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ABSTRACT Many techniques have been developed for wireless signal recognition in many fifth generation
(5G) enabled derivatives. Many harsh constraints, such as the large amount of model parameters and
complex signal characteristics, drives intelligent recognition method in real-world settings. In this paper,
we propose a generalizable, practical method for raw IQ signal recognition. Specifically, deep complex-
valued convolutional neural network models, including a Complex-valued Visual Geometry Group (VGG)
(CvVGG) model and a Complex-valued ResNet (CvRN) model, are proposed for handling raw signal IQ
data. We examine the merit of complex-valued neural networks (CvNN) and validate their performance with
experiments using two public datasets. With an SNR of 10dB, the proposed algorithm achieves a recognition
accuracy of 96% on the RadioML2018.10a dataset. When performing drone recognition, CvNN can achieve
a recognition accuracy of 99%. Our experimental results verify that deep complex-valued neural network
models can achieve considerably improved accuracy with lower computation complexity and fewer model
parameters than their real-valued counterparts.

INDEX TERMS Signal recognition, modulation classification, convolutional neural network (CNN),
complex-valued neural network (CvNN), fifth generation (5G).

I. INTRODUCTION
Over the years, various intelligent terminals and wearable
sensing devices brings us more serves mode and connecting
approaches, such as autonomous vehicles [1], privacy-
preserving [2], [3], and blockchain [4], [5]. Identifica- tion of
received signals has become a hot research topic in fifth gen-
eration (5G) communication, which is usually a challenging
task executed at the receiver side before demodulation [6].
Generally, feature based (FB) methods are prominent in
practical implementations because of the low complexity
involved [7]–[12]. Usually, domain expertise is critical for
such solutions. Recently, deep learning (DL) attracts great
interest in the signal recognition field, which employs a
hierarchical feature extraction approach. In other words,
DL can reduce the pre-processing effort and efficiently
distill useful information. Moreover, Graphics Processing
Unit (GPU)-based parallel computing allows fast inference
with DL. In addition, DL has the unique advantage of
handling high dimensional feature spaces encountered in
signal recognition problems, while the availability of public
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datasets facilities the research and wide deployment of
DL [13]–[15]. Several recent works study the application of
DL to wireless signal recognition. Specifically, DL models
have been proposed to handle raw I/Q data of received
signal [7] and transfer computer vision DL models to
classify the statistical images constructed with the received
signal [16], [17]. Y. Tu et al. [18] proposed large-scale
real-world radio signal based on automatic Dependent
Surveillance-Broadcast (ADS-B) and utilized several DL
methods to give some results on common channel influence
in communication system. For DL-aided approaches with raw
I/Q data of signals as input, T. O’shea et al. [19] first introduce
an open-access AMC dataset termed RadioML2016.10a,
which comprises of eight digital-modulated signals and
three analog-modulated signals. In [20], O’Shea et al.
introduce several novel deep learning applications in the
physical layer. They demonstrate a proof-of-concept study,
where a convolutional neural network (CNN) is utilized for
modulation classification and achieves satisfactory accuracy.
Later in [7], the authors provide a more extensive dataset
of additional radio signal types, a more realistic simulation
of the wireless propagation environment, and new methods
for signal classification which greatly outperform those they
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initially introduced. M. Wang et al. [21] illustrated how to
improve work efficiency while saving costs in the future
DL-based scenarios. Y. Tu et al. [22] proposed activation-
maximization based neural network pruning method, it will
slim the neural network and make it much easier to
be deployed in edge device. Some researchers [23], [24]
also considered the security problems existed in DL-based
communication system, and they used adversarial example to
check the best way to deceive DL-based signal recognition.
What is more, to overcome the constraint number of signal
label, Y. Dong et al. [25] proposed SR2CNN to conduct zero-
shot learning for signal type classification.

With regard to DL-aided statistical signal image recog-
nition, deep convolutional neural networks (DCNN) is first
applied to process the images constructed with channel state
information phase difference data for indoor fingerprinting in
2017 [16], [17]. S. Peng et al. [26] exploit colored constella-
tion diagrams to represent digital signals and utilize AlexNet
to precisely recognize them. Y. Lin et al. [27] proposed
contour stellar image (CSI) to bridge the gap between signal
waveforms to DL data formats. CSI will extract the signal I/Q
amplitude distribution and map it into different color. This
will boost signal feature extraction performance and facility
DL framework application in AMC, data augmentation, and
transfer learning. S. Zhang et al. [28] utilized binary neural
networks to reduce compute complexity, the experiment
result showed the neural network only needs 5% and 50% run
time to achieve the same accuracy in CSI. Wang et al. in [29]
combine two CNNs trained with different datasets to achieve
high AMC accuracy. In a recent work [30], the authors utilize
generative adversarial networks (GAN), a semi-supervised
learning approach, to conduct semi-supervised learning for
AMC with incompletely labeled datasets. Wang et al.
in [31] propose a fundamental privacy-preserving framework
with differential privacy. They survey the adaptations and
variants of differential privacy in emerging applications as
well as the challenges to differential privacy. Zheng et al.
in [32] propose adaptive hybrid communication protocols,
including a novel position-prediction-based directional MAC
protocol (PPMAC) and a self-learning routing protocol
based on reinforcement learning (RLSRP). Tang et al.
in [33] propose a smart approach to programmatic data
augmentation by using the auxiliary classifier generative
adversarial networks (ACGAN) to gain a better classification
accuracy of communication signal modulation. Wang et al.
in [34] also propose a novel AMCmethod. They firstly utilize
Rényi entropy and singular entropy to obtain the modulation
feature; present a novel basic probability assignment func-
tion (BPAF) based on the normal test theory; and utilize the
Dempster-Shafer (DS) evidence theory to develop a classifier.
Despite the relatively rich literature on application of DL
in communications, there are only few works considering
complex-valued representation of signal attributes in model
training and inference.

Deep learning in the complex domain is challenging.
Hirose et al. demonstrate that complex-valued networks are

better than real-valued networks for denoising incoherent,
or noise-corrupted, waveforms [35]–[37]. Nuaimi et al.
propose an improvement to the MP3 codec using complex
networks [38]. Zhang et al. in [39] propose a complex-
valued CNN (CvCNN) specifically for synthetic aperture
radar (SAR) image interpretation. It utilizes both amplitude
and phase information of complex SAR imagery. However,
the tools and algorithms for handling complex-valued signals
are still lacking, or, are simply too scattered in the literature.

Complex-valued signals are encountered in a wide variety
of applications, such as wireless communications, sensor
array signal processing, as well as biomedical sciences
and physics. Consequently, there is compelling need in
science and engineering for a statistical and mathematical
theory for processing complex-valued random signals. For
example, most practical modulation schemes in commu-
nications are complex-valued. Many applications, such as
radar and magnetic resonance imaging (MRI), generate data
that are inherently complex-valued. In some scenes, two-
dimensional real-valued data matrix is another way to present
a complex vector and then conducting analysis in the complex
domain (instead of the real domain). The complex-valued
representation is also compact and simpler in terms of
notation and for algebraic manipulations, and is convenient
for computation operations. It is evident that the need for the
expertise and theory in the processing, statistical modelling,
and estimation of complex-valued multivariate signals and
phenomena is rapidly increasing.

It is well known that CNNs actually learn discriminating
features in computer vision applications. CNNs are expected
to detect small-scale feature at shallow layers while complex
features in deeper layers. In the wireless communications
domain, however, CNNs are not trained to identify images but
I/Q samples. Nowadays, the prevalent CNN framework [7]
considers the particular transition signature in wireless
signals.

Fig. 1 shows examples of transitions in the I/Q complex
plane corresponding to QPSK, BPSK, and OQPSK. It can be
seen that different modulation waveforms present different
transition patterns in the I/Q plane. For example, the
transitions between (1, 0) and (−1, 0) are unique to BPSK
but do not appear in QPSK,which has a substantially different
constellation. The transition patterns can constitute a unique
signature of the modulated signal, which can eventually be
learned by the CNN’s filters.

Although the above CNN models are proved to be effec-
tive and useful [7], we still believe that they do not fully
consider the inherent nature of the physical layer. Our
motivation are twofold. First, the real and imaginary parts
of wireless signals are statistically dependent on each other.
For example, consider the circular rotation of a time-domain
signal corresponds to a linear phase shift in the frequency
domain. The real and imaginary parts of a complex number
are dependent on each other under any change in phase.
Unfortunately, the real-valued network model usually ignores
the statistical correlation between the real and imaginary
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parts. Second, a complex-valued model provides a more
constrained system than real-numbered models. If we know
in advance that both phase and amplitude are important to the
learning objective, then it is sensible to employ a complex-
valued model.

In this paper, we propose complex-valued neural network
(CvNN) models for communication signal recognition,
including a complex-valued Visual Geometry Group (VGG)
model, termed CvVGG, and a deep complex-valued con-
volutional neural network model, termed Complex-valued
ResNet (CvRN). We present their design, study their merit,
and validate their performance with two public datasets.

The main contributions made in this paper are as follows.
• We examine how to incorporate CvNNs into smart
communication systems. Furthermore, we derive useful
insights and highlight the inherent merit of CvNN in
handling raw I/Q signal waveforms.

• We propose new deep neural network architectures, i.e.,
the complex-valued VGG (CvVGG) and the complex-
valued ResNet (CvRN) models for signal recognition
problems. We present their designs and configurations,
and explore their suitability for signal modulation classi-
fication and device fingerprint identification problems.

• We provide a thorough experimental study of the pro-
posed CvNN models with respect to their classification
accuracy, learning speed, computation complexity, and
model parameters using two public datasets. We demon-
strate the effectiveness of the proposed CvNN models
under challenging and realistic scenarios, using raw,
real-world I/Q waveform data.

The remainder of this paper is organized as follows.
Section 2 presents the merit of CvNN for signal recognition.
In Section 3, the building blocks and the architectures of the
two proposed CvNN models are introduced. Subsequently,
the performance of the proposed CvRN and CvVGG models
is investigated using two public datasets in Section 4.
Section 5 concludes this paper.

II. MERIT OF CVNN FOR SIGNAL RECOGNITION
A. COMPLEXED-VALUED CONVOLUTIONAL KERNEL
REGULARATION
A real convolution output can be interpreted as a heat map
of similarity to the convolution kernel. That is, every output
value of a convolutional layer is a dot product between a
kernel and an input patch. Indeed, a dot product between a
real patch and a kernel with L1-norm is maximized when they
are equal to a scalar, given by:

argmax {Wr · X} (1)

whereWr denotes the convolutional kernel weightmatrix and
X denotes the input data. When it comes to complex-valued
convolutional operation, we need to maximize the magnitude
of the dot product between the complex-valued convolutional
kernel weight matrixWc and the input data X, given by:

argmax |Wc · X| (2)

FIGURE 1. Transitions in the I/Q complex plane corresponding to
(a) BPSK, (b) QPSK, and (c) OQPSK, where the arrows indicate the symbol
transition traces.

considering the representation of complex-valued amplitude
and phase, we can rewrite (2) as:

argmax
∑
mn

ȦmnÄmnej(αmn+βmn) (3)

where Wc,mn = Ämnejαmn and Xmn = Ämnejβmn .
In (3), Zmn is multiplied by Ȧmn and rotated by βmn.

The sum of the multiplied and rotated vectors achieves its
maximal magnitude if they all have the same phase and their
magnitudes accumulate. Otherwise, the summed terms may
cancel each other, resulting in a smaller magnitude. In other
words, we claim that the complex-valued convolutional layer
indeed operates as a regularization method.

B. SIGNAL COHERENCE
When we deal with I/Q raw waves, the real and imaginary
axes are essentially less meaningful than amplitude and
phase (or phase difference). This is because the real and
imaginary axes are determined only relatively to an arbitrarily
determined phase reference. The receiver determines the real
and imaginary parts, which never exist beforehand [44].
Instead, the difference of two phase values is meaningful
itself, which corresponds to the 1: time course and/or position
difference. In this sense, the phase difference represents
certain useful information. The amplitude, orthogonal to
phase, is also meaningful since it signifies the energy or
power of the waveform.

As an example, consider the 16-quadrature-amplitude
modulation (16-QAM). Fig.2(a) shows an ideal signal
constellation in the complex plane. When a receiver detects
the signal, the constellation is affected by random noise,
phase rotation/Doppler effect, and possible harmonic waves
just like that shown in Fig. 2(b).

The outcome of the CvNNs operation contains values that
carry features of both I/O parts, as a result of the complex
operation. Let the complex kernel be A+ jB and the complex
input signal be X + jY. We can store the outcome as:
• Separated channel: X · A− Y · B
• Mixed channel: X · B+ Y · A

Mathematically, the outcome of this operation is still
real valued in one channel and imaginary in the other
channel. This way, the mixed channel will allow CvNN
to learn signal coherence information. Theoretically,
CvNN outperforms real-valued Neural Network (RVNN)
in high signal coherence regions (e.g., the high SNR
region).
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FIGURE 2. Signal constellation in the complex plane of 16-QAM digital
communications: (a) The idea constellation; (b) The received constellation
that is affected by noise, phase rotation, and saturation.

III. DEEP COMPLEX-VALUED NEURAL NETWORK
ARCHITECTURE
In this section, we will first discussion the complex-
valued building blocks of CvNNs, including complex-valued
convolutional layer, complex-valued batch normalization
layer complex-valued activation, and complex-valued dense
layer. We will then present the architectures of the proposed
complex-valuedVGG (CvVGG) and complex-valued ResNet
(CvRN) models.

A. COMPLEXED-VALUED CONVOLUTIONAL LAYER
Based on the definition of complex number as an ordered pair
of real numbers, we represent a complex number z as:

z ≡ (m, n) (4)

where m and n are real numbers representing the real
and imaginary parts of z. The addition and multiplication
operations of two complex numbers can be respectively
defined as:

(m1, n1)+ (m2, n2) ≡ (m1 + m2, n1 + n2) (5)

(m1, n1) · (m2, n2) ≡ (m1m2 − n1n2,m1n2 + n1m2) (6)

In addition, for 2D real values, the addition andmultiplication
operations can be respectively represented as:

(m1, n1)+ (m2, n2) ≡ (m1 + m2, n1 + n2) (7)

(m1, n1) · (m2, n2) ≡ (m1m2, n1n2) (8)

Nowadays, the fact that a complex number is defined
by two real numbers may lead present-day neural-network
researchers to consider a complex neural network equivalent,
other than just a double-dimension, real-valued network.
However, as can be seen from (5) to (8), although the
addition processes are identical, the multiplication of two
complex numbers is unique, involving both angle rotation
and amplitude amplification. This feature is the result of the
mixture of the real and imaginary components, making it
more challenging to design a CvNN.

In the complex generalization, both the kernel and input
are complex-valued. The only difference stems from the
multiplication of complex numbers. When convoluting a
complex matrix with a complex kernel A + jB, the output

FIGURE 3. Equivalent complex and real convolution layers:
(a) Complex-valued convolution, where the output pixel is given by the
dot product of the input patch and the kernel; (b) Equivalent real-valued
convolution with two-channel inputs, kernels, and outputs.

corresponding to the input patch X + jY is given by:

(X · A− Y · B)+ j(X · B+ Y · A) (9)

To implement the same functionality with a real valued
convolution, the input and output should be equivalent. Each
complex matrix is represented by two real matrices, stacked
together in a three dimensional array. Again use array [A, B]
to represent the convolutional kernel and let the input data
be [X, Y]. For traditional two real-valued channel kernel, the
dot product between the kernel and input data is:

X · A+ Y · B (10)

which is not the desired complex-valued output (which
should be (9)). To obtain the desired outcome, we convolute
with multiple kernels through multiple channels. That is,
we use an equivalent real convolution scheme that has two
kernels in the forms of [A,−B] and [B,A]. Such a two-kernel
approach, as illustrated in Fig. 3, can produce the desired
output given in (9).

In summary, a convolution layer in a complex-valued
network can be implemented in a restricted form of a real
valued convolution laver with twice as many kernels.

B. COMPLEXED-VALUED BATCH NORMALIZATION LAYER
Data normalization is commonly used for efficient training in
most types of deep networks. However, when the underlying
problem lies in the complex domain, the data requires special
handling as outlined in [35]. Briefly, one cannot perform two-
way in dependent normalization in the real and imaginary
parts of a complex number, as there is also information
precisely in the relation of the real and imaginary axes.
To properly handle the normalization process, we treat the
complex numbers as 2D vectors and the process as 2D
whitening. We scale the 0 centered data x by the inverse
square root of its covariance matrix V, as:

X̃ = (V)
1
2 (x− E[x]) (11)

where V is a 2 × 2 covariance matrix given by:

V =
(
Vrr Vri
Vir Vii

)
=

(
cov(Re{x},Re{x}) cov(Re{x}, Im{x})
cov(Im{x},Re{x}) cov(Im{x}, Im{x})

)
(12)

VOLUME 10, 2022 48711



J. Xu et al.: Performance Analysis of Complex-Valued Neural Network in Radio Signal Recognition

FIGURE 4. Surface plots for (a) the real and (b) imaginary parts of CRelu.

As in batch normalization for real values, we also set the
learnable shift parameter p and the scaling parameter y for
complex batch normalization. The scaling parameter is given
by:

γ =

(
γrr γri
γri γii

)
(13)

The real part and imaginary part of the shift parameter Eβ
and γri; in the scaling parameter γ will be initialized to zero,
while γrr and γii in the scaling parameter γ will be initialized
to 1
√
2
. The initialization will satisfy a modulus of 1 for the

variance of the normalized value [45]. Finally, we obtain the
complex-valued batch normalization laver as:

BN (x̃) = γ · x̃+ Eβ (14)

C. COMPLEXED-VALUED ACTIVATION
The rectified linear unit (ReLU) has become very popular for
DNNs, since it avoids vanishing gradients usually associated
with the sigmoidal activation. In this paper, we propose
Complex ReLU (or,C ReLU), the complex-valued activation
that applies separate ReLUs on both the real and imaginary
parts of a neuron, which is given by:

CRelu = Relu(Re(z))+ Relu(jIm(z)) (15)

The surface plots for the real and imaginary parts of CRelu
are presented in Fig. 4.

D. COMPLEXED-VALUED DENSE LAYER
The dense layer often serves as a classifier in BNN. To make
full use of the complex-valued statistical information, we also
present a mechanism, named Complex Dense Layer, to learn
complex-valued features while computing complex-valued
classification results. Denote a complex-valued dense vector
weight as Ew = Ea + jEb and a complex-valued input as Es = Ex
+ jEy.

Similar to the complex-valued convolutional operation
presented in Section III part A, we have:

Ew · Es = (Ea · Ex − Eb · Ey)+ i(Eb · Ex + Ea · Ey) (16)

This process is illustrated in Fig.5.

FIGURE 5. Complex-valued dense layer computation operation.

FIGURE 6. The proposed CvVGG architecture.

E. COMPLEXED-VALUED VGG ARCHITECTURE
The VGG model [40] is based on AlexNet [41] and has
several unique features. Instead of using large receptive fields
like AlexNet (11 × 11 with a stride of 4), VGG uses very
small receptive fields (3 × 3 with a stride of 1). Because
there are now three ReLU units instead of just one, the
decision function is more discriminative. There are also fewer
parameters (27 times the number of channels, while AlexNet
has 49 times the number of channels). VGG incorporates
1x convolutional lavers to make the decision function more
non-linear without changing the receptive fields. The small-
size convolution filters allow VGG to have a large number
of weight layers; and in most cases, more layers lead to
improved performance. This is not an uncommon feature,
though. GoogleNet from Google Research, another model
that uses deep CNNs and small convolution filters, also
performed well in the 2014 ImageNet competition.

The main challenge is how to make VGG accept complex-
valued signal data format.

In this paper, we refer to [7] and design a VGG architecture
for modulated signal I/O raw waveforms and replace the
2D Convolutional laver with the 1D Convolutional laver.
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TABLE 1. The CvVGG network layout.

We do not perform any expert feature extraction or other pre-
processing on the raw radio signal.

Instead, we allow the network to learn raw time series fea-
tures directly from the high dimension data. The architecture
of the proposed CvVGG is given in Fig. 6. The network layout
parameters are given in Table 1.

F. COMPLEXED-VALUED VGG ARCHITECTURE
Deeper neural networks are usually more difficult to train.
Deep Residual Network (ResNet) [42] is arguably the
most groundbreaking work in the computer vision/DD
community in the last few years. ResNet makes it possible
to train up to hundreds or even thousands of layers while
achieving a compelling performance. Taking advantage of
its powerful representational ability, the performance of
many applications other than image classification have been
boosted, such as object detection, face recognition, andWi-Fi
fingerprinting [43].

Themain challenges for creating a complex-valued ResNet
model are twofold. First, how to make CvRN RN accept
complex-valued signal data. Second, how to design the
residual stack which can extract complex-valued signal
features while guaranteeing projection shortcut match the
dimension.

In this paper, we design a CvRN architecture for handling
I/Q raw waveforms of complex-valued wireless signal.
We replace the 2D Convolutional layer in the residual block
with the 1D Convolutional layer, and replace the real-valued
convolutional laver and the BN layer with their complex-
valued counterparts, respectively.

We also utilize the 1 × 1 convolutional layer to match the
dimension. A sketch of the proposed CvRN architecture is
given in Fig. 7. The detailed CvRN network layout is given
in Table 2 and the residual stack architecture is given in Fig. 8.

FIGURE 7. The proposed CvRN architecture.

TABLE 2. The CvRN network layout.

FIGURE 8. The residual stack architecture in CvRN.

IV. EXPERIMENTAL
In this section, we will investigate the performance of the pro-
posed CvVGG and CvRN models for wireless signal recog-
nition, by comparing their classification accuracy, learning
speed, computational complexity, and amount of parameters
with their real-valued counterparts. We choose two public
datasets in our study, including the RadioML2018.10a public
dataset [19] and the real-world, over-the-air drone radio
fingerprint dataset [46]. The experiment results validate that
CvNN is more suitable for raw I/Q waveform recognition
than their real-valued counterparts.

A. DATASETS
1) RADIOML2018.10A
The RadioML2018.10a dataset contains 24 types of modu-
lations, including several high-order modulations (QAM256
and APSK256) [19]. Generally speaking, they are often used
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FIGURE 9. Relatively point destiny colorbar.

in low fading channels and high SNR environments, such as
impulsive satellite links (e.g., DVB-S2X) [47]. The dataset
was generated with many transmission impairments, such as
carrier frequency offset (CFO), symbol rate offset (SRO),
delay spread, and thermal no This dataset only takes into
account the observation in relatively short time windows.
The number of samples is 1,024. When the decision-making
process does not have enough time to wait for more data
to improve certainty, such short time classification would be
painful but inevitable. This is particularly common in objec-
tive real-world systems, such as those in the environment
where short bursts of signals occur or where observations are
processed over time. One would not expect a classification
rate close to 100% with this dataset when the signal-to-noise
ratio (SNR) is low (i.e., Es/No is from −20dB to +30dB),

FIGURE 10. Comparison of the validation accuracy of the four models
under various SNR level.

whichmakes it a good benchmark for us to study the proposed
CvNNs. In this experiment, 70% of the ww dataset is used
for training and the remaining 30% is used for validation and
testing.

2) REAL-WORLD DRONE FINGERPRINT DATASET
Based on the system model, a drone dataset is composed
of the complex-valued (radio fingerprint) RF data collected
from real drones [46]. These real drone signals are provided
by a large drone database. This database has collected
many valuable real drone RF data through the following
three modules: drones under analysis module, fight control
module, and RF sensing module. Furthermore, we used three
types of drone signals and noise from this database. More
important, three types of drone activities were carried out
by three different brands of drones, where different brands
have different prices, protocols, and technologies. After IQ
sampling on the RF data of each drone activity, we can obtain
the drone signal dataset.

A total of 4,400 drone signal samples are used in our
experiment, with an average of 1,100 signal samples per
drone activity. These samples are randomly split with a
proportion of 7:3 for the training and testing of the CvNNs.
The length of each sample is 1,024. In order to better
extract the features in the dataset, we split each sample into
in-phase and quadrature components, in the form of a real-
valued matrix of dimension 1,024 × 2. This dataset will be
used as input to the CvNN drone identification system for
identification of different drone signals. Fig. 9 shows how to
construct an input tensor from I/Q waveforms.

B. HARDWARE AND MODEL CONFIGURATIONS
Experiments are performed on a SUGON sever equippedwith
two Intel Xeon Bronze 3104 CPUs (6 cores, each at 1.7GHz)
with 256GB of DDR4 RAM and two Nvidia TitanXP GPUs,
each with 12GB of VRAM. Each model we tested occupies
a maximum of 8GB space on the GPU. The software we use
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FIGURE 11. 24-modulation confusion matrices obtained with the
RadioML2018.10a test set for the four schemes when the SNR is 10dB.

is Keras 2.2.4 with TensorFlow 1.12.0 and Python 3.7.5 as y
backend.

FIGURE 12. Comparison of the validation accuracy of the four models.

For both RadioML2018.10a and Drone RF datasets,
an epoch is the number of iterations in which the total number
of samples chosen is equal to the size of the training set. The
networks are trained over 500 epochs with a batch size of
512. We find that adaptive learning rate annealing is helpful,
and thus reduce the learning rate by 0.1 after every10 epochs,
where the model fails to improve its validation accuracy.
We also allow early stopping once the validation accuracy
does not improve over 30 epochs. The results we report in
this section represent the best generalization accuracy over
500 epochs or if the early stopping criterion is met. This is
a standard practice for obtaining unbiased error estimations
when facing significant computational requirements for
training such networks and exploring different architectures,
configurations, and datasets. We evaluate both SGD and
the Adam optimizer, while Adam is usually superior than
SGD. Real-valued layers are initialized using the uniform
distribution [48], while complex-valued layers leverage
complex weight initialization.

C. CLASSIFICATION ACCURACY
After training the models, we obtain the classification
accuracy results using the RadioML2018.10a and drone RF
datasets. The results are presented in Figs. 10, 11, 12 and13.

1) THE RADIOML 2018.10A DATASET
We test CVRN, ResNet, CVVGG, and VGG at every SNR
level and the validation RN v GO accuracy results are plotted
in Fig.10. For better visualization of the results, we also
present the confusion matrix results for the four models when
SNR is 10dB in Fig. 11. From Figs. 10 and 11, we have the
following observations.
• When the SNR is less than 0dB (i.e., when the SNR is
medium or low), both the CvRN and CvVGG curves are
close to the corresponding real-valued curves, respec-
tively. This is because the I/Q coherence information in
the signal has been severely polluted when the SNR is
not high.

• When the SNR is higher than 0dB (i.e., when the
highly coherent region), itis evident that both CVRN and
CVVGG G outperform their real-valued counterparts,
respectively. This is because CvNNs can better 1earn the
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FIGURE 13. The confusion matrices obtained with the Drone RF dataset
by (a) CvRN;(b) ResNet; (c) CvVGG; and (d) VGG.

l/Q coherence information in the signal, which is less
polluted.

FIGURE 14. The learning curves for (a) the RadioML2018.10a dataset and
(b) the drone RF dataset.

FIGURE 15. Comparison of model FLOPs and parameter for CvRN, ResNet,
CvVGG and VGG.

2) THE DRONE RF DATASET
We also investigate the CyNN performance with the drone RF
dataset. The average classification accuracy results obtained
by the four models are presented in Fig.12. To provide more
insight of the identification result, the confusion matrices
of the four schemes are presented in Fig. 13. From the
comparisons in Figs. 12 and 13, we can conc-lude that the two
CvNN models performs well in identifying RF I/Q signals,
and outperform their real-valued counterparts, respectively.
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D. LEARNING SPEED
In this experiment, we use learning curves to measure the
learning speed of the four schemes. The results obtained with
the RadioML2018.10a dataset and the drone RF dataset are
presented in Fig. 14. We can see that both CvNN models
learn faster than their real-valued counterparts, respectively.
We conjecture that the reason are as follows.
• Signal coherence: Due to the signal coherence informa-
tion in the raw 1/Q data, CvNNww can learn faster since
it can rely onmore data sources than real-valuedmodels.

• Degree of freedom: As discussed in Section IV, CvNN
has fewer degrees of freedom since its weights can be
represented by amplitude and phase. When the degree
of freedom is reduced, the arbitrariness of the solution
will also be reduced. Thus the CvNNS can learn faster
than their real-valued counterparts, respectively.

E. COMPUTATIONAL COMPLEXITY AND NUMBER
PARAMETERS
Floating point operations per second (FLOPS) is used as an
approximation so as to calculate the number of operations
using the model [49]. Also, the number of parameters is a
metric of capacity or the ability to approximate functions.
When there are too many parameters, the neural network
tends to overfit the data. On the other hand, with too few
parameters, the neural network tends to underfit the data.

We conduct an experiment for CvRN, ResNet, CvVGG,
and VGG to compare these models’ FLOPs and number
of parameters. The experimental results, obtained from the
TensorFlow API, are presented in Fig. 15. Comparing the
computation complexity and parameters, we can conclude
that CvRN is a better choice than ResNet, and similarly,
CvVGG performs better than VGG. This is because they have
fewer parameters and therefore require less FLOPs and stor-
age space than their real-valued counterparts, respectively.

V. CONCLUSION
In this paper, we demonstrated the effectiveness of the
proposed CvNNs, which are powerful models for wireless
signal recognition. Specifically, we presented a system that
can identify signal coherence information inherent in each
modulated signal’s raw I/Q waveforms. One of our main
motivations was to explore the feasibility of building a DL-
aided system that is able to rapidly, robustly, and in real-time
recognize signal modulation from raw signal I/Q waveforms.
The proposed models are amenable for life-long learning
and defensing against adversarial attacks due to their fast
learning speed and high confidence about the classification
result. Our experimental study using two public datasets
showed that such a system could be readily deployed and
operate within realistic environments, without constraints on
any prior knowledge of the underlying protocol or software
implementations.

Our experimental study also quantified the effect of
different factors across multiple dimensions of the testing
and training processes. While our approach is robust and

effective under realistic conditions, we believe that our work
is an important exploratory step within a vast and challenging
new space, such as transfer learning and continual 1ifelong
learning with several interesting future directions identi-
fied. In addition, combining traditional feature engineering,
knowledge graphs and deep learning for multimodal fusion
learning is also a potential idea.
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