2010, pp. 1-5.

[5] J.L.Xu, M. Zhou, and W. Su, “Discrete likelihood ratio test for intelligent
signal recognition in software defined radio,” in Proc. 19th Annu. Wireless
Opt. Commun. Conf. (WOCC), May 2010, pp. 1-6.

[6] P. Prakasam and M. Madheswaran, “Modulation identification algorithm
for adaptive demodulator in software defined radios using wavelet
transform,” Int. J. Signal Process., vol. 5, no. 1, pp. 74-81, 2009.

[7]1 W.Su, Z. Lei, H. Li, and T. Han, ““The research of modulation recognition
algorithm base on softwore radio,” in Proc. 2nd Int. Conf. Comput. Eng.
Technol., vol. 7, Apr. 2010, pp. V7-308.

[8] E. Azzouz and A. K. Nandi, Automatic Modulation Recognition of
Communication Signals. Springer, 2013.

[9] S. Hassanpour, A. M. Pezeshk, and F. Behnia, “Automatic digital
modulation recognition based on novel features and support vector
machine,” in Proc. 12th Int. Conf. Signal-Image Technol. Internet-Based
Syst. (SITIS), Nov./Dec. 2016, pp. 172-177.

[10] S.-Z.Hsue and S. S. Soliman, “Automatic modulation classification using
zero crossing,” IEE Proc. F (Radar Signal Process.), vol. 137, no. 6,
pp. 459-464, 1990.

[11] E. F Liedtke, “Computer simulation of an automatic classification
procedure for digitally modulated communication signals with unknown
parameters,” Signal Process., vol. 6, no. 4, pp. 311-323, Aug. 1984.

[12] K. Hassan, I. Dayoub, W. Hamouda, and M. Berbineau, ‘“‘Automatic
modulation recognition using wavelet transform and neural networks in
wireless systems,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1,
pp. 1-13, Dec. 2010.

[13] C.-S. Park, J.-H. Choi, S.-P. Nah, W. Jang, and D. Y. Kim, “Automatic
modulation recognition of digital signals using wavelet features and
SVM,” in Proc. 10th Int. Conf. Adv. Commun. Technol., vol. 1, Feb. 2008,
pp. 387-390.

[14] M. P. DeSimio and G. E. Prescott, “Adaptive generation of decision
functions for classification of digitally modulated signals,” in Proc. IEEE
Nat. Aerosp. Electron. Conf., May 1988, pp. 1010-1014.

[15] S. Kharbech, I. Dayoub, M. Zwingelstein-Colin, E. P. Simon, and
K. Hassan, “Blind digital modulation identification for time-selective
MIMO channels,” IEEE Wireless Commun. Lett., vol. 3, no. 4,
pp. 373-376, Aug. 2014.

[4

50276

(16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

A. Ebrahimzadeh and R. Ghazalian, “Blind digital modulation classifi-
cation in software radio using the optimized classifier and feature subset
selection,” Eng. Appl. Artif. Intell., vol. 24, no. 1, pp. 50-59, 2011.

X. Zhang, J. Sun, and X. Zhang, “Automatic modulation classification
based on novel feature extraction algorithms,” IEEE Access, vol. 8,
pp. 16362-16371, 2020.

A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation
recognition of communication signals,” IEEE Trans. Commun., vol. 46,
no. 4, pp. 431-436, Apr. 1998.

T. A. Almohamad, M. F. M. Salleh, M. N. Mahmud, A. H. Y. Sa’d,
and S. A. Al-Gailani, “Automatic modulation recognition in wireless
communication systems using feature-based approach,” in Proc. 10th Int.
Conf. Robot., Vis., Signal Process. Power Appl. Singapore: Springer, 2019,
pp. 403—409.

M. L. D. Wong and A. K. Nandi, “Automatic digital modulation
recognition using artificial neural network and genetic algorithm,” Signal
Process., vol. 84, no. 2, pp. 351-365, 2004.

Z.Zhu, M. Waqar Aslam, and A. K. Nandi, “‘Augmented genetic program-
ming for automatic digital modulation classification,” in Proc. IEEE Int.
Workshop Mach. Learn. Signal Process., Aug. 2010, pp. 391-396.

L. Zhang, L. B. Jack, and A. K. Nandi, “Extending genetic programming
for multi-class classification by combining K-Nearest neighbor,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 5,
Mar. 2005, pp. V-349.

N. Ghani and R. Lamontagne, ‘‘Neural networks applied to the classifica-
tion of spectral features for automatic modulation recognition,” in Proc.
IEEE Mil. Commun. Conf. (MILCOM), vol. 1, Oct. 1993, pp. 111-115.
K. Neshatian and M. Zhang, “Genetic programming for performance
improvement and dimensionality reduction of classification problems,” in
Proc. IEEE Congr. Evol. Comput. (IEEE World Congr. Comput. Intell.),
Jun. 2008, pp. 2811-2818.

T. A. Almohamad, M. F. M. Salleh, M. N. Mahmud, I. R. Karas,
N. S. M. Shah, and S. A. Al-Gailani, ‘“Dual-determination of modulation
types and signal-to-noise ratios using 2D-ASIQH features for next
generation of wireless communication systems,” [EEE Access, vol. 9,
pp. 25843-25857, 2021.

K. Jiang, J. Zhang, H. Wu, A. Wang, and Y. Iwahori, “A novel digital
modulation recognition algorithm based on deep convolutional neural
network,” Appl. Sci., vol. 10, no. 3, p. 1166, Feb. 2020.

W. Xie, S. Hu, C. Yu, P. Zhu, X. Peng, and J. Ouyang, “‘Deep learning in
digital modulation recognition using high order cumulants,” IEEE Access,
vol. 7, pp. 63760-63766, 2019.

M. Zhang, Y. Zeng, Z. Han, and Y. Gong, ‘“Automatic modulation
recognition using deep learning architectures,” in Proc. IEEE 19th Int.
Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018,
pp. 1-5.

N. Daldal, Z. Comert, and K. Polat, “Automatic determination of digital
modulation types with different noises using convolutional neural network
based on time—frequency information,” Appl. Soft Comput., vol. 86,
Jan. 2020, Art. no. 105834.

T. Zhang, C. Shuai, and Y. Zhou, “Deep learning for robust automatic
modulation recognition method for IoT applications,” IEEE Access, vol. 8,
pp. 117689-117697, 2020.

J. Proakis and M. Salehi, Communication Systems Engineering.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

S. Hassanpour, A. M. Pezeshk, and F. Behnia, ““A robust algorithm based
on wavelet transform for recognition of binary digital modulations,” in
Proc. 38th Int. Conf. Telecommun. Signal Process. (TSP), Jul. 2015,
pp. 508-512.

J. R. Quinlan, Programs for Machine
The Netherlands: Elsevier, 2014, Ch. 4. 5.
S.-H. Oh, “Error back-propagation algorithm for classification of imbal-
anced data,” Neurocomputing, vol. 74, no. 6, pp. 1058-1061, Feb. 2011.
T. Chen and H. Chen, “Approximation capability to functions of several
variables, nonlinear functionals, and operators by radial basis function
neural networks,” IEEE Trans. Neural Netw., vol. 6, no. 4, pp. 904-910,
Jul. 1995.

V. Nekoukar and M. T. Hamidi Beheshti, “A local linear radial basis
function neural network for financial time-series forecasting,” Int. J.
Speech Technol., vol. 33, no. 3, pp. 352-356, Dec. 2010.

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tem,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685,
May/Jun. 1993.

Learning. Amsterdam,

VOLUME 10, 2022



S. Ansari et al.: Automatic Digital Modulation Recognition Based on GA-Optimized Machine Learning Models

IEEE Access

[38] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, 1986.

[39] S. Ansari, K. A. Alnajjar, S. Abdallah, M. Saad, and A. A. El-Moursy,
“Parameter tuning of MLP, RBF, and ANFIS models using genetic
algorithm in modeling and classification applications,” in Proc. Int. Conf.
Inf. Technol. (ICIT), Jul. 2021, pp. 660-666.

[40] 1. Zelinka, V. Snasael, and A. Abraham, Handbook of Optimization: From
Classical to Modern Approach, vol. 38. Springer, 2012.

[41] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[42] D. E. Goldberg, Genetic Algorithms. London, U.K.: Pearson, 2006.

[43] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems.
London, U.K.: Pearson, 2005.

[44] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, 1st ed. Reading, MA, USA: Addison-Wesley, 1989.

[45] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning, vol. 112. Springer, 2013.

[46] S. Ansari, K. A. Alnajjar, S. Abdallah, and M. Saad, “Automatic digital
modulation recognition based on machine learning algorithms,” in Proc.
Int. Conf. Commun., Comput., Cybersecur., Informat. (CCCI), Nov. 2020,
pp. 1-6.

[47] S.lJin, Y. Lin, and H. Wang, “‘Automatic modulation recognition of digital
signals based on fisherface,” in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. Companion (QRS-C), Jul. 2017, pp. 216-220.

[48] F. Xie, C. Li, and G. Wan, “An efficient and simple method of MPSK
modulation classification,” in Proc. 4th Int. Conf. Wireless Commun.,
Netw. Mobile Comput., Oct. 2008, pp. 1-3.

[49] M. Zhou and Q. Feng, “A new feature parameter for MFSK/MPSK
recognition,” in Proc. Int. Conf. Intell. Sci. Inf. Eng., Aug. 2011, pp. 21-23.

[50] J. Bagga and N. Tripathi, “Analysis of digitally modulated signals
using instantaneous and stochastic features for classification,” Int. J. Soft
Comput. Eng. (IJSCE), vol. 1, no. 2, pp. 2231-2307, 2011.

[51] M. W. Aslam, Z. Zhu, and A. K. Nandi, “Automatic modulation
classification using combination of genetic programming and KNN,” I[EEE
Trans. Wireless Commun., vol. 11, no. 8, pp. 2742-2750, Aug. 2012.

[52] T. A. Almohamad, M. FE. M. Salleh, M. Mahmud, and A. H. Y. Sa’d,
“Simultaneous determination of modulation types and signal-to-noise
ratios using feature-based approach,” IEEE Access, vol. 6, pp. 9262-9271,
2018.

SAM ANSARI received the B.Sc. degree in
telecommunication engineering from Canadian
University Dubai, Dubai, United Arab Emirates,
and the M.Sc. degree in electrical and computer
engineering from Abu Dhabi University, Abu
Dhabi, United Arab Emirates. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University
of Sharjah, Sharjah, United Arab Emirates. His
research interests include wireless communica-
tions, molecular communication, artificial intelligence, machine learning,
and renewable energy.

KHAWLA A. ALNAJAR (Member, IEEE)
received the B.S. degree in electrical engineering,
communication track from United Arab Emirates
University (UAEU), Al Ain, in 2008, the M.S.
and P.E.E. degrees in electrical engineering from
Columbia University, New York, in 2010 and
2012, respectively, and the Ph.D. degree in
electrical and electronics engineering from the
University of Canterbury, Christchurch, New
Zealand, in 2015. She is currently an Assistant
Professor with the Department of Electrical and Computer Engineering,
University of Sharjah, United Arab Emirates. Her research interests
include wireless communication systems, mathematical statistics, and
network information theory and power grids. She has received more than
30 competitive awards for her successful studies and research during these
ten years.

VOLUME 10, 2022

MOHAMED SAAD (Senior Member, IEEE)
received the Ph.D. degree in electrical and com-
puter engineering from McMaster University,
Hamilton, Canada, in 2004.

He held research positions with the Depart-
ment of Electrical and Computer Engineering,
University of Toronto, Toronto, Canada; and the
Advanced Optimization Laboratory, Department
of Computing and Software, McMaster University.
He is currently a Professor with the Department of
Computer Engineering, University of Sharjah, United Arab Emirates. His
research interests include networking, communications and optimization,
with current activity focused on the optimal design of wireless and wired
communication networks, and optimal network resource management.
He was a recipient of the 20052006 Natural Sciences and Engineering
Research Council of Canada (NSERC) Postdoctoral Fellowship; two best
teaching awards by the IEEE Women in Engineering Society, University of
Sharjah, in 2007 and 2009; the Best Paper Award in the IEEE Symposium
on Computers and Communications, Riccione, Italy, in June 2010; the
Annual Incentive Award for Distinguished Faculty Members, for excellence
in research from the University of Sharjah, in April 2010 (university-wide).
He is an Associate Editor of Frontiers in Communications and Networks.

SAEED ABDALLAH (Member, IEEE) received
the B.Eng. degree in computer and communica-
tions engineering from the American University
of Beirut, Beirut, Lebanon, in 2005, and the
M.Sc. and Ph.D. degrees in electrical engineering
from McGill University, Montreal, QC, Canada,
in 2008 and 2013, respectively. He is currently
an Assistant Professor with the Department of
Electrical and Computer Engineering, University
of Sharjah, Sharjah, United Arab Emirates. His
research interests include signal processing for wireless communications,
with special emphasis on relay networks, multicarrier systems, MIMO and
massive MIMO systems, Wi-Fi systems, channel estimation/prediction, and
adaptive modulation.

ALl A. EL-MOURSY (Senior Member, IEEE)
received the Ph.D. degree in high-performance
computer architecture from the University of
Rochester, Rochester, NY, USA, in 2005. He was
with the Software Solution Group, Intel Corpora-
tion, CA, USA, until early 2007. In 2007, he joined
the Electronics Research Institute, Giza, Egypt.
He was also a Visitor Research Scientist with
the IBM Cairo Technology Development Center,
Egypt, from February 2007 to January 2010.
In September 2010, he joined the Electrical and Computer Engineering
Department, University of Sharjah, Sharjah, United Arab Emirates, as an
Assistant Professor, where he promoted as an Associate Professor, in January
2017. His research interests include high-performance computer archi-
tecture, multi-core multi-threaded mirco-architecture, power-aware micro-
architecture, simulation and modeling of architecture performance and
power, workload profiling and characterization, cell programming, high
performance computing, parallel computing, and cloud computing.

50277



