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ABSTRACT Despite being a decades-old problem, binary exploitation still remains a serious issue in
computer security. It is mainly due to the prevalence of memory corruption errors in programs written with
notoriously unsafe but yet indispensable programming languages like C and C++. For the past 30 years, the
nip-and-tuck battle in memory between attackers and defenders has been getting more technical, versatile,
and automated. With raised bar for exploitation in common information technology (IT) systems owing to
hardened mitigation techniques, and with unintentionally opened doors into industrial control systems (ICS)
due to the proliferation of industrial internet of things (IIoT), we argue that we will see an increased number
of cyber attacks leveraging binary exploitation on ICS in the near future. However, while this topic generates
a very rich and abundant body of research in common IT systems, there is a lack of systematic study targeting
this topic in ICS. The present work aims at filling this gap and serves as a comprehensive walkthrough of
binary exploitation in ICS. Apart from providing an analysis of the past cyber attacks leveraging binary
exploitation on ICS and the ongoing attack surface transition, we give a review of the attack techniques and
mitigation techniques on both general-purpose computers and embedded devices. At the end, we conclude
this work by stressing the importance of network-based intrusion detection, considering the dominance of
resource-constrained real-time embedded devices, low-end embedded devices in ICS, and the limited ability
to deploy arbitrary defense mechanism directly on these devices.

INDEX TERMS Binary exploitation, industrial control systems, cyber incidents, attack and defense.

I. INTRODUCTION
The recently increased prevalence of headline-making ran-
somware attacks on industrial control systems (ICS) is partic-
ularly worrisome for the society. These attacks often leverage
program exploits as a stepping stone for getting the initial
access. A remote exploit is perhaps the infection method
hardest to develop and hardest to prevent, since it normally
does not need any human interaction, unlike other social
engineering techniques including phishing emails. Binary
exploitation has long been a major cybersecurity issue and
continues to pose a serious security threat to individuals
and organizations around the world. Although a significant
amount of efforts are dedicated to it, defeating and preventing
successful binary exploitation remains an open problem.

Historically, the main target of binary exploitation has been
devices running on Intel x86 architecture, predominantly
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Windows operating systems (OS), and mostly in common
information technology (IT) systems. However, the target
of binary exploitation is about to gradually shift to ICS
as a result of various factors. Firstly, with hardened miti-
gation techniques in up-to-date commodity OS, successful
binary exploitation is still possible, but becomesmuch harder.
Secondly, the recent rapid integration of industrial internet of
things (IIoT) unintentionally increases the number of entry
points into ICS. Thirdly, many embedded devices are not only
lack of dedicatedmitigation techniques because of intolerable
performance overhead and/or unfulfilled hardware require-
ments, but also inherently insecure due to vendors’ unjusti-
fied prioritization of functionality over security.We argue that
this will inevitably make attackers go for easier wins.

Apart from human factors, in general, security concepts in
ICS can be divided into a few classes: secure end devices,
secure communication protocols, and secure network archi-
tectures and configuration. In order to really thwart malicious
actors’ attempts to break into a system, all these three security
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requirements must be guaranteed at the same time. To reach
a secure network architecture and configuration, there are
many practical recommendations to follow, e.g., [1], [2].
Those recommendations include robust network segmenta-
tion, e.g., deploying demilitarized zones (DMZ) and virtual
local area networks (VLAN), strong access control, e.g.,
implementing authentication and authorization mechanisms,
secure remote access, e.g., using virtual private network
(VPN) or secure shell (SSH). They are easy to implement,
i.e., even without assistance of any security professionals,
and also prove to be very effective especially against not very
skilled attackers.

In the past, the lack of these basic security measures gave
even unskilled attackers an easy chance to break into a system
and cause real damage. With raised security awareness, this
weakest link has been largely reinforced, making it much
harder to attack an organization. However, a very skilled
attacker (group) can still break into a system, often by finding
one or several software vulnerabilities and developing (zero-
day) exploits accordingly. This brings us back to the first two
security concepts, i.e., secure end devices and secure com-
munication protocols, and stresses their importance. Because
a vulnerability normally results from either design errors
or implementation errors of the implemented OS, firmware,
application software or communication protocols. Speaking
of exploiting a communication protocol vulnerability, what
is really exploited during an attack and the direct target for
an attacker is the vulnerable program that implements this
protocol and runs on an end device. Hence, we can say that the
most important point of secure end devices and secure com-
munication protocols is development and implementation of
secure programs.

As it shows in the later sections of this article, in the early
days, i.e., before 2010, ICS were easily exploitable largely
due to terribly insecure network architectures and configura-
tion, and of course, the presence of vulnerable programs was
also critical. By analyzing the major cyber incidents in ICS
in the last decade, we see that the sophistication of attacks
increased very much, and threat actors seem to be willing
to invest lots of efforts to find software vulnerabilities and
develop exploits and malwares.

Hence, we argue that both writing secure programs,
and deploying program exploitation countermeasures, are
very important topics in ICS. When developing large pro-
grams, oftentimes we can hardly verify that the programs
are absolutely secure, which makes binary exploitation
countermeasures become a crucially important second
defense line. However, while this topic generate a very rich
and abundant body of research in common IT systems,
it is not well addressed in ICS. Instead, most studies on
ICS defense strategies still either focus on how to prop-
erly isolate and configure networks, e.g., prevent network
traffic from untrusted sources, or mainly tackle situations
in which it is assumed that attackers already took foothold
in an ICS network, e.g., behavior-based intrusion detec-
tion. The initial infection methods are often not discussed,

making it appear to be a topic exclusive for common IT
systems.

In this work, we analyze binary exploitation in the context
of ICS, which consist of general-purpose computers, embed-
ded automation devices, low-end IoT devices etc. At first,
we provide a preliminary introduction of binary exploitation
in Section II, including its causes, types and consequences.
To show how and where it is used in real-world attacks,
we present in Section III a brief overview and analysis of
major ICS cyber incidents leveraging binary exploitation
in the last decade. Then, we argue in Section IV why
binary exploitation will likely become a more serious prob-
lem in ICS. Next, we summarize the contemporary miti-
gation techniques on both general-purpose computers and
embedded devices, respectively, in Section V. Lastly, we dis-
cuss heuristics-based detection and remote runtime attesta-
tion techniques in Section VI, and conclude this work in
Section VII.

II. BINARY EXPLOITATION–A PRIMER
Although memory corruption bugs in general become harder
to spot and much harder to exploit in modern software includ-
ing operating systems, there have always been examples
showing that binary exploitation is still possible in practice,
and often easier than perceived by many security defenders.
It has been long the case that every time security experts
claimed that with the newly designed mitigation technique,
binary exploitation is (almost) not possible anymore, and
then found out that their assertions are falsified by subse-
quent attacks [3]–[5]. The corresponding exploitation tech-
niques are often demonstrated and discussed by offensive
security researchers in technical security conferences like
Black Hat1 or periodicals like Phrack Magazine.2 For exam-
ple, as Intel presented its hardware-assisted Control-flow
Enforcement Technology (CET) [6] as a solution to prevent
binary exploitation, it was probably believed that the problem
is solved, only to find out there are still ways to achieve
control-flow hijacking in the presence of this modern mitiga-
tion technique, as it was demonstrated by security researchers
from the security company McAfee [7].

Undoubtedly, memory corruption exploits remain a clear,
present and persistent danger to modern software, as they are
still used as an entry point for the most recent and advanced
attacks [5]. Modern software written in unsafe programming
languages like C and C++ is particularly concerning due to
the requirement of manual memory management, which is
a very challenging task especially for large programs with
millions of lines of code. Any mistake in handling mem-
ory buffers could lead to a memory corruption vulnerability,
which consequently gives an attacker an opportunity to access
the otherwise inaccessible memory location of a vulnerable
program. Besides, evenmemory-safe languages like Java rely
on virtual machines that are in turn implemented in C/C++

1https://www.blackhat.com/briefings/
2http://phrack.org
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for performance reasons. As modern software becomes more
complex, it is less likely to see the end of memory errors in
the near future [8].

Moreover, in the world of embedded devices, memory
errors in programs and examples of binary exploitation are
also observed in the wild. That is to say, except from
x86-based platforms, a variety of other hardware platforms
can also be targeted by attackers, e.g., ARM [9], [10],
MIPS [11], [12], PowerPC [13], [14], Atmel AVR [15],
[16], SPARC [17], [18], Zilog Z80 [19], SuperH [20]. The
prevalence of binary exploitation in ICS will likely continue
to increase with accelerated integration of IIoT devices and
augmented connectivity, and become amore serious problem.
Compared to general-purpose computers, embedded systems
are way less protected, e.g., because of a lack of hard-
ware support required for modern defense techniques. Hence,
it can be confidently assumed that attackers will go for easier
wins by focusing more on embedded systems in ICS.

In order to help to understand the attack techniques and
defense strategies discussed in the following sections, a pre-
liminary introduction of binary exploitation is given in this
section, including its causes, types and consequences.

A. CAUSES OF BINARY EXPLOITATION
The causes of a program being exploitable can be interpreted
in several ways, and understood from different angles.

1) MEMORY UNSAFETY – A DANGEROUS CONDITION
A lack of memory safety in programming languages like C
and C++ is arguably the root cause of exploitable vulnerabil-
ities in software, and is deemed as the foundation of numerous
attack vectors. The need for manual memory management
makes it appear to be a never-ending problem, in particular,
as modern software written in C and C++ becomes more
complex. Memory safety is a program property that guaran-
tees objects in memory can only be accessed with the corre-
sponding capabilities, i.e., well-defined memory access [8].
That is to say, memory pointers should always point to valid
allocated memory of the correct size and type, to prevent
unintended and/or undefined behavior.

Memory safety includes spatial memory safety, temporal
memory safety, and type safety. They ensure that pointer
dereferences are restricted to data inside the corresponding
memory object, a pointer can only reference a currently
allocated memory object, and only pointers with the correct
type can access relatedmemory objects, respectively [8]. Nor-
mally, an exploit starts by triggering amemory error, in which
it first makes a pointer invalid and then dereferences this
pointer. A pointer becomes invalid, if it goes out of the bounds
of its pointed object, or its pointed object is deleted, which is
known as out-of-bounds pointer or dangling pointer, respec-
tively. While dereferencing an out-of-bounds pointer raises a
spatial memory error, dereferencing a dangling pointer results
in a temporal memory error [4]. That is to say, the first case
makes accessing neighboring memory objects possible, and
the second case allows accessing memory location that was

used for a deleted object, but now may contain another (unre-
lated) object.

It is worth noting that a single memory error can have
cascade effect, i.e., invoking many more other memory
errors. Memory corruption errors should be prevented by
enforcing both spatial and temporal memory safety policies.
In memory-safe languages, spatial and temporal memory
safety are ensured by automatic bounds-checking of objects
during memory access and garbage collection, respectively.

2) SOFTWARE DEVELOPERS – THE UNINTENDED TRIGGER
Despite the above-mentioned memory safety issue, C and
C++ still remain popular among many software develop-
ers mainly for performance reasons. Programming in these
memory-unsafe languages will often inevitably result in pro-
gram bugs, especially when writing complex programs. It is
arguably nearly impossible to write memory-safe code using
C and C++ at scale due to the need of burdensome man-
ual memory management, meaning that software written in
unsafe languages is inherently error-prone.

When writing software, software developers may often
implicitly or explicitly make questionable assumptions. Both
design flaws and implementation flaws can appear in buggy
programs written by software developers who are often
not security experts. The aforementioned invalid pointers
can be easily produced through mistakes like incautious
pointer arithmetic. Historically, performance was probably
the only key metric for many software programmers, mostly
unconcerned about security. Today, the situation has greatly
improved, with raised security awareness in general, pro-
posed secure coding guidelines, compilers-enforced safety
checks, and intense code review etc. However, some flaws
still stay unnoticed, and some attack surface remains.

3) PROGRAM BUGS – THE OBSERVED AVALANCHE
We categorize frequently encountered program bugs into
two classes, namely spatial safety-related bugs and tempo-
ral safety-related bugs. Whereas spatial safety-related bugs
arise with a breach of memory objects’ boundaries, temporal
safety-related bugs occur when memory objects are accessed
at the wrong time due to incorrectly tracked memory usage.
An avalanche of both kinds of exploitable bugs can originate
from using memory-unsafe languages.

a: SPATIAL SAFETY-RELATED BUGS
i) BUFFER OVERFLOW AND UNDERFLOW
As an instantiation of out-of-bounds write, a buffer overflow
occurs when an input is allowed to be written beyond the
boundaries of an allocated buffer during program execution,
which corrupts the data of adjacent objects. Buffer overflow
bugs range from the classic stack-based buffer overflow bugs,
i.e., allowing copying a user-supplied over-sized input into a
fixed-size buffer on the stack, to more recent and complicated
heap-based buffer overflow bugs. In fact, today, heap-based
buffer overflows are more dominantly exploited, and they are

48244 VOLUME 10, 2022



Q. Liu et al.: Binary Exploitation in Industrial Control Systems: Past, Present and Future

exploitable also due to intermingled user data and control data
in the heap as in the stack [21]. Whereas stack-based over-
flows are often used to overwrite function return addresses,
stack pointers, or stack base pointers, heap-based overflows
are often used to overwrite function pointers [22], [23].

Another instantiation of out-of-bounds write is buffer
underflows [24], a somewhat unfairly underestimated pro-
gram bug due to too much attention given to buffer over-
flows. Whereas buffer overflows occur when memory access
goes beyond the end of the targeted memory object, buffer
underflows happen if the boundary at the object’s beginning
is breached.

ii) BUFFER OVERREAD AND UNDERREAD
As the incarnation of out-of-bounds read, both buffer over-
reads [25] and buffer underreads [26] can help attackers to
reveal sensitive information like cryptographic keys or mem-
ory addresses to bypass security mechanisms, e.g., address
space layout randomization (ASLR), which will be discussed
in Section V. Similar to out-of-bounds writes, these bugs are
typically caused by excessively incrementing or decrement-
ing an array pointer in a loop to a memory location after or
before the valid buffer, respectively, or by erroneous pointer
arithmetic leading to a position beyond the bounds of the
buffer.

iii) INTEGER OVERFLOW AND UNDERFLOW
Once the classic buffer overflows were largely avoided, inte-
ger overflows and underflows have become a serious security
problem, and is frequently involved in binary exploita-
tion [21]. An integer overflow appears when an integer
arithmetic operation results in a value that is too large to
be stored in the declared variable, triggering a wraparound
and making the value become very small or negative. On the
contrary, an integer underflow can turn a very small number
into a very large number by producing a value that is smaller
than the minimum allowable integer value during integer sub-
traction. Both integer overflows and integer underflows can
be very dangerous, especially when they can be invoked by
user-supplied inputs, and attackers exploit the math involved
in resource management like calculating memory allocation
sizes. A buffer overflow can be introduced by an integer
overflow [27] or an integer underflow [28] during arithmetic
operations of an array index, in which it causes less mem-
ory or much more memory to be allocated than expected,
respectively.

iv) OFF-BY-ONE ERROR
An off-by-one bug [29] is introduced when a maximum or
minimum value is incorrectly calculated to be one more
or one less than the correct value. This often occurs when
programmers fail to take into account that an array index
starts at zero, making a loop operation iterate one more time
than it should. Or they forget that a terminating null byte is
automatically appended to a string variable taken as input
by some C library functions like strncat(), making the

input potentially corrupt the stack base pointer close to the
allocated buffer and hence creating an exploitable condition.

v) TYPE CONFUSION
A type confusion bug [30], or type violation, appears
when resources, e.g., objects in memory, are accessed using
an incompatible type. That is, during program execution,
an object is first initialized using one type, but then accessed
using another type. Type confusion often arises due to incor-
rect downcasting of a base object to a subtype without proper
checking, in particular in C++ programswith complex inher-
itance hierarchies. This can result in logical errors, because
the object with a wrong type does not have the expected prop-
erties when accessed, and can be misinterpreted. Ultimately,
it could lead to out-of-bounds memory access, if the allocated
buffer is smaller than an object with the correct type, or if
any data is misinterpreted as a pointer. Note that type-safe
programming languages are practically also memory safe due
to static or dynamic error checks, i.e., not only spatial safety
errors but also temporal safety errors can be avoided.

vi) FORMAT STRING BUG
A format string bug [31] exists, when an externally submit-
ted input string can be interpreted as a command by some
functions likeprintf() that perform formatting and accept
a variable number of arguments. As with many other bugs,
format string bugs are exploitable due to directly accepting
user-supplied inputs without validation or sanitization. A pro-
grammer may omit a format string specifier, such as %s,
when using format functions in a program. An attacker can
exploit this weakness by inserting multiple format string
specifiers into a single input string, and supply it to a format
function to subvert its normal behavior.When this input string
is taken as an argument and parsed by a format function,
it may mistakenly interpret this argument as instructions,
ultimately leading to a so-called write-what-where condition,
in which the attacker has the ability to write an arbitrary value
to an arbitrary location. Fortunately, format string bugs are
now rare thanks to easy discovery and elimination, hence no
longer pose a serious threat to security.

b: TEMPORAL SAFETY-RELATED BUGS
i) USE-AFTER-FREE
Themost common and infamous temporal safety-related bugs
are use-after-free bugs, in which a previously freed memory
location is accessed using a dangling pointer, i.e., a pointer
that points to a deallocated object. This can happen due to
some error conditions and/or when it is unclear which part
of a program is responsible for freeing the memory loca-
tion [32]. Sometimes, attackers can make a pointer become a
dangling pointer by exploiting an incorrect exception handler,
which deletes an object, but does not reinitialize the corre-
sponding pointer [4]. Depending on the implementation of
memory management system and the program code, the con-
sequences of a use-after-free bug vary from data corruption to
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arbitrary code execution. After identifying or invoking a use-
after-free bug, to exploit it, attackers could reallocate the freed
memory position to themselves and insert a crafted object
into it, before this memory position will be accessed through
the dangling pointer. Later, the inserted object is accessed
through the dangling pointer, tricking the program into exe-
cuting attackers-specified code. Note that dangling pointers
can point to not only heap but also other memory regions
like stack, but heap-based attacks are the most concerning
ones [33].

ii) DOUBLE FREE
Considered as a special case of use-after-free bugs, double-
free bugs appear in programs in which a previously freed
memory location is mistakenly freed again, instead of being
accessed using a dangling pointer. This potentially leads
to prematurely freeing a new object, or even worse, cor-
ruption of the program’s memory management data struc-
tures. To reliably exploit it, sometimes attackers leverage
a combination of double-free bugs and use-after-free bugs,
such as [34]. Like use-after-free bugs, double-free bugs
are also easy to create but difficult to spot during testing,
because, on the one hand, the first free() operation and
the second free() operation or the dangling pointer deref-
erence are two separate events that may occur far apart in
time and/or be invoked by code far apart in program space,
and, on the other hand, the second free() operation or
the dangling pointer dereference may not appear in every
program execution [33], [35].

iii) INVALID FREE
Similar to double-free bugs, a free() operation can be
wrongly used to introduce invalid-free bugs when trying to
free an object in memory. But instead of freeing a memory
object twice, a vulnerable program with invalid-free bugs
calls the free() function to free an object on the heap with
a pointer that does not point to the start of the object due
to erroneous pointer arithmetic [36]. Or it frees an object
not allocated on the heap at all, i.e., not allocated using
heapmemory allocation functions likemalloc(), but rather
automatically allocated on the stack as a local variable or
allocated on the data segment as a global variable [37].
Depending on the implementation of the free() function,
the consequences range from simply crashing a program to
corrupting the program’s memory management data struc-
tures, ultimately allowing attackers to modify critical pro-
gram variables and gain arbitrary memory access abilities.

iv) MISMATCHED FREE
When trying to return memory resource to the system,
it can go wrong not only by erroneous handling of the
free() function as in invalid-free bugs, but also by using
an incompatible memory deallocation function, producing
a mismatched-free bug. For instance, in a C++ program,
a memory buffer is first allocated with the malloc() func-
tion, but then released using the delete operation, instead

of the free() function. When the memory management
functions are mismatched, the consequences can be as prob-
lematic as those of above-mentioned temporal safety-related
bugs [38].

v) USE OF UNINITIALIZED VARIABLE
Use of uninitialized variables [39], or use of uninitialized
resources [40], may produce program bugs that cause unde-
sired effects. This happens either when a variable is accessed
before being assigned with a value, or when a variable is
accessed before it should be reinitialized. If a variable is
accessed, but not assigned previously, it can result in program
crash or invalid memory access. If a variable is accessed
prior to a necessary reinitialization, it can sometimes just
return junk data, or, in other circumstances, leak sensitive
information.

vi) WILD POINTER DEREFERENCE
Not only is use of uninitialized variables bad, but also
use/dereference of uninitialized pointers. When pointers are
created without necessary initialization, they are called wild
pointers, because they simply point to arbitrary memory
location, which can be valid or invalid. In many C and
C++ programs, pointers are often declared as a wild pointer.
If a wild pointer pointing to an invalid memory location is
dereferenced, it could result in program crash. If the wild
pointer happens to point to the start of an arbitrary function
in memory, i.e., acting like a valid function pointer, this
function may get executed. If attackers can somehow access
the memory location to which the wild pointer points, this
may result in arbitrary code execution, making it particularly
dangerous [41].

vii) Null POINTER DEREFERENCE
To avoid wild pointers, programmers may initialize pointers
to NULL when not possible to assign a more appropriate
value at the point of declaration. However, if a pointer is
initialized to NULL and dereferenced prior to being assigned
a proper value, it also introduces a bug. Whereas a wild
pointer has an undefined value, a NULL pointer keeps an
implementation-dependent defined value, which is guaran-
teed not to be a valid memory address. Dereferencing a
NULL pointer means trying to access a memory location
that does not exist, typically resulting in a crash or exit. This
may be less harmful than dereferencing a wild pointer, and
such a bug is easier to spot during testing. However, NULL
pointer dereference occurs sometimes due to race condition
or other rarely encountered error conditions, making it less
easier to detect [42]. Sometimes, attackers may leverage
intentionally triggered NULL pointer dereference to bypass
security mechanisms. Under exceptional circumstances,
malicious code execution may also be possible, if NULL
pointers are defined to hold the 0 × 0 memory address,
and attackers happen to be able to trick the kernel into
accessing it.
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viii) RACE CONDITION
Another kind of bug arising only due to memory access at
a bad time is race condition bugs, which exist in different
concrete forms with varying reasons, such as while using
signal handlers [43], in the middle of a switch statement [44],
between time-of-check and time-of-use (TOCTOU) of a
resource [45], and during context switching [46]. A race con-
dition appears when two different execution contexts are able
to affect a shared resource without proper synchronization,
and hence interfere with each other. It is often caused by
programmers thinking that system calls will execute atomi-
cally. But most system calls end up executing a large number
of instructions and hence having longer than expected exe-
cution time, letting another concurrently running thread or
process have a chance to intervene [21]. A race condition
can have security implications, in particular when it takes
place during execution of security-relevant code. It may be
exploited by attackers to corrupt or modify important state
information, potentially leading to program crash or access
to resources otherwise unavailable to unauthenticated and
unauthorized users. Besides, in some cases, race condition
bugs are the cause of other temporal safety-related bugs like
use-after-free, double-free, and NULL pointer dereference
bugs.

According to the MITRE CWE ranking [47], out-of-
bounds writes and out-of-bounds reads bugs are among the
top three most dangerous software weaknesses in 2021, while
use-after-free bugs are among the top 10 and NULL pointer
dereference bugs are among the top 15. That is to say, spa-
tial safety-related bugs are still the most severe ones, but
the focus of memory corruption location has shifted from
stack to heap [48]. Besides, it is worth noting that spatial
safety-related bugs and temporal safety-related bugs are not
unrelated to each other, and in fact, temporal safety-related
bugs can often result in spatial safety-related issues. For
instance, out-of-bounds writes and reads are sometimes
enabled by use-after-free bugs.

In summary, the fundamental problem is that a lack of
memory safety in programming languages allows software
developers to introduce certain types of exploitable program
bugs. Apart from invoking undefined behavior, i.e., mostly
a stability problem, these program bugs can lead to leakage
of sensitive information from memory and/or arbitrary code
execution.

B. TYPES OF BINARY EXPLOITATION
By leveraging one or more of the above-mentioned memory
corruption bugs, attackers can conduct different types of
attacks. To alter a running program’s behavior to the benefit
of attackers, there are generally two types of exploitation,
i.e., control-oriented exploitation (also known as control-flow
hijacking [49]) and data-oriented exploitation (also known as
non-control-data attacks [50]). In control-oriented exploita-
tion, attackers seek to modify control data of a running pro-
gram, i.e., the return address of a function call, or the code
pointer of an indirect call or jump, to redirect the control-flow

to execute attackers-injected code [49], attackers-selected
library functions [51], or attackers-selected small code snip-
pets [52]. In data-oriented exploitation, attackers intend to
tamper with non-control but security-critical data, such as
user ID, to bypass access control mechanisms and grant the
root privilege [50], to leak sensitive information [53], or to
indirectly influence the control flow [54], without even violat-
ing control-flow integrity polices in place. While this section
also briefly mentions some defense methods, more detailed
information about defense methods is provided in Section V
and Section VI.

1) CONTROL-ORIENTED EXPLOITATION
The first known type of binary exploitation is control-
oriented, which is still the one receiving most of the atten-
tion in attacks exploiting memory bugs today. Beginning
with the stack-smashing attacks [49], the early generation
of control-oriented exploitation centered on code-injection
attacks. Only few years later, the focus shifted to code-reuse
attacks with a number of increasingly sophisticated variants
surfacing one after another. In any of these cases, in order
to successfully exploit a program bug, an attacker needs
to be able to first inject code into a running program or
carefully pre-select existing code from that program, then
redirect the control flow to the injected or pre-selected code,
hence obtaining the control of the process. The injected
code or the pre-selected code is simply a user input con-
taining machine instructions or memory addresses of pre-
selected instructions, respectively. By means of the program
bug, part of the user input is used to change the target
address of an indirect branch instruction, e.g., ret, jmp,
call, essentially controlling which instruction is executed
next. Regarding to whether the control-flow diversion is
achieved through a return instruction, or an indirect jump
or call instruction, control-oriented exploitation is further
categorized into backward-edge control-flow hijacking and
forward-edge control-flow hijacking, which differ very much
in used methods for designing attacks.

a: BACKWARD-EDGE CONTROL-FLOW HIJACKING
Backward-edge control-flow hijacking attacks include all
code-injection attacks [49] and some code-reuse attacks, i.e.,
return-into-libc attacks [51], [55], [56] and return-oriented
programming (ROP) attacks [52], [57], due to their great
reliance on the return instruction ret.

i) CODE INJECTION ATTACKS
Initially, in order to execute arbitrary code of attackers’
choice, they solely relied on injection of simple code. The
highly influential paper first to describe stack-smashing
attacks [49] has spurred a considerable amount of research
both in attacks and in defenses over time. The described
stack-smashing attacks leverage a classic stack-based buffer
overflow bug to inject code occupying the target buffer and
its neighboring memory area. The injected code is care-
fully chosen and arranged, so that part of it overwrites a
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return address, i.e., a saved instruction pointer pointing to the
next to-be-executed instruction, on the stack with a memory
address of the attacker’s choice. Hence when the vulnerable
function returns, it points to the code injected by the attacker
rather than returning to the caller that invoked the vulnerable
function. The injected code that is executed after control-flow
diversion launches a command shell, from which the attacker
can control the compromised machine, and hence is called
shellcode.3

Code-injection attacks are possible due to the fact that,
on x86-based platforms with vonNeumann architecture, code
and data are stored in the same memory space, and x86
instruction set architecture itself does not distinguish between
code and data, meaning that the same piece of raw bytes can
be referred to as instructions or data depending on the context.

ii) RETURN-INTO-LIBC ATTACKS
Not long after code-injection attacks had grown their popu-
larity, the W⊕X (write xor execute) policy [59] was intro-
duced and has been widely enforced on modern operating
systems, asserting that a memory page can be either writable
or executable. By doing so, it marks all data regions, such
as the stack, as non-executable, and hence effectively thwarts
all code-injection attacks. In response, attackers have turned
to code-reuse attacks, i.e., reuse of existing legitimate code
in a vulnerable program or its linked libraries for malicious
purposes. The first generation and also the simplest form
of code-reuse attacks are the return-into-libc (RILC) attacks
initially introduced in [51], which leverage functions from the
standard C library libc.4 This library is dynamically linked
to nearly all Unix programs and loaded in their memory
spaces. Thus, instead of injecting malicious code into the
stack by means of a user input, attackers inject malicious data
interpreted as code pointers pointing to exported functions in
libc during execution.

The first generation of RILC attacks [51] used a single-call
to the system() function of libc, with specified function
arguments, to spawn a command shell. As a single func-
tion call is used to perform a specific operation, it alone
has limited ability or expressiveness. Afterwards, the second
generation of RILC attacks [55] appear to be more advanced,
i.e., capable of arbitrarily chaining multiple libc functions
together and invoking them one after another for performing
a more powerful operation. A method called esp lifting [55]
was introduced to glue multiple functions by means of com-
mon short instruction sequences like pop esp; ret. The
stack pointer esp serves as a ‘‘virtual’’ program counter.
By overwriting the return address in the current stack frame
with the memory location of such a sequence, an attacker

3The term shellcode is nowadays used to refer to exploit payload, irre-
spective of whether it launches a shell [58].

4Note that a C runtime library provides many useful low-level routines,
e.g., wrappers for system calls, that can be called by a compiled C program
during execution. In most of research papers the GNU libc is used for
demonstration, but the presented techniques should be also applicable with
C runtime libraries implemented in other OS like Microsoft Windows OS,
as per [52], [56].

can move the stack pointer to the next stack frame, hence
chaining multiple functions together [56]. That is to say, the
attacker can first populate the stack with carefully crafted and
arranged malicious function call frames containing function
entry points and parameters, then use the stack pointer to
redirect the execution to the next function of the attacker’s
choosing.

However, the second generation of RILC attacks still can
hardly support conditional branching, an essential operation
for a system to be Turing complete, meaning that they can-
not freely alter the control flow during program execution.
Subsequently, the third generation of RILC attacks [56] were
presented to prove that Turing completeness is achievable
with RILC attacks, and thereby attackers can perform arbi-
trary computations in the target program through selected and
arranged function calls. Some commonly available specific
functions, dubbed widgets, can be chosen and misused to
induce conditional branching and hence arbitrary behavior in
the target program.

iii) RETURN-ORIENTED PROGRAMMING
As the x86-64 architecture becomes more prevalent, RILC
attacks get more difficult to conduct, because most func-
tion arguments are passed into CPU registers instead of
the stack, due to increased space available in registers in
the x86-64 architecture. Moreover, removing certain func-
tions from libc, as a defense strategy, may restrict the capa-
bilities of RILC attacks. To overcome these restrictions,
attackers moved to a more general and advanced attack
technique called return-oriented programming (ROP) [52].
ROP extends code-reuse attacks greatly, and the name results
from the fact that it is the return instruction triggering the
processor to continue executing what attackers put or spec-
ified in memory, like in code-injection attacks and RILC
attacks. Whereas the building blocks of RILC attacks are
libc functions, ROP attacks take as building blocks only
short instruction sequences ending with a return instruction,
dubbed gadgets. Such gadgets are discovered offline through
static analysis of a vulnerable program, and allow an attacker
to carry out arbitrary computations possible with x86 code,
i.e., Turing complete, when appropriately arranged [52].

Each gadget performs a well-defined specific task, e.g.,
loading a value into a register, reading a value from memory,
some arithmetic operation, or a conditional branching. To find
these gadgets is not difficult in a large code base like libc.
In particular on x86-based platforms, finding appropriate
gadgets is made even easier by the fact that instructions are
of variable length and unaligned memory access is supported,
meaning that unintended instruction sequences can be found
and acquired by starting from an offset of some intended
instructions. That is, every x86 program contains many unin-
tended instruction sequences which can be leveraged by
attackers. ROP is essentially all about finding useful gadgets
located anywhere in memory, and connecting them sequen-
tially to perform desired operations. The location of every
gadget is written into the stack, and the return instruction
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at the end of each gadget helps to get the next gadget to be
executed, effectively allowing them to be chained. A perhaps
more concrete way to view ROP is that the selected gadgets
form a ‘‘virtual’’ instruction set that can be used to write a
program of arbitrary complexity, and the stack pointer acts as
a ‘‘virtual’’ instruction pointer [57], [60].

b: FORWARD-EDGE CONTROL-FLOW HIJACKING
Since the advent of ROP attacks, defenders have presented
a variety of potent defense methods. Driven by the insight
that ROP has a great reliance on the return instruc-
tion, such defense methods [61]–[63] either detect abnor-
mal use of the return instruction, e.g., too frequent or
unusual according to calling convention, or prevent com-
pilers from producing code containing return instructions.
This, though, has prompted attackers to come up with
other code-reuse variations, extending the approach from
solely relying on return instructions to capable of lever-
aging any indirect branching instruction. Hence attackers
further generalized code-reuse attacks to include forward-
edge control-flow hijacking attacks such as jump-oriented
programming (JOP) [64], [65] and call-oriented program-
ming (COP) [60].

i) JUMP-ORIENTED PROGRAMMING
The term of jump-oriented programming was coined by [65],
while independent techniques leveraging the jump instruc-
tion jmp, instead of the return instruction ret, were
first presented in [66] and [64]. JOP attacks can bypass
above-mentioned defense approaches against ROP attacks,
because such obvious inherent characteristics of ROP attacks
like violation of calling convention, which can be taken as
a detection indicator, do not exist in JOP attacks. Given that
certain instruction sequences behave like a return instruction,
it is proposed in [64] that the ret instruction can be replaced
with the pop x; jmp ∗x sequence. Such a sequence can
be acquired from a target program, and is called trampoline.
In this case, gadgets are certain selected instruction sequences
ending in an indirect jump instruction, whose target is the
trampoline. That is, the trampoline is responsible for chaining
short instruction sequences and redirecting execution, essen-
tially behaving like the ‘‘glue’’ and thereby making JOP also
Turing complete.

However, the techniques in [64] still rely on the stack
to steer the control flow among gadgets, and the pop x;
jmp ∗x sequence is rather rare [64], [65], i.e., not always
present in a target program. Another JOP approach [65] does
not suffer from such limitations. A special kind of gadget
is introduced to chain other gadgets ending with an indirect
jump, and to govern the control flow without relying on
the stack. This kind of gadget is called dispatcher gadget,5

in order to differentiate it from other gadgets performing
certain primitive operations such as arithmetic operations or
conditional branching, which are considered as functional

5Sometimes it is also called gadget dispatcher like in [67].

gadgets. The control transfer between functional gadgets is
achieved through maintaining an internal dispatch table by
the dispatcher gadget and ensuring that the jump instruction at
the end of each functional gadget will always give the control
back to the dispatcher gadget.

ii) CALL-ORIENTED PROGRAMMING
Not only can an indirect jump instruction take the role of
the return instruction in code-reuse attacks, but so does an
indirect call instruction, as it is proposed in call-oriented
programming [60]. Similar to ROP and JOP, arbitrary com-
putations with malicious purposes are performed in COP
by finding, chaining, and executing some useful gadgets
ending with an indirect call instruction. Even when some
control-flow integrity (CFI) [68] policies, a powerful defense
technique discussed in detail in Section V, are enforced, COP
may still be possible, given that indirect call instructions must
be always allowed to jump to certain functions [60].

c: HYBRID EXPLOITS
Although aforementioned code-reuse attacks prove to be Tur-
ing complete, the enforcement of CFI policies can make it
much more challenging to successfully conduct these type
of attacks. That is, when a CFI policy is enforced in a tar-
get program, attackers have to find CFI-compliant gadgets,
which are usually much scarcer in the target program. This
prompted attackers, again, to adapt their techniques, leading
to hybrid exploits, in which they combine code-reuse attacks
and code-injection attacks, such as [69] and [60]. In fact,
hybrid exploits are shown to be more dominant than pure
code-reuse attacks in real world [70]. Recall that the reason
why attackers turned from carrying out code-injection attacks
to code-reuse attacks is that the enforcement of the W⊕X
policy forbids injected code from being executed. However,
the W⊕X policy only states that a memory page cannot be
both writable and executable at the same time, but still allows
a memory page to be first only writable and afterward only
executable. This lets attackers come up with a multi-stage
attack procedure. They first write shellcode into a buffer in a
memory page that is now only writable. Subsequently, they
launch a code-reuse attack, in which they use gadgets to
invoke a function call or system call to change the permissions
of that memory page from only writable to only executable,
effectively bypassing the W⊕X protection. Then, the shell-
code can be executed, because neither the W⊕X policy nor
the CFI policy will prevent it. Note that a CFI policy is
enforced only in existing code, not in injected code, as CFI
checks are inserted in a binary program either during com-
pilation by a compiler, or through binary rewriting following
static analysis.

d: AUXILIARY TECHNIQUES
To pave the way for a successful exploitation, except requir-
ing one or more program bugs, attackers also need to make
use of some supporting techniques. As mentioned previously,
heap is now the front-line of the battle in memory [21], [48].
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When exploiting heap-based vulnerabilities, attackers usually
employ a number of techniques to reliably and successfully
perform the exploitation, such as heap-spraying [71], [72],
heap-Feng-Shui [73], [74].

Due to inherent randomness of memory allocation in the
heap, and especially when the effective defense technique
ASLR is employed, it is not easy for an attacker to reliably
redirect the execution to attacker-supplied code. To increase
the likelihood of jumping to the correct memory location
of attacker-supplied code, and hence facilitate a successful
exploitation, the attacker makes lots of copies of the mali-
cious code and ‘‘sprays’’ them into yet unoccupied memory
space of the heap, thereby dubbed heap-spraying. Next, the
attacker tries to overwrite a code pointer on the heap making
it point to the attacker-supplied code.

The heap-spraying technique is effective, but it alonemight
not be sufficient to underpin a reliable heap-based exploita-
tion [73]. Because, on the one hand, the state and layout of
the heap are dynamic and hard to predict, meaning that the
overwritten code pointer is not guaranteed to always contain
the attacker-controlled data. On the other hand, there might
not always be enough free space left in the heap for being
sprayed. Therefore, for a successful exploitation, it is often
necessary to control the heap state and layout before trigger-
ing a program vulnerability. Heap-Feng-Shui is a technique
formanipulating heap layouts by first finding some primitives
to interact with heap allocators, and subsequently carefully
assembling them through allocating or freeing objects of
selected sizes [73], [74].

e: AUTOMATIC EXPLOIT GENERATION
Carrying out a successful code-reuse attack is usually a
complex task, especially when defense mechanisms are in
place. In order to reduce time and human efforts, attackers
gradually managed to automate various steps of designing
a code-reuse attack, e.g., automatic discovery of gadgets,
ultimately leading to automatic exploit generation (AEG).
A variety of algorithms, techniques or tools are designed
to semi-automatically or fully-automatically find program
bugs and craft corresponding (defense-resilient) exploits,
respectively.

Early attempts of AEG target stack-based program bugs.
Automatic patch-based exploit generation proposed in [75]
can generate an exploit for an unpatched program without
first knowing the vulnerability, when provided with the patch
as a guidance. In [76], control-flow-hijacking exploits are
automatically generated also using dynamic taint analysis
paired with an algorithm that generates candidate exploits
from a constraint formula. Though, the first end-to-end fully
automatic exploit generation, i.e., from automatic vulnerabil-
ities disclosure to generating exploits that spawn a command
shell, is considered to be the approach presented in [77],
which makes use of symbolic execution for exploring pro-
gram paths and checking their exploitability. However, these
earliest AEG solutions do not assume any defense mecha-
nisms are deployed in the target systems. To enhance the

practicability and usability of AEG, another AEG approach
is demonstrated in [78], which automatically generates ROP
payloads. It is applicable even in the presence of loosely
implemented defenses mechanisms W⊕X and ASLR, result-
ing in hardened exploits. As an extension, during automatic
ROP payload generation, the presented solution in [79] can
also deal with gadgets containing pointer dereferences. Fur-
thermore, AEG solutions are extended to include the one
working solely on raw binary programs without debugging
information or source code [80].

Another group of AEG approaches are designed to abuse
heap-based program bugs, which are more common in mod-
ern software, and generally more difficult to exploit, e.g.,
due to involved interaction with the heap manager. Compar-
ing to stack-based AEG, heap-based AEG is much harder
to realize, and yet remains an open challenge [74], [81],
[82]. That is, existing heap-based AEG solutions can only
automate one or more steps of exploit generation, but still
fall short of a generic end-to-end fully AEG, even in the
absence of modern defense mechanisms. Nonetheless, some
advancements were made in recent years by representative
heap-based AEG techniques. For instance, [83] presented
a framework for discovering exploit primitives6 in heap
managers using symbolic execution, and generating usable
exploits. Another framework demonstrated in [81] focuses on
automated exploitability assessment of heap-based program
bugs, in which it makes use of both fuzzing and symbolic exe-
cution to explore exploitable states from a crashing input, i.e.,
an input which triggers a program bug, and to generate func-
tioning exploits. Note that transforming a crashing input into
an exploitable state is in general not an easy task. Similarly,
based on bounded model checking and symbolic execution,
another tool is designed in [84] to assess the exploitabil-
ity of several heap allocators given a memory corruption
bug. Besides, the first AEG for heap overflows in language
interpreters, e.g., PHP and Python interpreters, is proposed
in [82], which utilizes fuzzing-based input generation, rather
than relying on symbolic execution. Furthermore, automated
heap-Feng-Shui is proposed in [74] for automatically manip-
ulating heap layouts, hence to facilitate heap-based AEG,
as many heap-based program bugs are exploitable only given
certain heap layouts.

2) DATA-ORIENTED EXPLOITATION
As control-oriented exploitation gets harder, mostly due to
widely deployed defense mechanisms like, in particular,
CFI, data-oriented exploitation gains popularity thanks to
its immunity to CFI checks. Data-oriented attacks do not
violate the control-flow graph (CFG) of a target program
during its execution amid control-flow transfers, but still can
cause significant damage and pose a considerable threat [50],
[53], [67]. This advantage is provided by the fact that some

6Exploit primitives are basic operations like a write-what-where opera-
tion, and they are considered as exploitation building blocks used to achieve
arbitrary code execution.
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program data is not directly used in control-flow transfer
instructions, i.e., never loaded into the instruction pointer
register, but can yet indirectly influence program’s execu-
tion to the benefit of attackers. As per [67], data-oriented
exploitation can be grouped into two categories, namely
direct-data-corruption attacks [50], [53], and data-oriented
programming (DOP) attacks [67].

iii) DIRECT-DATA-CORRUPTION
Direct-data-corruption attacks represent the first generation
of data-oriented exploitation, in which attackers directly
manipulate a variety of non-control, yet security-sensitive
data [50] like user ID or configuration data, in order
to mislead a program’s execution for malicious purposes.
A real-world example is the Heartbleed7 exploitation, which
allows attackers to steal cryptographic keys and other creden-
tials from a vulnerable device, hence to eavesdrop on its com-
munications or impersonate it. Early direct-data-corruption
attacks [50] are relatively straightforward, and can succeed
with only a single data-flow edge compromised.
To further demonstrate the power of data-oriented exploita-

tion, a systematic approach called data-flow stitching [53]
is developed to automatically generate data-oriented exploits
when provided with memory corruption bugs. Data-flow
stitching aims to chain multiple existing data-flow edges
in a data-flow graph to create new unintended data-flow
paths (from the perspective of normal program execution).
A further generalization of data-oriented attacks is proposed
in [54], which introduces the notion control-flow bending
(CFB). In CFB, modifications of both control data and
non-control data are allowed as long as the enforced CFI
policy is not breached. That is, CFB refers to any attack,
in which the entire execution trace looks legitimate with
respect to the control-flow graph.

iv) DATA-ORIENTED PROGRAMMING
The aforementioned data-oriented attacks suffer from lim-
ited expressiveness, that is, they cannot provide attackers
the ability to perform arbitrary computations in a vulnerable
program’s memory space. Besides, they can be easily pre-
vented by enforcing some access control policies in memory,
which largely restrict unauthorized access to security-critical
data. With the advent of the second generation of data-
oriented exploitation, i.e., data-oriented programming [67],
attackers can design Turing-complete data-oriented attacks,
also without relying on corrupting specific security-critical
data. Similarly to ROP, in DOP, the first step is to discover
useful gadgets, i.e., short sequences of instructions used to
perform the basic operations like arithmetic operations and
conditional branching. Note that data-oriented gadgets are,
by definition, CFI-compliant, and hence generally more dif-
ficult to find. Next, gadget dispatchers need to be identified,
and are used to chain those functional gadgets, in order to
achieve desired functionality or computations. As mentioned

7https://heartbleed.com/

previously, a gadget dispatcher is a special kind of gadget
which selectively and consecutively invokes functional gad-
gets, allowing arbitrary recursive computations. An example
of a typical data-oriented gadget dispatcher can be acquired
from code which implements a loop statement [67].

Another type of advanced data-oriented attack is
demonstrated in [85], in which the term block-oriented
programming (BOP) is introduced. BOP gadgets are com-
prised of entire basic blocks, instead of instructions. The
authors presented a framework for automatically constructing
defense-resilient exploits against programs hardened with
CFI policies, surpassing previous DOP attacks in the sense
that they heavily rely on manual analysis.

According to whether a bug in user-space programs or
operating system kernels is exploited, we can categorize it
as user-space program exploitation or kernel exploitation,
respectively. Whereas user-space program exploitation rep-
resents the majority of binary exploitation, due to easy acces-
sibility etc., kernel exploitation is less common and more
difficult, but very appealing to attackers. Real-life exam-
ples like EternalBlue and EternalRomance [86] show that
kernel exploitation poses a serious and realistic threat. Note
that commodity OS kernels are almost exclusively written
in the memory-unsafe C language, providing attackers
a better chance to conduct runtime attacks against ker-
nels. Except above-mentioned software-based exploitation,
attackers can also carry out sophisticated hardware-based
exploitation, which is particularly dangerous, e.g., the infa-
mous Rowhammer—a hardware bug—exploitation on vari-
ous hardware platforms [87]–[89].

C. CONSEQUENCES OF BINARY EXPLOITATION
Depending on specific program bugs, targeted applications,
defense mechanisms in place etc., the consequences of binary
exploitation vary from the severest ones—arbitrary code
executions—to the mildest ones—harmless program crashes
of non-critical programs.

1) ARBITRARY CODE EXECUTION
The ability to execute arbitrary code in a target program’s
memory space gives attackers the complete control of it, and
the freedom of causing any possible damage to the system
if the controlled program has the highest privileges. This is
arguably attackers’ first objective. They can force the running
program to execute at their bidding by invoking arbitrary
system calls, and behave differently from the programmer’s
intention. Besides, they can leverage credentials stored in
the victim system to further attack other devices. Even if
the controlled program does not have all the permissions
in the system, a limited set of system calls, i.e., confined code
execution, may also allow attackers to do enough damage.

2) INFORMATION LEAKAGE
Sometimes, an exploitable bug cannot directly grant an
attacker the right to take over the system and execute
any code, but rather the ability to reveal some sensitive
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information, e.g., by copying it to an output stream. There
are two types of information, which are of special interest
of attackers, i.e., security credentials and memory layout-
related information. Leaking security credentials like pass-
word hashes or cryptographic keys helps attackers to easily
pass access controls, and eventually take over control of the
target system. Disclosing memory layout-related informa-
tion, e.g., the memory address of a specific object, let an
attacker reliably assess the memory layout of a target process.
As a result, it renders some deployed defense mechanisms
like ASLR useless, and helps the attacker to further exploit
another memory bug (or sometimes the same bug), then
leading to arbitrary code execution.

3) PRIVILEGE ESCALATION
If an exploited program itself does not have the root privilege
(in Unix parlance) or the administrator right (in Windows
parlance), or the leaked credentials do not provide all the
permissions in the system, it may not satisfy an attacker’s
goal. The attacker may try to further leverage another bug to
corrupt security-critical data [50], which can result in elevated
privileges.

4) DENIAL OF SERVICE
Crashing a target program, as a result of binary exploitation,
is not uncommon during real-life attacks, not to mention
during the test of an exploit under development. Due to
various factors, even a well-tested exploit may not work
every time on every system containing the corresponding
program bug. Causing this kind of denial-of-service (DoS)
is sometimes intended, but at other times rather unintended.
For instance, in a past ICS cyber attack, attackers exploited a
software vulnerability for causing DoS, as we will discuss it
in Section III-F. Nonetheless, more often than not, attackers
would choose to make better use of a vulnerability like in the
first three cases, when possible.

D. EXPLOIT-BASED MALWARE
Traditionally, malware is encapsulated inside some exe-
cutable needed to be manually executed, and requires no
exploitation of program bugs. In today’s cyber attacks, the
target of an attacker is usually not a single computer, but
rather a network with lots of computing devices. In order
to save time and have a higher impact on the target by
attacking as many devices as possible in a short period of
time, an attack process is now largely automated by designing
exploit-based malware, as it shows in Section III. In this way,
user interaction is often not a prerequisite, and unnecessary
intervention from command-and-control (C&C) servers can
also be reduced to evade network-based intrusion detection.
Besides, for systems that forbid outbound Internet access,
this would be the only way to attack them. That is to say,
nowadays, an exploit is mostly used in combination with
some malware, which serves as payload following an exploit
and/or has integrated exploit(s). In some cases, an attack can
be completely automated, meaning that all the functionality

needed to sabotage a system is embedded directly in the
corresponding exploit-based malware.

When binary exploitation is used as an initial infection
vector, it often employs one of the two most typical forms,
i.e., direct remote exploitation, and phishing emails with an
attachment containing an exploit. Direct remote exploita-
tion mostly targets network service programs, i.e., programs
implementing communication protocols, e.g., Server Mes-
sage Block (SMB) protocol and Remote Desktop Protocol
(RDP). An exploit embedded in an attachment of a phishing
email typically targets a user application program, which is
used to open and process the corresponding attachment, e.g.,
Microsoft Word document.

III. A BRIEF OVERVIEW OF MAJOR ICS CYBER INCIDENTS
In this section we aim to provide a brief overview and analysis
of major ICS cyber incidents leveraging binary exploitation
in the last decade. The past real-world examples demonstrate
that binary exploitation is a very important launch pad for
malware. For every cyber incident, we primarily discuss the
consequence/damage of the attack, the technical attack pro-
cedure, and the exploits involved.

Note that this may only be a small sample of cyber inci-
dents, because, according to MITRE [90], the vast majority
of discovered incidents are not reported publicly. It is also
worth mentioning that there are ICS cyber incidents that are
not listed in this paper, because, to the best of our knowl-
edge, there are no evidences published yet, which indicate
that binary exploitation is involved. This could be due to a
lack of forensic evidences in victim networks. For instance,
as per US ICS-CERT [91], [92], the initial access vectors
in more than a third of total incidents reported in 2014 and
in 2015 were not identified, because of a lack of detec-
tion and monitoring capabilities within the compromised
networks.

Given that cyber incidents are usually characterized and
represented by the corresponding malware, and often even
named after these malware, and in order to avoid lengthy title
for each incident, we also use the malware name as the title
for each incident.

A. STUXNET
The attack against Iranian nuclear centrifuges uncovered in
2010 [93] is widely perceived as a watershed moment in ICS
security. This is not only due to the unprecedented use of four
zero-day exploits [94], but also due to the willingness and
the ability of the attackers to study the industrial devices and
the physical processes. The corresponding malware Stuxnet
is deemed as the first confirmed example of ICS-tailored
malware. According to the security firm Symantec [94],
it includes a Windows OS rootkit that hides its binaries, and
the first ever programmable logic controller (PLC) rootkit
that hides modified code on PLC.

It is widely believed that the initial access was introduced
by removable USB drives. These removable drives contain
a specially crafted Microsoft Windows shortcut file, which

48252 VOLUME 10, 2022



Q. Liu et al.: Binary Exploitation in Industrial Control Systems: Past, Present and Future

exploits the then zero-day vulnerability CVE-2010-25688

(patched with the security update MS10-0469) in Windows
Explorer. When a removable drive is plugged into a Win-
dows computer and viewed, the contained shortcut file will
automatically execute the first hidden file in the removable
drive. This hidden file will hook some important DLL10 API
and replace the original code of exported functions with some
files-checking code. Then it loads the second hidden file from
the removable drive, which contains the main Stuxnet DLL.
After the main DLL is extracted into memory and executed,
Stuxnet is installed.

In the targeted system, many computers were non-
networked, and the data exchange between them were done
with removable drives. Hence one of Stuxnet’s propagating
ways is also through removable drives. Whenever an unin-
fected removable drive is inserted into a already compro-
mised computer, Stuxnet will copy itself and its supporting
files to the removable drive [94]. Other Stuxnet’s spreading
methods include exploiting the then zero-day vulnerability
CVE-2010-2729 (patched with MS10-061) inWindows Print
Spooler, and exploiting the vulnerability CVE-2008-4250
(patched with MS08-067) in Windows Server Service.
Through the vulnerability in Windows Print Spooler, which
allows a file to be written to a system directory of a vulner-
able computer, Stuxnet spreads itself easily in a local area
network (LAN), and executes itself in the infected machines.
By means of the SMB protocol and the vulnerability in
Windows Server Service, Stuxnet is able to copy itself to
unpatched remote computers through sending a malformed
path string that allows arbitrary code execution [94].

The other two then zero-day exploits are used for privilege
escalation. The first one is used to exploit a vulnerability
in Windows Task Scheduler, which makes the main DLL
file run as a new process with Adminstrator rights. The sec-
ond privilege escalation exploit targets the CVE-2010-2549
vulnerability (patched with MS10-073) in the Windows
Win32k.sys kernel-mode device driver [94].

B. DUQU
A global cyber espionage especially targeting ICS was dis-
closed in 2011 with the discovery of a new piece of malware,
which uses many of the same techniques from Stuxnet.
The malware, named Duqu and discovered by the CrySyS
Lab [95], targeted a number of organizations around theworld
for stealing information, which can be used for planning
another destructive attack against them.

The initial access was likely introduced by spear-phishing
emails with a Microsoft Word document as attachment con-
taining a then zero-day kernel exploit [96]. This exploit
abuses the CVE-2011-3402 vulnerability (patched with
MS11-087) in the Win32k.sys kernel-mode device driver

8https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
9https://docs.microsoft.com/en-us/security-

updates/securitybulletins/2010/ms10-046
10Dynamic-link library (DLL) is Windows OS’ implementation of the

shared library concept.

of Windows OS, and helps to install Duqu onto targeted
computers unbeknownst to users. A malicious embedded
TrueType font file can allow code auto-execution in kernel
mode, because of erroneous font-parsing of the Windows
kernel-mode driver [97].

When such a Word document is opened on a computer,
the exploit is triggered, and will first check if the computer
is already compromised by looking into the Windows Reg-
istry. If the computer has already been compromised, it exits.
Otherwise the shellcode contained in the exploit will decrypt
a driver file and an installer DLL file from within the Word
document. The execution is then passed to the extracted driver
file, which is signed with a stolen legitimate digital certificate
allowing it to bypass default restrictions on unknown drivers
and common security policies. The driver file injects the
installer DLL into a running benign services.exe process.
Then the installer DLL gets executed, and starts extracting
other components from it. These components are injected
into other benign processes to hide Duqu’s activities, and to
bypass security programs. An information-stealer program is
installed by Duqu to collect system information [96].

C. FLAME
Another complex global cyber espionage targeting ICS espe-
cially in Middle Eastern countries was revealed in 2012.
The corresponding malware, named Flame, was identified,
analyzed and disclosed by multiple entities including Ira-
nian National CERT, Kaspersky Lab [98] and the CrySyS
Lab [99]. This modular malware shares many characteristics
with the above-mentioned malware Stuxnet and Duqu, but its
modules are different. Comparing with Duqu, Flame is not
only a lot more complex, but also much more widespread,
making it redefine the notion of cyber espionage [98].

It is assumed that the initial access is achieved by
exploiting the CVE-2010-1879 vulnerability (patched with
MS10-033), and a then zero-day exploit is used to compro-
mise then fully-patched Windows 7 OS [98]. In order to
spread itself to non-infected computers, Flame includes two
exploits used by Stuxnet, i.e., for the CVE-2010-2729 vulner-
ability inWindows Print Spooler and for the CVE-2010-2568
vulnerability in Windows Explorer [98], [99]. The first
exploit is used to spread itself through network shares, and
the second is used with removable drives for non-networked
computers.

D. HAVEX
The third confirmed widespread cyber espionage followed
in 2013 with the ICS-tailored malware Havex. It first tar-
geted defense and aviation companies in the US and Canada,
and then shifted its focus to US and European energy
firms [100]. The stolen information gives the attackers the
ability to more easily sabotage operations in the targeted
critical infrastructures.

According to the security firmSymantec [100], the attacker
group has at least three infection tactics for getting initial
access to victim systems, i.e., spear phishing emails with
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malicious PDF attachment, watering hole attacks, and sup-
ply chain attacks. In the watering hole attacks, the attackers
first compromised a number of energy-related websites, and
injected an iFrame11 into them. This iFrame redirects visi-
tors to another compromised website hosting the LightsOut
exploit kit,12 or its updated version. The LightsOut exploit
kit abuses vulnerabilities in the Java Runtime Environ-
ment (JRE) component in Oracle Java SE 7 and in Internet
Explorer browser to deliver the Havex malware, and in some
cases the Karagany malware [100].

In the supply chain attacks, the attackers compromised a
number of legitimate software packages from three different
ICS equipment providers, by inserting the Havex malware
into them [100]. When users download these trojanized soft-
ware packages from ICS vendor websites, they would then
unknowingly download themalware themselves, allowing the
malware to bypass some security measures.

E. BlackEnergy
In 2015, a major hours-lasting blackout in Ukraine was
caused by a complex targeted attack consisting of a set of
actions, e.g., disrupting electricity distribution, destroying
IT systems, flooding call centers, and inhibiting incident
response [101]. The attackers deployed a piece of malware
dubbed BlackEnergy 3, which is the second update of its
original version BlackEnergy appeared in 2007.

To deliver the malware, various initial infection vectors
were employed [102]. The first kind is spear-phishing emails
with an executable file as attachment, which is disguised with
a Microsoft Word document icon tricking receivers to click it
and execute it. The second kind is spear-phishing emails with
someMicrosoft Power Point slides as attachment, which con-
tain hidden objects exploiting the CVE-2014-4114 vulnera-
bility (patched with MS14-060) in Windows Object Linking
and Embedding (OLE). The last one is spear-phishing emails
with a Word document as attachment, which contains hidden
objects exploiting the CVE-2014-1761 vulnerability (patched
with MS14-017) in Microsoft Word and Office Web Apps.

After the initial infection and delivery of the core module,
a number of plug-ins, i.e., DLL files, are downloaded and
successively executed [103]. For instance, a file-system oper-
ations plug-in is used for early reconnaissance. A network
scanner plug-in explores the network perimeter, and disguises
itself as a Windows service program. Credentials are stolen
with some password stealer and key logger plug-ins, and then
used to help attackers to move to other computers in the
network.

After the attackers have gained the required credentials,
they start infecting Windows servers using BlackEnergy 2,
i.e., the direct predecessor of BlackEnergy 3. BlackEnergy

11An iFrame is a HTML element allowing embedding documents, videos,
and interactive media within a web page.

12The LightsOut exploit kit contains exploits for the CVE-2012-1723,
CVE-2013-2465 and CVE-2013-1347. https://www.mcafee.com/enterprise/
de-de/threat-center/threat-landscape-dashboard/exploit-kits-details.lights-
out-exploit-kit.html

2 appears as a kernel-mode driver. In order to disable the
driver signature check in Windows OS and evade detec-
tion, a tool called DSEFix13 is used, which exploits the
CVE-2008-3431 vulnerability [103]. Besides, BlackEnergy
2 also contains exploits for human-machine interface (HMI)
applications from ICS vendors like Siemens and General
Electric. Hence an Internet-connected HMI can easily give
attackers an initial access and a foothold in the ICS central
location, for information gathering and conducting further
attacks [104].

F. INDUSTROYER
Another large-scale cyber attack on Ukraine’s power grid
took place in 2016 with a piece of even more advanced
malware dubbed Industroyer. This malware is considered as
the first malware designed and deployed specifically to target
power grids. It has the ability to directly control switches and
circuit breakers, showing that the malware creators have a
good knowledge of ICS and communication protocols used
in power grids [104]. The initial infection vector remains
unknown [105].

This modular malware has a core component being the
main backdoor, which receives commands from its remote
C&C server via HTTPS, and controls all other compo-
nents [105]. A launcher is installed by the main backdoor as
a program responsible for launching several payloads and a
data wiper module, which are DLL files and export a function
named Crash for the launcher. The payloads partly implement
the communication protocols specified in the standard IEC
60870-5-101, IEC 60870-5-104, IEC 61850, and OPC Data
Access specification, respectively [105]. By leveraging the
intended functionality in these protocols, the attackers are
capable of enumerating and possibly taking over control of
all remote terminal units (RTU), intelligent electronic devices
(IED), and open platform communications (OPC) servers etc.
The destructive data wiper module is used in the final stage of
an attack, which hides its traces and makes recovery difficult,
e.g., by deleting all files.

Besides, the CVE-2015-5374 vulnerability was exploited
by sending crafted packets to Siemens SIPROTEC digital
relays rendering them unresponsive [105]. This denial-of-
service (DoS) attack against SIPROTECprotective relayswas
performed by the attackers right after opening circuit breakers
and removing operators’ visibility into system operations
through the data wiper module [106].

G. WannaCry
In May 2017, numerous organizations across the world
including railway companies, manufacturing companies, and
energy firms, were attacked by a cryptoworm known as
WannaCry [107]. This fast-spreading malware continued
to infect thousands of computers globally for at least two
years [108]. WannaCry is a piece of ransomware, i.e.,
malware containing an encryption plug-in and a ransom note.

13https://github.com/hfiref0x/DSEFix
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The initial access into a network can be achieved by select-
ing random IP addresses across the Internet and exploit-
ing vulnerable Internet-facing Windows computers. It then
spreads itself rapidly in local networks. It does this by
exploiting the CVE-2017-0144 vulnerability (patched with
MS17-010) in Windows SMB Server. Before infecting new
computers through an infected computer, it checks if they are
already compromised. If not, it proceeds to use the infamous
SMBv1 exploit EternalBlue [86] to drop its payload to those
vulnerable computers.

According to Kaspersky Lab [107], during the investiga-
tion, WannaCry was able to infect computers in ICS due
to the following facts: (1) use of dual-homed computers,
e.g., engineering workstation,14 acting as a bridge between
an enterprise network and a local industrial network; (2) a
lack of properly configured secure network perimeter devices
between segments of an industrial network, which are con-
nected through the Internet via VPN channels15 due to large
distances; (3) use of devices, e.g., USB modem, for setting
up direct mobile Internet connections for computers on an
industrial network, bypassing the network perimeter.

H. NotPetya
Another cryptoworm affecting ICS globally appeared only
one month later, in June 2017. According to Kaspersky ICS
CERT [109], at least half of the companies attacked by this
malware, dubbed NotPetya, are manufacturing and energy
firms. The disruption caused by NotPetya resulted in a halt
of operation. Despite appearing to be a piece of ransomware,
encrypted files cannot be restored, even after victims have
paid the ransom. NotPetya is more like a piece of data-wiping
malware pretending to be ransomware [109].

One initial infection method is conducting watering hole
attacks, i.e., first compromising websites presumably fre-
quently visited by targeted victims and starting infecting
victims from there. Once NotPetya has infected one computer
in a network, it starts to spread itself to other computers
inside the same network using several propagation meth-
ods. Two infamous exploits are used for this purpose, i.e.,
EternalBlue and EternalRomance exploits [86], which abuse
the CVE-2017-0144 vulnerability and the CVE-2017-0145
vulnerability in SMBv1 Server, respectively. These exploits
are used for different Windows OS versions [110]. Using the
same exploits, NotPetya is able to propagate from corporate
networks to industrial networks. The exploitation process can
be observed in network traffic, i.e., a series of specifically
crafted SMB packets.

14Note that an engineering workstation is a device used to write program
and configuration data for PLC. Engineering workstations using Windows
OS are commonly seen in ICS.

15Note that a VPN channel is used to prevent unauthorized eavesdropping
and data tampering in the data transfer channel. It cannot prevent a computer
from being attacked, when another computer at the other end of the channel
is already compromised.

I. BAD RABBIT
In October 2017, another large-scale ransomware cam-
paign took place, and affected organizations across Russia
and eastern Europe, e.g., the transportation sector in
Ukraine [111]. This, again, demonstrates that the histori-
cally ransomeware-free ICS networks are now a very focused
target of ransomware.

According to Kaspersky Lab [112], the ransomeware,
dubbed Bad Rabbit, also used a watering hole attack as initial
infection method. But in this case, no exploit was used to
gain initial access. Instead, when a target victim visits a com-
promised legitimate website, the malware is downloaded and
pretends to be an Adobe Flash installer. This tricks the victim
into executing the malware. After infecting one computer,
it starts to spread itself within the corporate network and
to the industrial network. It does so by using a modified
version of the EternalRomance exploit, which abuses the the
CVE-2017-0145 vulnerability in SMBv1 Server. Whereas in
NotPetya this exploit is used to install the DoublePulsar16

backdoor, Bad Rabbit employs it to overwrite a kernel’s
session security context, which enables it to launch remote
services [114].

J. TRITON
Another watershed moment in ICS security occurred with
an attack against a petrochemical plant in Saudi Arabian
reported in December 2017 [115]. This is considered as a
watershed moment, because the malware, named Triton, dis-
tinguishes itself from other ICS-tailoredmalware like Stuxnet
in two ways. Firstly, Triton targets a safety instrumented
system (SIS), which serves to put a critical infrastructure in a
safe state or shut it down to prevent any physical harm. A SIS
is deemed as the last defense line for critical infrastructures.
It is often totally isolated from all other networks and hence
hard to reach. Secondly, sabotaging a SIS not only causes
economical loss for operators, but also directly risks human
lives.

In this attack, the Triconex safety controllers made by
Schneider Electric were specifically targeted [14]. Triton
consists of two parts, i.e., a malicious Windows program
compiled from a Python script and a malicious program
for the safety controllers. The attackers first compromised a
Windows computer within a SIS network, and the malicious
Windows program is executed on the compromised com-
puter. This program leverages a custom implementation of
an internal TriStation protocol, through which the compro-
mised computer connects to a safety controller. Themalicious
program for the safety controllers includes an injector and a
backdoor, and both of them are downloaded into the safety
controller by the compromised computer.

The injector executes automatically on the safety
controller. After it verifies that the controller can be

16DoublePulsar backdoor is a sophisticated SMB backdoor, and the
primary payload used in SMB and RDP exploits in the FuzzBunch
framework [113].
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TABLE 1. Summary of exploitation purposes of exploit-based Malware.

compromised, it exploits a then zero-day vulnerability in
the device firmware17 for privilege escalation [115] [14].
Before injecting the backdoor into the firmware memory
region, it disables a firmware consistency check for detection
evasion. The backdoor is enabled by the injector through
changing a jump table entry to point to the injected code.
It gives the attackers the capability of reading, writing mem-
ory and executing arbitrary code on the controller [14].

K. VPNFilter
In 2018, at least half a million public-facing routers and net-
work attached storage devices across the globe were infected
by a piece of malware known as VPNFilter [116]. This con-
cerning malware has the capability of spying on traffic routed
through infected devices, and has dedicated code for targeting
ICS. It is also destructive in that it can make infected devices
unusable. Besides, unlike most other internet of things (IoT)
malware, VPNFilter is capable of maintaining its persistence
even after a reboot [116], [117].

As per security researchers in Cisco Talos [116], since all
of the affected devices have publicly known vulnerabilities,
it is very likely that the initial infection vector is the exploits
targeting those vulnerabilities. This multi-stage, modular
malware is used both for cyber espionage and for destructive
attacks. The stage 1 module works as a backdoor providing
a persistent foothold, and multiple redundant mechanisms
are employed to connect it to its C&C server. The stage
2 module serves to gather and exfiltrate data, and overwrite a
critical portion of the device’s firmware making it inoperable.
Additional functionality is provided by multiple stage 3 mod-
ules, which include Modbus/TCP traffic monitor, exploits
deliverer, man-in-the-middle (MitM) component capable of
intercepting and manipulating network traffic [116]–[118].

1) EXPLOITATION PURPOSES
According to the MITRE ATT&CK for ICS Matrix [119],
the purposes of binary exploitation can be categorized into
four groups: exploitation for initial access, exploitation for

17Note that Triconex firmware versions 10.0–10.4 running on a PowerPC
processor are vulnerable to Triton. The newer Triconex safety controllers
use ARM processors, meaning that a different version of exploit would be
required [14].

privilege escalation, exploitation for detection evasion, and
exploitation for lateral movement. All these exploitation pur-
poses can be observed in the cyber incidents mentioned
above. Besides, we observed and add another exploitation
purpose after analyzing these cyber incidents, i.e., exploita-
tion for denial-of-service. It is worth mentioning that in this
section we analyze the purposes of binary exploitation from
a network point of view, whereas in Section II-C the attention
is solely on a single host.

A summary of exploitation purposes of above-mentioned
exploit-based malware is given in Table 1. Note that in the
case of protocol vulnerability, the same exploit could be
used both for getting initial access and for lateral move-
ment, e.g., the EternalBlue exploit, making the corresponding
exploit-based malware spread very fast and hence especially
dangerous.

IV. ATTACK SURFACE ON ICS
The ICS landscape is very diverse in terms of involved
physical processes, devices, software platforms, hardware
platforms, communication protocols, vendors etc. The
increasing complexity and connectivity in these heteroge-
neous environments inevitably result in an increased attack
surface. Devices commonly found in ICS encompass engi-
neering workstations, HMI, OPC servers etc. running com-
modity OS like Windows OS and based on x86 hardware
platforms, and specialized embedded devices such as PLC,
RTU, IED, smart sensors running a (tiny) embedded OS
or even bare-metal applications (i.e., without an OS), and
based on a variety of hardware platforms like ARM, MIPS,
PowerPC, AVR etc. Evidences showing that all these plat-
forms are potentially susceptible to binary exploitation are
provided in Section V. As discussed in Section III, only one
Internet-facing vulnerable device in an ICS suffices to grant
an attacker a strong initial foothold in its network and a great
opportunity to further attack other devices in the network.
Any compromised device could be utilized to provide rogue
services, such as disrupting network operation bymasquerad-
ing as another device, eventually leading to safety issues.
To promote a better understanding onwhy binary exploitation
has become a more serious problem in ICS, we provide in
this section primarily a brief overview of history of ICS
network structure and a succinct analysis of its attack surface
transition.

A. A BRIEF HISTORY OF ICS
Looking back in the history of ICS, we have witnessed
a transition from the very early air-gapped, well-isolated,
hardware-centric systems to somemore connected, advanced,
well-segmented systems with distinct IT and OT (operational
technology) networks based on the Purdue Model [120], and
then a drastic shift to systems with converged IT and OT
networks, driving the connectivity to a much higher level and
eventually breaking the (boundaries introduced in the) Purdue
Model.
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FIGURE 1. ISA’s representation of the purdue model.

1) HARDWARE-CENTRIC
Initially, physical security was more of a concern than digital
security in ICS due to their air-gapped nature, i.e., physically
completely isolated from other systems [121]. They were
hardware-centric in the sense that there was not much soft-
ware involved, but primarily hardware systems. The con-
trol was done mainly through electrical, pneumatic or other
physical signals instead of digital signals, and the reliance
on human operator in the field was very high. Besides,
a reconfiguration of a control system would require re-wiring
of those hardware devices. Even after the introduction of
remote control via a point-to-point connection, the increased
exposure was very low, because the physical medium for
communication was normally owned and exclusively used by
the same company and isolated from other networks.

2) THE PURDUE MODEL WAS BORN
In order to fulfill the requirement for rapid information
exchange between production and business segments in
an industrial sector company, and efficiently manage the
relationship between its ICS and enterprise resource plan-
ning (ERP) system, a hierarchical model called the Purdue
Model [120] was created in the early 1990s. This model has
a high impact on the standard ISA-95 from the International
Society of Automation (ISA),18 and was extended by ISA-95,
which results in a clear-cut, well-segmented network struc-
ture with six levels, i.e., from level 0 to level 5. This net-
work structure became highly influential for ICS design and
quickly found a broad acceptance in industry. Subsequently,

18https://www.isa.org/standards-and-publications/isa-standards/isa-
standards-committees/isa95

FIGURE 2. A modern IIoT-based ICS network.

for security purpose, the ISA-99 / IEC 62443 standard19

proposed a new level, which is a demilitarized zone (DMZ)
and is positioned between level 3 and level 4, hence often
called level 3.5. The ISA’s representation of the PurdueModel
is shown in Figure 1.

The DMZ is deployed to better control information flow
between the operation network and the enterprise network,
or to re-introduce the air gap for the OT network by removing
the direct communication link between the OT network and
the IT network. In some ICS environments, there may be
an extra DMZ or firewall between any two adjacent levels.
However, a true air gap no longer exists, as a DMZ or firewall
does not fully stop information exchange between the OT
network and the IT network, but rather only mediate the
communication between them, not to mention when a DMZ
or firewall is not properly set up or configured.

3) THE PURDUE MODEL IS ‘‘BROKEN’’
As new technologies progressively find their way into ICS,
it becomes, little by little, clear that the Purdue Model has
been ‘‘broken’’, or at least the strict boundaries between
those levels start being bypassed, replaced, or disappea-
ring [122]–[124]. This rigid, hierarchical model is greatly
challenged by the proliferation of IIoT and cloud services,
in which new untrusted third-party entities/levels are incorpo-
rated in the network structure, all kinds of industrial devices
are equipped with Internet connectivity and smart sensors,
and data is transmitted directly or through an IIoT gateway
outside the company to a cloud service provider for big data
analysis.

The reasons why we may now think that the Purdue Model
was inevitably torn apart can be summarized into two key
points. Firstly, it is due to performance and management

19https://www.isa.org/standards-and-publications/isa-standards/isa-
standards-committees/isa99
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requirements. Increased connectivity and intelligence in
industrial devices (down to the level 0 of the Purdue Model)
allow improved data sharing both in quantity and in qual-
ity within the OT network and to the enterprise network,
which results in a more detailed view of individual devices
and a more comprehensive overview of the entire indus-
trial ecosystem, enables continuous monitoring of the perfor-
mance and conditions of these devices and the ecosystem,
and eventually simplifies the management. Secondly, it is
caused by business requirements. The data captured from
everywhere in the ecosystem is analyzed with big data tech-
nologies, and used for predictive maintenance, optimization
of operation conditions, fine-tuning of production processes,
and better market strategies. All these compelling benefits
ultimately contribute to a huge cost saving [123], [125].
For instance, offshore oil and gas organizations can reduce
more than a third of their losses due to unplanned downtime
with an agile information sharing, analysis, and response
process [125].

However, ICS operators often do not have the expertise
and resources for big data analytics, hence need to transmit
their data to third-party cloud computing providers for timely
predictive analytics. The growing desire for real-time data
from (remote) industrial devices, and for timely control and
configuration of these devices, drives the convergence of IT
and OT networks, and thereby creates a modern IIoT-based
ICS network like the one in Figure 2.

B. ATTACK SURFACE TRANSITION
Due to raised security awareness in ICS in general, and
more commonly applied good security practices, the attack
surface should have been minimized. However, from the
perspective of network entry points, the attack surface on
ICS has inevitably steadily expanded with the transition
from hardware-centric systems to more connected, hierar-
chical systems, and then to highly networked IIoT-based
systems. The newly introduced initial access points into
ICS include any Internet-accessible hardware device, in par-
ticular when the OS or firmware, application software or
associated libraries running on it have unpatched program
vulnerabilities.

1) PRE-2010
Before the attack wave on ICS in the 2010s started with
the Stuxnet, attacks on ICS were possible mainly due to a
lack of security awareness, misconfigured network perimeter
devices, few to no security countermeasures in the network
and on end devices. At that time, attacks weren’t really
sophisticated, only required scanning the Internet for find-
ing ICS devices, for which default or guessed credentials
would suffice to log into them, and using them to access and
manipulate other devices in the network, potentially causing
serious damage very easily. As a little more technical as it
could get, attackers would have to exploit a vulnerability to
gain the initial access into an ICS, yet would not necessarily
need to develop an exploit by themselves. As it shows in the

study [126], many Internet-connected vulnerable ICS devices
contained vulnerabilities, for which the exploits were already
present in online exploit databases.

2) THE LAST DECADE
As discussed in Section III, the last decade has seen a number
of ICS attacks with increased complexity. The entry points
were either an Internet-facing device in an enterprise net-
work or an ICS device with remote access functionality. The
attack surface became bigger, especially because more and
more hardware products and software solutions from various
vendors were integrated in an ICS, and a direct or indirect
remote access to the network is required by those third-
party vendors. This can also be reflected in the fact that
more watering hole attacks and supply chain attacks were
observed in the last decade. Once attackers find an initial
access point into a system, they may quickly pivot into a
critical path in the network and reach all kinds of devices.
This is made possible because of the reality that ICS networks
have been increasingly upgraded to TCP/IP-backed routable
networks.

Real-world examples analyzed in Section III show that
the ‘‘IT conduit’’ [127] in both IT and OT networks is fre-
quently exploited and traversed in order to reach the final
targets. For instance, Stuxnet leverages an engineering work-
station to get into a target PLC. BlackEnergy exploits an
Internet-connected HMI to get an overview of the target
ICS, and facilitate disrupting or destroying all its target
devices. Industroyer can take control of an application server
to directly manipulate or damage its target RTU and IED.
An example of a complete attack path is shown in Figure 3,
which is adapted from [128], [129].

3) AFTER-2020
With continuous integration of IT technologies into OT net-
works, and the convergence of IT and OT networks, ICS
networks become increasingly connected. Remote access
directly to ICS is enabled for many participants like techni-
cians, maintenance engineers, third-party vendors and con-
tractors. According to a survey by SANS in 2019 [130], about
12% of ICS are directly connected to the Internet, 23% of ICS
are indirectly (through a DMZ) connected to the Internet, and
around 10% are directly connected to a third-party private
infrastructure. These numbers should increase in the near
future. In some cases, the attackers’ initial access into an
ICS is achieved through a compromised third-party vendor
or contractor.

As a large amount of data is collected from field devices,
and pushed directly into the cloud, points of exposure spread
further down to the lowest level of the Purdue Model. The
more interconnected devices there are, the more targets
attackers can have and the quicker they can compromise
devices. IIoT gateways clearly become an important target
for attackers. Like other third-party partners, cloud service
providers are not immune to cyber attacks. A security breach
in a cloud service provider may also provide an initial access
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FIGURE 3. An example of a complete attack path.

into an ICS network. Besides, the growing popularity of
embedded web servers in ICS field devices or controllers
may provide additional attack vectors. All these added entry
points in modern ICS, as shown in Figure 2, greatly expand
the attack surface.

V. ATTACK TECHNIQUES AND DEFENSE TECHNIQUES
Since ICS consist of both general-purpose computers, e.g.,
engineering workstations, data servers, and a variety of
embedded systems, e.g., PLC, IED, IoT gateways, in this
section we discuss the attack techniques and mitigation tech-
niques in both fields, respectively. In the arms race between
attackers and defenders till now, it seems that the attack-
ers have always managed to successfully exploit computer
systems despite various defense mechanisms in place. The
reason for it is that these adversaries not only keep explor-
ing and exploiting vulnerabilities in software, but also have
evolved to exploit weaknesses in most of defense techniques,
i.e., weaknesses in their design or in their implementation.
Furthermore, a hard truth is that, to secure a system, the
developer or defender must eliminate all vulnerabilities and
consider all possible attacks, while to attack a system only
one flaw may suffice. This makes it particularly challenging
or impossible to guarantee or formally prove the security of a
system. All defense mechanisms, at the end, may only serve
to reduce the attack surface to a limited extent, or raise the
bar to a certain degree.

A. ON GENERAL-PURPOSE COMPUTERS
Defense techniques are often classified into program
integrity-based, W⊕X-based, randomization-based, flow

integrity-based, memory sanitization-based, and memory
isolation-based ones. Each type of defense technique intro-
duces some security policy enforced against a specific
exploitation stage [4], which serves to prevent attackers from
corrupting any code or data (cf. Section V-A1, Section V-A5),
from executing injected code (cf. SectionV-A2), fromfinding
correct memory addresses (cf. Section V-A3), from accessing
critical memory regions (cf. Section V-A6), or from tamper-
ing program execution flow (cf. Section V-A4). Once a secu-
rity policy is violated at runtime, the process may be forced
to terminate. The reference monitor of a security policy can
be implemented either with hardware support, e.g., W⊕X,
or purely by embedding some integrity checks into program
code, e.g., flow-integrity checks [4].

1) PROGRAM INTEGRITY
Program integrity-based defense mechanisms prevent cer-
tain memory locations of a running program from being
tampered, including code integrity policies, return-address
integrity checking, and code-pointer integrity policies. These
defense mechanisms also provide an important support for
other more advanced defense mechanisms, e.g., CFI. For
instance, CFI could be easily bypassed, if memory regions
containing code can be modified, meaning that CFI checks
can be removed by attackers [8].

a: CODE INTEGRITY
A code integrity policy prevents attackers from modifying
code regions inmemory by setting the correspondingmemory
pages as not writable. Existing hardware support renders this
policy effective and efficient. However, it cannot be fully
enforced for programs that have features like self-modifying
code, dynamic library loading or just-in-time (JIT) compila-
tion. The necessity of changing, loading, or generating code
at runtime leaves attackers a small time window to corrupt
code on a writable page [4], [8].

b: RETURN ADDRESS INTEGRITY
If code cannot be overwritten, an attacker may instead try to
corrupt and control some security-critical data in the memory,
in particular a return address in the stack, which determines
what to be executed next when the called function returns.
To prevent this from happening, several defense schemes
were proposed, e.g., stack canaries [131], shadow stack [132],
zipper stack [133].

As one of the first solutions against the classic stack-based
buffer overflow attacks, a stack canary [131] is a secret value
inserted between the return address and the local variables in a
call frame. The integrity of this secret value is checked before
the return instruction. A tampered value signifies memory
corruption in the stack and will result in process termination.
Despite being popular and widely implemented due to low
performance overhead, stack canaries can prohibit only the
classic stack-based buffer overflow attacks, but not attacks
capable of overwriting a return address without touching the
secret value before it.
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A shadow stack [132] improves the defense effectiveness
by moving to directly ensure the integrity of a return address.
A shadow stack is a separate, safe memory region, onto
which a copy of every saved return address is pushed dur-
ing a function call. Before a return instruction, the saved
return address on the stack is compared with its copy on
the shadow stack. A mismatch will cause process termi-
nation. Yet, the shadow stack’s own safety cannot always
be guaranteed, leaving attackers a harder but still possible
way to successfully attack a system by corrupting a return
address.

To overcome the reliance on safe memory isolation, zip-
per stack [133] instead makes use of message authentica-
tion codes (MAC) function for protecting return addresses.
It authenticates a return address by a chain structure using
MAC, and provides a more robust return address protection.
However, like the previous two defense schemes, this one is
also inherently ineffective against attacks that do not need to
manipulate return addresses and/or have no reliance on the
stack, e.g., heap-based code-reuse attacks.

c: CODE-POINTER INTEGRITY
Whereas above-mentioned techniques intend to only ensure
the integrity of return addresses on the stack, another defense
mechanism called code-pointer integrity (CPI) [134] aims to
guarantee the integrity of all code pointers including indi-
rect jump targets, indirect call targets and return addresses.
A code-pointer integrity (CPI) policy can be enforced to
prohibit (both stack-based and heap-based) control-oriented
exploitation (cf. Section II-B1), by protecting the integrity
of all code pointers as well as data pointers used to access
code pointers. These sensitive pointers can be identified by
a compiler, and then stored in a protected memory region
at runtime, which is isolated from the rest of the memory
address space [134]. The access to the protected pointers
is only given to the program code that is supposed to have
the need. However, the memory isolation sometimes relies
on information hiding, which is fundamentally susceptible
to information disclosure [135]. Furthermore, CPI does not
prohibit data-oriented exploitation (cf. Section II-B2).

2) W⊕X
Instead of preventing the corruption of code or data like
program integrity-based defense mechanisms, another type
of defense allows memory corruption and code injection, but
prevents its execution. The non-executable (NX) data pol-
icy [59], or data execution prevention (DEP) policy [136] in
Windows parlance, makes all memory pages containing data
non-executable. Together with the code integrity policy, this
creates the widely enforced W⊕X (writable xor executable)
policy, meaning that a memory page is either writable or exe-
cutable. However, as mentioned in Section II-B1, the W⊕X
policy can be rendered useless by code-reuse attacks or hybrid
exploits.

3) RANDOMIZATION
A fundamental requirement of all types of binary exploita-
tion is the ability to find the correct memory addresses of
target code and/or data. For efficient execution, the memory
addresses of some code and data were deliberately fixed,
meaning that they stay the same at every program execution
on every host. This makes it straightforward for attackers
to find the correct memory addresses with binary analy-
sis, and thereby to successfully exploit a system. Hence,
to make binary exploitationmuch harder andmore unreliable,
a variety of randomization-based defense techniques were
proposed.

a: ADDRESS SPACE LAYOUT RANDOMIZATION
A well-accepted and widely deployed countermeasure is
address space layout randomization (ASLR) [137], which
generates random start addresses of code segments, (e.g.,
libraries,) and data segments, (e.g., stack and heap,) in mem-
ory address space, for each program execution. This increases
the resiliency against both code-injection and code-reuse
attacks, by making it more difficult for attackers to reliably
find the location of injected code or existing program code.
Trying to access a wrong memory address will likely result
in a segmentation fault and failed exploitation.

However, only randomizing the start address of a segment
means that, once attackers find this address, they can find
the address of a target object (in this segment), which has a
fixed offset to the start address. Hence, ASLR can be defeated
by information disclosure of only a few memory addresses.
To make randomization-based defense more robust, more
fine-grained randomization techniques were proposed.

b: INSTRUCTION LOCATION RANDOMIZATION
In order to thwart such (two-stage) attacks, in which an
attacker first finds the memory addresses of target objects by
leaking the start address of the corresponding segment, and
then conducts the real attack, instruction location randomiza-
tion (ILR) [138] is introduced. ILR generates unpredictable
code layout to create randomness in a code segment itself, i.e.,
instructions are not placed sequentially but rather distributed
randomly across the memory address space. To execute a
program with randomly scattered instructions properly, ILR
creates, during static analysis, a so-called fallthrough map
specifying the execution order of those instructions. Despite
being more effective in hiding instructions locations, ILR
suffers from not only high performance overhead, but also
code coverage deficiencies due to imprecision of the static
analysis [70].

c: DATA SPACE RANDOMIZATION
Another approach providing a higher level of randomness
and stronger resilience to information leak is data space
randomization (DSR) [139]. Instead of randomizing the loca-
tion of some data, DSR randomizes the representation of all

48260 VOLUME 10, 2022



Q. Liu et al.: Binary Exploitation in Industrial Control Systems: Past, Present and Future

data by encrypting it using different keys. When variables
are encrypted with different keys, a memory location (of
a variable) overwritten by an attacker through a different
variable will have an unexpected value after decryption, mak-
ing it useless for the attacker. As a result, DSR provides a
strong protection against not only control-oriented exploita-
tion but also data-oriented exploitation. Nevertheless, fine-
grained DSR may cause high performance overhead [67].
Furthermore, DSR is not binary compatible, meaning that
instrumented binaries are not compatible with unmodified
libraries [4].

d: AUTOMATED SOFTWARE DIVERSITY
The essence of randomization-based approaches is protect-
ing programs by introducing program diversity,20 and this
idea goes back to nearly 30 years ago [140]. The proposed
program evolution aims to create syntactically different but
semantically equivalent versions of an original program.
A generalization of randomization-based approaches is auto-
mated software diversity [141], [142], which presents var-
ious forms of randomization/diversification, with distinct
diversification targets, at different levels of granularity, and
introduced in individual phases of the software life-cycle.

Other influential research works on randomization-based
defense include [143]–[146] [147]–[150] [151], which fit to
one of above-listed types, but are not discussed in this paper
due to space constraint. Nevertheless, like the discussed ones,
all randomization-based defense techniques suffer from a
fundamental problem. That is, they rely on secrets, which
can be eventually guessed (through brute-force) or leaked
(through some flaws). Furthermore, even without directly
disclosing the memory layout, just-in-time ROP [152], just-
in-time spraying [153], [154], side channel attacks [155],
[156], and address-oblivious code-reuse attacks [157] etc.
prove, again and again, that randomization-based defenses
cannot provide sufficiently strong protection as promised
or expected. That is to say, randomization-based defense
approaches, at best, add only an extra necessary hurdle for
attackers to overcome.

4) FLOW INTEGRITY
Apart from program integrity-based defenses, there is a
large body of research focusing on another type of integrity
enforcement, i.e., flow integrity of a running program, includ-
ing control-flow integrity (CFI) and data-flow integrity (DFI).

a: CONTROL-FLOW INTEGRITY
When a code pointer, e.g., a return address, is corrupted
and then loaded into the instruction pointer register through
an indirect control-flow transfer instruction, e.g., a return

20It is often said that security by obscurity is a bad strategy. However,
the idea of program diversity is to introduce some obscurity and thereby to
enhance the complexity and cost for attackers. This may sound contradictory.
We stress that security by obscurity is a bad thing, only when the obscurity
mechanism is the solely deployed countermeasure, and even not properly
designed and implemented.

instruction, the control flow of the program execution will
be unknowingly diverted. Predetermining the control-flow
graph (CFG) of a program during static analysis and then
inserting a stateless check before each indirect control-
flow transfer,21 can detect the deviation of the intended
control-flow at runtime.

CFI, proposed in [68], [158], is a key defense mechanism
that relies on a CFG, which can be seen as some form of
finite state machine. It restricts the target of each indirect
control-flow transfer to only a few locations, as these loca-
tions are considered as legitimate during static analysis and
marked with a unique label. At runtime, before an indirect
control-flow transfer, it is checked whether the transfer target
has the right label. If not, the process is forced to terminate.
By doing so, most control-oriented exploitation will fail, as a
control-flow hijacking attempt will most likely fail the CFI
check, and results in program execution termination. Note
that the effectiveness of CFI heavily relies on enforcedW⊕X
policy, as it ensures that code (including CFI checks) cannot
be tampered, and injected code (for which there is no CFI
check) cannot be executed.

i) FORWARD-EDGE CFI
Forward-edge CFI inserts checks for indirect jump and indi-
rect call instructions. Whereas an indirect jump instruction
can be introduced by a switch statement in source code,
an indirect call instruction is normally resulted from a func-
tion call. At runtime, for an indirect jump or call, there is only
one correct jump target or call target, respectively. However,
during static analysis, the jump target or call target cannot be
completely determined, but rather restricted to a few possible
locations. Hence, all these possible locations are considered
as valid and receive the same unique label. This, though,
leaves an attacker a slight possibility to hijack the control
flow, when one of these locations happens to be the one to
which the attacker aims to redirect the control flow. As a
result, the program execution is compliant to the enforced CFI
policy, but deviated from the expected program behavior. The
more statically determined valid targets an indirect jump or
call has, the better the attacker’s chance is.

ii) BACKWARD-EDGE CFI
Backward-edge CFI aims to prevent a return instruction from
being used for control-flow hijacking. Similarly, CFI can-
not guarantee that, at runtime, a return instruction really
returns to its true invoking site, but rather to one of its
seemingly legitimate callers, as this function may be called
from (many) different places of the code at different times.
The number of callers of a function may be noticeably higher
than the number of locations to which an indirect jump/call
may lead, making backward-edge CFI even less precise than

21In contrast, a direct control-flow transfer instruction has a fixed target
memory address/offset, which cannot be manipulated by attackers due to
enforced code integrity.

VOLUME 10, 2022 48261



Q. Liu et al.: Binary Exploitation in Industrial Control Systems: Past, Present and Future

forward-edge CFI. That is, statically computed CFG alone
inevitably leads to coarse-grained CFI.
Coarse-grained CFI [159]–[162] are considered as

practical and suitable for real-world deployment due
to comparatively low overhead. Nevertheless, due to
imprecision and inherent limitations of static analysis,
the number of allowed target locations for an indirect
control-flow transfer is normally larger than necessary, result-
ing in some degree of over-approximation [54]. The effec-
tiveness of a coarse-grained CFI depends on the degree of
over-approximation. As shown in [54], coarse-grained CFI
in general can be easily defeated by advanced code-reuse
attacks.

To enhance the precision of CFI, in the original CFI
works [68], [158], statically computed CFI checks are
coupled with an above-mentioned shadow stack, moving
towards more fine-grained CFI. Whereas the statically
inserted CFI checks are stateless, a shadow stack adds some
state-awareness during program execution, and guarantees
that each return instruction really goes back to the initial
caller. However, having to keep a shadow stack for each exe-
cution thread introduces non-negligible overhead. Further-
more, problem may occur in certain programming constructs
in which a return instruction does not always need to return
to its direct caller, that is, correctly tracking a shadow stack
is not trivial [60], [70].

To reduce performance degradation, hardware-assisted
CFI [163]–[166] [6], [167]–[169], which requires extend-
ing an instruction set architecture, i.e., adding new CPU
instructions, becomes more relevant and attractive. Intel
CET [6], [169] showcases a real-world deployment of
hardware-assisted CFI. Although neither software-only
CFI nor hardware-supported CFI can completely prevent
control-oriented exploitation [7], [170], they do make most
code-reuse attacks highly unreliable and unsuccessful. As a
result, data-oriented exploitation has attracted much attention
of attackers in recent years [171].

b: DATA-FLOW INTEGRITY
An effective way to defend against both control-oriented
exploitation and data-oriented exploitation is enforcing a
DFI policy, which is originally proposed in [172] short after
the proposal of CFI. To enforce a DFI policy, a data-flow
graph (DFG) is constructed during static analysis for a pro-
tected program, and the program code is instrumented to
ensure that the data flow does not deviate from the DFG at
runtime. But instead of checking indirect branching instruc-
tions, as it is done in CFI, DFI checks each read opera-
tion, to prevent any corrupted data from being used. That
is, DFI aims to detect the corruption of the data that is
the next to be accessed. A DFG may include all program
data for enhanced precision [172], or only consider a small
portion of security-critical data for reduced performance
overhead [173]. Like a statically computed CFG, a DFG
obtained from static analysis is only an over-approximation
of a complete DFG, leading to coarse-grained DFI. More

fine-grained DFI may provide a stronger protection, but suf-
fers from very high performance overhead and is not yet very
practical [54], [67].

5) MEMORY SANITIZATION
Whereas above-mentioned defenses aim to detect or pre-
vent attacks at some late stage of a bug’s exploitation,
another line of research focuses on fighting against the
underlying root cause, i.e., preventing memory corruption
from ever happening. This is done by memory sanitiza-
tion [174], which includes finding and removing vulner-
able code [175] or unnecessary code [176]; extending C
language to safer versions [177], [178]; integrating spatial
safety checks [179], temporal safety checks [180] to provide
stronger policies. Like above-mentioned defenses, memory
sanitizers also rely on program instrumentation, e.g., insert-
ing reference monitors at some level. Memory sanitizers
normally provide stronger defenses and potentially stop any
binary exploitation, at the cost of very high performance
overhead.

To uncover memory corruption bugs before a program’s
release and hence to scale down the attack surface, defend-
ers propose frameworks for conducting inter-procedural,
context-sensitive analysis in not only user application pro-
grams but also operating system kernels [175]. To further
lower attackers’ chance to find and exploit a bug, some
developer-intended program features and the code, which are
not necessarily useful for every program user or not used
in a particular deployment context, can also be removed
individually during program instrumentation and before the
program’s deployment [176]. To make C programs safer,
a program transformation system [178] is proposed to extend
C with type safety, in which type safety is either statically
verified or guaranteed by inserted checks at runtime. Another
C extension [177] also combines static analysis and runtime
checks to rule out (almost) all safety violations in a C pro-
gram, while preserving programmers’ control over low-level
details.

A strong defense can also be provided by embedding
spatial memory-safety checks and temporal memory-safety
checks in a program. Completememory safety can be ensured
by maintaining and correctly tracking both bounds infor-
mation and allocation information as metadata for every
pointer. Whenever a pointer is dereferenced, this metadata is
used to examine whether the pointer stays inside the bounds
of the pointed object, and whether the pointed object is
still valid. The original pointer extended with the associated
metadata turns into a so-called fat pointer. With fat point-
ers, an instrumented program cannot interact with uninstru-
mented libraries, as they cannot correctly interpret and update
fat pointers. To address this compatibility problem, the meta-
data can also be separated from the original pointer and stored
in a disjoint metadata space like in SoftBound [179] and
CETS [180]. Whereas SoftBound ensures spatial memory
safety for a C program, CETS provides temporal memory
safety for it. When combined, a complete memory safety
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can be guaranteed, but with a performance overhead over
100% [180].

6) MEMORY ISOLATION
Lastly, memory isolation-based defenses are also widely
studied and implemented for countering binary exploita-
tion, by restricting an attack to a confined memory address
space. Disjoint memory regions are used for trusted and
untrusted program code, respectively, to contain the mem-
ory access and control-flow transfer behavior of untrusted
program code. Software-based Fault Isolation (SFI) tech-
niques [181]–[184] [185], [186], also referred to as sandbox-
ing techniques, establish logical protection domains within a
process, and constrain the untrusted code’s memory access
and control-flow transfer to a designated logical memory
address space, referred to as the fault domain. Similarly,
Intel Software Guard Extensions (SGX) [187] allows pro-
gram code to designate a protected memory region, called
enclave, for hosting security-critical code and data, in order
to prevent compromised code from accessing it. However,
memory isolation-based countermeasures can, at best, limit
the damage that an attacker can cause, but not prevent it
from happening. Besides, these defense mechanisms are also
breakable [188], [189].

B. ON EMBEDDED SYSTEMS
According to Embedded Markets Study [190], [191], ICS
are the largest host of embedded devices. As it shows in
the past [9]–[12] [13]–[16] [17]–[20], despite their limited
computation capabilities, embedded systems are also prone
to fall victim to binary exploitation. One of the main reasons
is that embedded systems are predominantly developed in
unsafe programming languages like C, C++ or assembly
languages [190], owing to the fact that they support high
performance and low-level hardware control. As defense
mechanisms are widely deployed on modern general-purpose
computers, which can raise the bar for conducting binary
exploitation, attackers now typically focus on targets that
either do not enable defense mechanisms or cannot imple-
ment them. Embedded devices often cannot directly imple-
ment many of above-mentioned defense mechanisms due
to, in particular, performance overhead and hardware limi-
tation. Besides, embedded systems are normally difficult to
update, and it is not uncommon that many of them contain
unpatched publicly known software vulnerabilities for a long
time. Hence, attackers will more likely shift their focus to
the low-hanging fruit—embedded devices in ICS—to yield
easy wins. In this section, we first discuss the constraints that
prohibit the direct implementation of some above-mentioned
defense techniques on embedded systems. Next, we review
some defense mechanisms designed for embedded sys-
tems and with the limitations of embedded systems in
mind.

1) CONSTRAINTS
Even on general-purpose computers, some effective defenses
are normally not implemented or enabled due to high
overhead. According to [4], defenses causing over 10% per-
formance overhead will unlikely get widely deployed. When
applied to embedded systems with their tight constraints,
the performance penalty issue is further exacerbated. Solely
considering this, it makes many defenses developed for
general-purpose computers already practically infeasible.

Another important issue which makes many defenses
technically infeasible is hardware limitation. That is, most
embedded systems (except a few high-end embedded sys-
tems like smartphones) do not have a memory management
unit (MMU), and hence do not support virtual memory and
memory paging, which underpin many necessary and univer-
sally deployed securitymechanisms on general-purpose com-
puters. For instance, both the enforcement of code integrity
policy and the enforcement of DEP policy rely on the pres-
ence of a MMU. Without these defenses, the most basic code
corruption attacks and code injection attacks become easily
achievable. Although CFI itself does not require a MMU,
it can be rendered useless by code corruption attacks (through
manipulating CFI checks) and code injection attacks (since
for injected code there is no CFI check).

Above-mentioned randomization-based defenses like
ASLR also become much weaker and less relevant, when
it comes to embedded systems. Because embedded systems
typically run on 32-bit, 16-bit or even 8-bit architectures, for
which the memory address space is much smaller and thereby
the entropy sources are very limited. This makes defenses
relying on information hiding, like randomization-based
defenses or shadow stack, generally more easily breakable.
For example, as it shows in [192], the protection provided by
ASLR is limited on 32-bit architectures, not to mention on
16-bit and 8-bit architectures.

2) AVAILABLE DEFENSE TECHNIQUES
Although defense techniques for general-purpose comput-
ers are not directly applicable to embedded systems, they
are highly influential for developing defenses for embed-
ded systems. That is, as shown in the following, similar
approaches are proposed for embedded systems, but with the
limitations of embedded systems in consideration. Besides,
in comparison to software-only solutions, hardware-based
solutions appear to bemore favored in embedded systems due
to relatively low overhead.

a: CODE INTEGRITY
The easiest way to carry out binary exploitation would be
directly corrupting program code in memory. On general-
purposes computers, this is straightforwardly prevented by
a code integrity policy, which leverages a MMU to real-
ize access control, i.e., all memory pages containing code
cannot be modified. However, a MMU causes unacceptable
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performance overhead, i.e., due to management of page
tables, for most of embedded systems. To overcome this,
a memory protection unit (MPU) [193], [194], often seen
as a lightweight MMU, is implemented in a large number
of (high-end) embedded systems. A MPU does not support
virtual memory, but provides access control by arranging
the memory address space into several memory regions with
associated access permissions. Consequently, not only the
enforcement of a code integrity policy is feasible, but so are
other defenses heavily relying on memory access control.

b: RETURN ADDRESS INTEGRITY
At first glance, a return address is safely stored in many
embedded systems due to a dedicated register called link
register. In many embedded devices employing RISC instruc-
tion set architectures, e.g., ARM, PowerPC, SPARC, a link
register is used to hold the return address of a function call.
This is not only more efficient (as accessing a register is
much faster than accessing the stack on the main memory)
but also safer, as an attacker cannot directly tamper a value
on a register. However, nested function calls are very typical
in a program, and in this case some return addresses have to
be stored on the stack. As a result, attackers typically try to
overwrite a return address on the stack to hijack the control
flow.

As a countermeasure on embedded systems, defend-
ers aim to protect return addresses by either implement-
ing a dedicated return stack [195], or deploying a shadow
stack [196], [197], or directly ensuring the integrity of return
addresses [198]. To safeguard low-end embedded systems,
a light hardware modification is introduced in [195] (for AVR
microcontrollers), which splits the stack into a normal data
stack (without return addresses) and a return stack (contain-
ing solely return addresses). The return stack is stored at a
different location in memory, and the access to the return
stack is restricted to return and call instructions to prevent
unauthorized modification, which is realized by the hardware
modification.

Like on general-purpose computers, a shadow stack can
be implemented to protect return addresses of a program
running on embedded devices. But preventing a shadow
stack itself from being tampered is more difficult on embed-
ded systems due to limited entropy sources and memory
isolation. To make a shadow stack safer, an approach called
Silhouette [197] is designed for various ARM architectures,
which enforces an efficient intra-address space isolation
dubbed store hardening. It relies on some special store
instructions of ARM processors and a MPU to set memory
access permissions. By doing so, it creates a logical sepa-
ration between code associated to shadow stack operations
and other program code. Another approach ensuring return
address integrity is µRAI proposed in [198], which turns a
general-purpose register into a dedicated register called status
register. The value in this register is used in combination
with (during program instrumentation) inserted direct jump
instructions to resolve the correct return addresses, and it is

guaranteed that this value is never spilled to themainmemory.
As a result, it removes the need to ever store return addresses
on the stack, and makes sure that return addresses are never
writable except by an authorized instruction.

c: POINTER INTEGRITY
Enforcing return address integrity can only prevent
backward-edge control-flow hijacking. In order to thwart
forward-edge control-flow hijacking, other code pointers
like function pointers also need to be safeguarded. High-
end embedded systems running on ARM processors with
ARMv8-A architecture [199] now have instructions for
pointer authentication to resist attacks leveraging corrupted
pointers. It makes use of cryptographic MAC, referred to
as pointer authentication codes (PAC), and places a PAC
into unused bits of a pointer value (in 64-bit architectures),
before the pointer is written to memory. Upon using this
pointer, its integrity is first verified. As a result, an attacker
has to find the correct PAC (in addition to a memory corrup-
tion bug), in order to corrupt a protected pointer. However,
pointer authentication may be vulnerable to pointer substi-
tution attacks, in which an authenticated function pointer
is replaced with another authenticated pointer pointing to
a different, attacker-intended memory location [200]. As a
countermeasure, an enhanced scheme is proposed in [201],
which enforces pointer integrity for all code and data pointers,
coupled with pointer type safety ensuring a pointer is of the
correct type.

d: eXecute-ONLY-MEMORY
By setting memory pages or regions as either writable (and
readable) or executable (and readable), i.e., W⊕X policy,
through a MMU or MPU, respectively, it prevents attack-
ers from both corrupting code and executing injected code,
thereby largely restricting attackers’ ability. However, this
does not thwart memory disclosure attacks, in which attack-
ers disclose sensitive information from code regions, e.g.,
in order to conduct code-reuse attacks. To defeat memory dis-
closure attacks, eXecute-Only-Memory (XOM) is proposed,
which states that some code regions are solely executable,
i.e., neither writable nor readable. Although XOM is sup-
ported in high-end processors by extending memory access
permissions to include execute-only (XO) permission [202],
it is not built into most of embedded systems. To enable this
feature in (low-end) embedded systems, researchers present
uXOM [203] for ARM Cortex-M22—one of the most popu-
lar processors in low-end embedded devices. In addition to
a MPU, uXOM also leverages unprivileged load and store
instructions offered by ARM Cortex-M processors. It con-
verts most memory instructions into unprivileged ones and
sets code regions as privileged, so that these instructions can-
not access code regions. For memory instructions that cannot

22Note that XOM cannot be implemented simply by configuring theMPU
in a Cortex-M processor, since read permission is needed for a memory
region to be executable [203].
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be turned into unprivileged ones, they are instrumented with
verification routines ensuring that uXOM’s protection will
not be broken.

e: RANDOMIZATION
Randomization-based defenses increase the resilience
against, in particular, code-reuse attacks. To address unique
challenges of implementing effective randomization mech-
anisms on low-end embedded systems, a hardware-based
fine-grained randomization technique called MAVR [16] is
proposed for 8-bit AVR microcontrollers. MAVR extends
a main processor with an external flash memory and an
additional low-cost processor dubbed master processor. The
external flash memory is used to store the unrandomized
program code and symbol information. The master processor
is responsible for the randomization, and uploading random-
ized program code to the main processor. In order to make it
harder for attackers to find out gadgets locations, it shuffles
the function blocks within the code segment, instead of just
start addresses of all segments.

f: CFI
In order to enforce CFI on real-time embedded systems,
but not create extra unpredictable workload on the proces-
sor, a hardware-based solution called OCFMM is presented
in [18]. OCFMM introduces a dedicated hardware module
to perform CFI checks for the program running on a 32-bit
SPARC processor, in which it directly hooks into the pro-
cessor and tracks the control flow of the program. This
module has its own isolated memory unit for preventing
itself from being manipulated. Another hardware-assisted
CFI approach for embedded systems proposed in [164] does
not add an additional hardware module, but rather introduces
new instructions through hardware modification on a 32-bit
Intel processor designed for embedded systems. Besides,
software-only CFI, such as RECFISH [196] targeting ARM
Cortex-R processors, is also proposed for real-time embedded
systems.

g: MEMORY ISOLATION
To constrain the ability of an attacker who already partly or
completely exploited an unprivileged program, and to prevent
the attacker from further exploiting other security-critical
programs and resources, memory isolation-based defenses
can be deployed not only on general-purpose computers,
e.g., with Intel SGX [187], but also on embedded devices,
e.g., with ARM TrustZone [204]. However, ARM TrustZone
offers a limited degree of isolation (and security) in com-
parison to Intel SGX, because it only separates programs
into two areas, i.e., a normal world and a secure world, but
provides no strong compartmentalization within the areas.
As a result, the attack surface of the secure world expands
with increased number of trusted (but potentially vulnerable)
programs [205]. To make ARM TrustZone more compara-
ble to Intel SGX, i.e., establishing user-space enclaves and
enabling unrestricted use of trusted execution environments

(TEE), a new security architecture [206] is proposed, which
suggests moving trusted programs to the normal world and
introducing strongly isolated compartments in the normal
world.

h: MEMORY TAGGING
Another important hardware-based feature is memory tag-
ging, which is designed to provide a very promising and
robust defense against binary exploitation. Memory tagging
is currently supported in some SPARC processors and ARM
v8.5 architecture, in which the implementation is called
SPARC ADI [207] and ARM MTE [208], respectively. For
instance, two types of metadata are used in ARM MTE, i.e.,
address tags and memory tags. Whereas an address tag is
a 4-bit value inserted to the topmost unused byte of each
pointer (only in 64-bit architecture), a memory tag is also
a 4-bit value associated with every aligned 16-byte memory
region [209]. These tags are handled by newly introduced
instructions. When a heap region is allocated, a random 4-bit
value is selected to mark both the pointer and the heap region.
Upon accessing the memory region, it is verified whether the
address tag and memory tag match. A mismatch will cause a
hardware exception.

Note that defenses like ARM pointer authentication, ARM
TrustZone and ARM MTE rely on advanced processor fea-
tures, and hence mostly apply to high-end (64-bit) embedded
systems. Low-end embedded systems are in general less pro-
tected due to more strict resource constraints and hardware
limitations.

VI. DETECTION TECHNIQUES AND EVASION TECHNIQUES
Fully enforced memory safety is rare in real-world systems,
in particular due to performance and compatibility issues [8].
This often makes another line of defense become necessary,
i.e., intrusion detection. Often used as a secondary defense,
intrusion detection can lessen the trust needed in and the
reliance on a front-line defense mechanism. In this section we
mainly discuss detection techniques against binary exploita-
tion, and evasion techniques. They differ from defenses dis-
cussed in Section V, in that they are either heuristics-based
detection, and/or the detection is conducted from a connected
device in the same physical/virtual network (rather than on
the monitored device itself), i.e., remote runtime attestation.
Heuristics-based detection approaches have the advantage
that they can apply machine learning techniques, e.g., rule
learning based IDS [210]. Remote runtime attestation is in
particular suitable for (low-end) embedded systems due to
little to no extra performance overhead on a monitored device
itself. Hence we see a great potential in these detection tech-
niques, especially when combined.

A. HEURISTICS-BASED DETECTION
1) SHELLCODE DETECTION
Early detection-based solutions focus on shellcode detec-
tion, which allows detecting not only known exploits but
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also unknown exploits, irrespective of underlying program
bugs being exploited. The first generation of shellcode detec-
tion bases on static analysis of network traffic [211], [212],
in which network input data is first disassembled and then
compared with predefined pattern(s). A pattern can be a
combination of heuristics-based features, e.g., NOP-sled,
identified through studying a large sample of shellcode. How-
ever, static analysis-based detection approaches are limited in
that they cannot correctly deal with code obfuscation tricks
employed by shellcode authors to evade detection.

Hence, researchers later turned to dynamic analysis-based
detection techniques coupled with a processor emulator,
implemented either directly on the monitored/protected host
[213] or on a network-level monitor/detector [214]–[216].
As a result, obfuscated/encrypted shellcode can be detected,
as the shellcode needs to be first deobfuscated/decrypted
during its execution. For instance, in [216], each network
input, i.e., a byte sequence, is mapped to the memory space
and executed by the processor emulator for several times
(each time beginning with a different byte in the input). The
execution results are matched against patterns based on run-
time heuristics and identified to be inherent in different types
of shellcode. Nonetheless, the aforementioned approaches
may be still susceptible to evasion, due to insufficient con-
text information only obtainable from a real target process.
To solve this issue, a new approach [217] suggests frequently
taking a snapshot of a real target process’s memory space
containing a to-be-examined input, and sending the snapshot
to a shellcode detector for more realistic examination.

2) ROP DETECTION
After the advent of code-reuse attacks, especially ROP
attacks, shellcode detection-based approaches seem to
become much less relevant. That is, shellcode detection
may be effective against code-injection attacks and hybrid
exploits, but not against pure code-reuse attacks, as they do
not contain any code. Consequently, defenders proceeded to
develop methods for detecting ROP exploits. One of these
methods is ROPscan [218], which aims to catch ROP pay-
loads, i.e., a byte sequence consisting of gadgets addresses,
from monitored network traffic. The emulator in ROPscan
is initialized with a snapshot of the memory space of a
targeted/protected process. ROPscan speculatively drives the
execution of code existing in the memory space, to which
a to-be-examined network input (presumably interpreted as
valid memory addresses) points to. The execution results are
examined according to some runtime heuristics, which will
classify the input data as benign or malicious. Besides, such
a ROP detector can be integrated into a shellcode detector for
creating a stronger defense.

Some other runtime-behavior heuristics-based ROP detec-
tion techniques, like DROP [61], DynIMA [62], ROPde-
fender [219], embed the checks directly in program code,
instead of relying on a dedicated emulation-based (network)
monitor. An alarm is triggered, if a predefined condition is
met. These detection techniques base on runtime heuristics

obtained from observed ROP attacks, e.g., an excessive use
of return instructions in a short time [61], [62], a viola-
tion of the last-in, first-out stack invariant [219]. To make
these kind of techniques more generic and practical, i.e.,
with the ability to detect also JOP and COP attacks, and
no reliance on side information and binary instrumentation,
ROPecker [220] presents a new detection system, which
detects ROP attacks by leveraging a combination of offline
binary analysis results, runtime execution flow information,
and records in last branch record (LBR) registers.

3) PROGRAM EXECUTION ANOMALY DETECTION
In order not to be restricted to any specific type of program
exploitation, another group of detection techniques aim to
detect all kinds of attacks by focusing on a program’s normal
execution behavior, rather than relying on the characteristics
of a specific kind of attack. A normal execution behavior
is defined in a normal program execution model, and any
deviation from it, i.e., an anomaly, is deemed as malicious.
For example, a normal execution model is defined in [221]
as a set of conditions on program states. An execution
behavior is considered as benign, if the program counter
and the call stack prove to be valid and consistent with
each other for all program states. Nevertheless, data-oriented
exploitation is generally harder to detect, as it may not
cause any control-flow anomaly during program execution.
To improve the effectiveness of anomaly-based detection
against data-oriented attacks on control programs in cyber-
physical systems, a new approach [222] also incorporates
runtime execution semantics checking, including event iden-
tification and dependence analysis with respect to physical
environments.

B. REMOTE RUNTIME ATTESTATION
To detect the occurrence of a runtime attack on a (resource-
constrained) embedded system, but without introducing
non-negligible performance overhead on it, remote runtime
attestation is a popular choice, as the detection process, i.e.,
the computation, is mainly performed on the remote server.
Initially, remote attestation is introduced to detect code mod-
ification or malware on an embedded device, in which the
trusted server, called verifier, requires the prover running on
the embedded device to compute a checksum of its code
memory (with a nonce included to prevent replay attacks),
and the verifier will receive it and check it. Conventional
remote attestation is referred to as static attestation, because
it only aims to detect the presence of modified code at load-
time, but is unable to detect binary exploitation at runtime.
To complement static attestation, a number of runtime attes-
tation schemes are proposed to catch runtime attacks by
attesting not only control flow [223]–[225], but also data
flow [226] of a program running on a monitored/protected
embedded system.

C-FLAT [223] is an early runtime attestation scheme that
verifies the control-flow integrity of a running program on an
embedded system. It requires the remote verifier to generate
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the CFG of the attested program beforehand, and needs to
instrument all branch instructions of the program, to let them
be intercepted by a runtime tracer on the prover during exe-
cution. Besides, it has a trust anchor, i.e., ARM TrustZone,
on the prover to securely measure and report the program’s
runtime behavior, i.e., its execution paths, to the verifier.
However, C-FLAT has limited practicality due to its reliance
on the hardware extension ARM TrustZone and program
instrumentation, and thereby noticeable performance penalty
on the embedded system itself. To improve the efficiency and
usability of runtime attestation, in particular by eliminating
the need of software instrumentation, a hardware-assisted
approach LO-FAT [224] introduces dedicated hardware mod-
ules, i.e., a branch filter and a loop monitor, to track the
attested program’s control flow in parallel to the main pro-
cessor. By doing so, it does not stall the attested program’s
execution and allows efficient control-flow attestation.

Nevertheless, both C-FLAT and LO-FAT are susceptible
to two types of TOCTOU attacks, provided that the attacker
has physical access to the embedded device [225]. This is due
to the fact that they only attest indirect control transfers, but
instructions within a basic block are not verified, and hence
allowed to be replaced by malicious code. A more resilient
runtime attestation scheme ATRIUM [225] mitigates these
attacks by tracking and attesting both the executed instruc-
tions and the control flow of a target program, with an attesta-
tion engine separated from the processor. Although ATRIUM
can detect additional memory manipulation attacks, it is inca-
pable of identifying DOP attacks, which do not change a
victim program’s control flow. As a countermeasure against
sophisticated DOP attacks, LiteHAX [226] suggests accu-
rately and continuously tracking not only control-flow but
also data-flow information of an attested program, which
is realized by its introduced hardware modules tightly inte-
grated with the main processor.

C. EVASION
It is often said that the easiest way to break system security
usually is to circumvent it rather than defeat it. A funda-
mental problem of detection-based defenses is that they are
prone to evasion. The early generation of shellcode detec-
tion mechanism [211] aims to detect plain shellcode using
static analysis. As attackers always seek a way to evade
detection, code obfuscation techniques such as polymor-
phism and metamorphism [227] are employed to circumvent
such defense. Various forms of the same plain shellcode
can be generated by encrypting it with individual random
keys and appending a decryption routine to it, so that it
can self-decrypt when executed. In the face of polymorphic
and metamorphic shellcode, defenders moved to developing
dynamic analysis-based detection approaches, which run sus-
picious code in an emulator and check the execution results
with some runtime heuristics, and hence are not hindered by
code obfuscation tricks. However, attackers, again, proved to
be capable of achieving a higher level of evasiveness, inwhich
they exploit both design flaws and implementation flaws in

emulation-based detection systems [228]. For instance, there
is always an emulation gap, i.e., some difference between
a real target system and an emulator, which can abused to
circumvent detection. An attacker may construct shellcode
which will be executed completely and correctly only when
it is on a real target system.

As it shows in [229], ROP detection techniques based
on execution heuristics or anomalies [218]–[221] can also
be evaded by a strong adversary. For instance, a length-
based detection approach classifies a code sequence as nor-
mal or ROP gadget depending on its length. A stealth ROP
attack will contain only code sequences that are longer than
expected, and hence would be incorrectly classified as nor-
mal. Furthermore, dispatcher-like behavior or intensive use
of indirect jumps or calls may be considered as an execution
anomaly and taken as an indicator to detect JOP or COP
attacks. However, this kind of detection could be circum-
vented by selecting long-running functions and changing dis-
patchers periodically [65]. Hence, evasion-resilient detection
techniques are of special interest. It is undoubtedly critical to
identify properties that are truly representative and indispens-
able in an attack vector or during an attack, but non-existent
in a benign program or during a normal execution. These
fundamental differences need to be captured and used to
design a reliable and sound detection scheme that cannot be
circumvented.

VII. CONCLUSION
With the aim of providing an appropriate assessment, and
raising situation awareness adequately, we present a sys-
tematic study concerning binary exploitation in ICS. In this
work, we first provide a comprehensive analysis of binary
exploitation. We analyze its causes from different angles and
give an overview of the most critical program bugs. The two
types of binary exploitation, i.e., control-oriented and data-
oriented, are extensively discussed, so are the varying con-
sequences. The connection to modern malware is explained
and illustrated with many real-world examples in the last
decade, which serve to indicate the popularity and severity
of binary exploitation and exploit-based malware in ICS.
Besides, a number of exploitation purposes are summarized
for the past ICS cyber incidents.

To further argue that binary exploitation will tend to be
a more serious problem, we reveal a drastic shift from a
well-isolated and -segmented network structure to a more
interconnected and complex structure with converged IT and
OT networks, and point out the added network entry points as
well as the attack surface transition. Next, an extensive list of
available defense techniques for general-purpose computers
is presented, as well as another list of defense mechanisms
designed for embedded systems and with the limitations of
embedded systems in mind.

Lastly, we discuss detection-based defenses, often used
as a secondary defense, as we see a great potential in
heuristics-based detection and remote runtime attestation
techniques for ICS. In order to reduce the damage that an
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attacker can cause, it is ideal to catch and halt the attack
as early as possible, i.e., detect and prevent the program
exploits. An early-stage detection and mitigation of an attack
also means a less dramatic clean-up of the victim system.
In particular, ICS asset owners should prioritize employ-
ing network-based detection techniques, as it is impractical
to deploy resource-intensive defenses on many embedded
devices, especially when the systems are already under
operation. However, the biggest challenge is still how to
identify fundamental properties in attack vectors and design
evasion-resilient detection techniques.
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