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ABSTRACT Cardiomegaly is an asymptomatic disease. Symptoms, such as palpitations, chest tightness,
and shortness of breath, may be the early indications of cardiac hypertrophy, which can be divided into
cardiac hypertrophy and ventricular enlargement. Their causes and treatment strategies are different. The
early detection of cardiomegaly can help to make decisions for administering drugs and surgical treatments.
In addition, with regard to problems in manual inspection, such as time consuming and the need for human
interpretations and experiences, an assistive tool is required to automatically develop and identify normal
heart or enlarged hearts. Therefore, this study proposes the combination of 2D (two dimensional) and 1D
(one dimensional) convolutional neural network based classifier for rapid cardiomegaly screening in clinical
applications based on chest X-ray (CXR) examinations in frontal posteroanterior view. The 2D and 1D
convolutional processes and multilayer connected classification network are used to enhance the original
CXR image and to remove unwanted noises to increase accuracy in feature extraction and pattern recognition
tasks. The training dataset and testing dataset are collected from the National Institutes of Health CXR image
database, which is used to train the classifier and validate the performance of the classifier in a K-fold cross-
validation manner. Experimental results indicate the potential performance for rapid cardiomegaly screening
with regard to recall (%), precision (%), accuracy (%), and F1 score.

INDEX TERMS Cardiomegaly, 2D and 1D convolutional neural network, chest X-ray, cross-validation.

I. INTRODUCTION
An enlarged heart, which is known as cardiomegaly, is not
a serious disease, and it may have no signs or symptoms
in some people and may have symptoms, such as short-
ness of breath, abnormal heartbeat (arrhythmia), and edema,
in others. Cardiomegaly will cause your heart to pump harder
than usual or gradually damage your heart muscle. Congen-
ital heart diseases or abnormal heartbeats can cause heart
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enlargement, resulting in high blood pressure, heart valve
disease, and cardiomyopathy. The risks of complications
for cardiomegaly include heart failure, blood clots, heart
murmur, and cardiac arrest. Therefore, the first-line chest
X-ray (CXR) image [1], [2] is an easy inspection method to
directly detect the presence or absence of an abnormality for
cardiopulmonary disease detection. This imaging inspection
is cost effective, and it has low radiation dose for avail-
ability to rapidly screen cardiomegaly. In first-line examina-
tion, as seen in Figure 1, the cardiac silhouette can be used
to estimate the index of the cardiothoracic ratio (CTR) by
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FIGURE 1. Cardiothoracic ratio (CTR) estimation on posteroanterior chest X-ray view (417 × 417 pixels) for normal
condition and cardiomegaly. (a) Normal condition (no finding): CTR = 0.48, (b) Cardiomegaly: CTR = 0.69.

radiologists, which has a 0.50 threshold value for separating
the normal condition (no finding) from cardiomegaly [3]–[9].
However, the CTR index is required to select the maxi-
mal horizontal cardiac diameter (MHCD) and the maximal
horizontal thoracic diameter (MHTD) manually or by using
segmentation-based methods (as shown in Figure 1). A CTR
index greater than 0.50 indicates the symptoms of enlarged
heart. However, manual screening has insufficient human
resources, and it is time consuming in medical diagnosis.
Given the gray-scale gradient changes in the edges between
the lung and heart, segmentation-based methods, such as
active shape models, pixel classification, active appearance
models, and Harris operator, are used to extrapolate the
boundaries of the right/left lung and heart regions in a CXR
image. Hence, the heart contour can be critically identified
for the desired object location. Then, the feature map of
a cardiopulmonary disease can be easily searched with the
specific bounding box. However, CXR images may contain
noise, and the traditional nonlinear mapping, intensity-based,
and gradient-based method is sensitive to noise. It also needs
manual manner to determine the MHCD and MHTD for
estimating CTR. In addition, digital noise, such as Gaussian
noise, Poisson noise, or speckle noise [10]–[12], usually
affects the quality of medical images in details and edges,
thereby reducing the efficiency of image segmentation, image
classification, and pattern recognition tasks. Hence, an image
denoising method is necessary to improve the quality of
digital medical images.

The noise [10], [11] on CXR images usually contains a
low dose of ionizing radiation, which affects the quality of
images for cardiopulmonary-related disease diagnoses. Dig-
ital filters, wavelet analysis, principal component analysis,
and machine learning methods [10] have been proposed to
remove such noise and thus improve CXR image quality.

However, these methods cannot remove Gaussian and Pois-
son noise. Hence, to address the abovementioned problems,
this study aims to design a multilayer classifier capable of
noise filtering, image enhancement, feature extraction, and
classification tasks in image preprocessing. Deep-learning-
based methods, such as DenseNet (Dense Convolutional Net-
work) [13], ResNet (Residual Network)/FC-ResNets (Fully
Convolutional Residual Network) [14], [15], and UNet (Fully
Convolutional Network) [16], [17], can be used for feature
enhancement, feature extraction, and classification to auto-
matically screen the presence of cardiomegaly on posteroan-
terior (PA) CXR images.

These multi convolutional-pooling layers and fully con-
nected network can train the end-to-end and pixel-to-pixel
image segmentation, which show promising results in this
study. These multilayers and classification network can also
be used for automated segmentation of liver or tumors based
on computed tomography images [6], [18]. They have high
performance for multilabel classification applications using
the NIH (National Institutes of Health, NIH, Clinical Center)
CXR dataset [2], [13]. These 2D fully convolutional neural
networks (CNNs) are usually greater than 10 convolutional-
pooling layers. Thus, they can perform the image prepro-
cessing and postprocessing tasks to filter noise, enhance the
feature map, and then increase the identification accuracy.
Through a series of convolution and pooling processes, a mul-
tilayer CNNwith high capacity for visual object detection can
enhance and extract the desired features at different scales
and different levels from low-level features (objects’ edges
or curves) to high-level information (objects’ shapes) for
detecting nonlinear features. Hence, by increasing the image
preprocessing scheme, the network can increase nonlinearity
and obtain feature representation. Then, a pooling process
with max pooling is used to reduce the sizes of feature maps
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FIGURE 2. Image enhancement and feature map extraction. (a) Feature map for normal condition (no finding, CTR = 0.48), and (b) feature map for
cardiomegaly (CTR = 0.69).

for obtaining abstract features and overcome the overfitting
matter in the learning stage [19], [20]. Those featuremaps can
be combined to classify the input CXR images into the possi-
ble class. The deep learning (DP)-based CNNs have gradually
reduced error rates for classification applications and can also
work with noisy data to improve image resolution [21]. How-
ever, these processes will increase the complexity levels and
have some limitations, such as the determination of a number
of convolutional-pooling layers (multilayers), the sizes of
convolutional masks (3× 3, 5× 5, 7× 7, 9× 9, 11× 11, . . . )
assignments, large-scale training dataset requirements, high
computational complexity for training classifier. In addition,
DP-based methods are required on a graphics processing
unit (GPU) to accelerate the training taskswith a large amount
of training dataset.

Therefore, to simplify the image processing and classifi-
cation tasks, this study establishes a suitable convolutional-
pooling layer and a fully connected network to achieve good
accuracy for image classification in cardiomegaly detection.
We will utilize the combination of a 2D and one-dimensional
(1D) multilayer CNN [14]–[17], [19], [20], [22], consist-
ing of a 2D convolutional layer, flattening layer, 1D con-
volutional layer, pooling layer, and multilayer classifier in
the classification layer. In the first 2D convolutional layer,
we use 2D fractional-order-based convolutional processes
with different scale fractional-order parameters (v ∈ [0, 1])
[23]–[25] to detect the heart’s edge and contour in the

specific region. Along the horizontal and vertical directions,
two fractional-order-based convolutional windows (with a
sliding stride = 1) are used to perform spatial convolu-
tional processes for enhancing the heart’s feature and remov-
ing noises from the original CXR image. With the suitable
fractional-order parameters (v = 0.2 ∼ 0.4) [23]–[25], the
heart feature map can be discriminated as the region of inter-
est (ROI) by the spatial convolutional processes for feature
extraction. Then, in a ROI, with a specific bounding box, the
heart feature map can be easily selected from CXR images.
In the flattening layer, the 2D image is converted from matrix
presentation to vector presentation as a 1D feature signal
by flattening. In the second 1D convolutional layer, a 1D
kernel convolutional window (with a sliding stride = 1) is
subsequently used to deal with the 1D feature signals and
can preliminarily quantify the difference levels in feature
signals [26]; hence, these feature signals can be distinguished
to separate normal conditions from cardiomegaly.

In the classification layer, a fully connected network, con-
sisting of an input layer, pattern layer, summation layer,
and output layer [23]–[25], is established as a multilayer
classifier to identify cardiomegaly by mapping the rela-
tionship between input feature patterns and normal con-
dition (CTR < 0.50) or cardiomegaly (CTR≥ 0.50). The
optimization algorithms, such as forward and back propaga-
tion (FBP) algorithm [27], [28] and gradient descent algo-
rithm, can be performed in parallel to adjust the network
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FIGURE 3. Architecture of the proposed novel CNN-based classifier combining 2D and 1D convolutional-neural-network-based classifier for
cardiomegaly screening.

parameters in the preceding layer from an output layer
to hidden layers. The FBP algorithm has been applied in
feed-forward multilayer perceptrons. However, FBP algo-
rithm will incrementally optimize network’s overall param-
eters, including network-connected weights and neuron’s
biases. The change magnitude with error backpropagation in
network parameter adjustment is iteratively updated, result-
ing in a slow convergence speed and great volatility, making
it easy to fall into a local optimum in the training stage [30].
In this study, the gradient descent algorithm [23]–[25] uses
the gradient values to refine the optimal network param-
eter with iteration processes to increase the classification
accuracy. We can select an appropriate learning rate to
speed up classifier’s training processes, and then the conver-
gence speed is also increased. In experimental validations,
CXR images are enrolled from the NIH Clinical Center’s
CXR database [2], [13]. As shown in Figure 1, the labeled
‘‘No Finding’’ and ‘‘Cardiomegaly’’ images are divided into
training and testing datasets to train the proposed classifier
in the training stage and validate classifier’s feasibility in
the recalling stage. Using cross-validation, the experimental
results indicated the classification efficiency for automatic
cardiomegaly screening on 2D PA CXR images.

The remainder of this study is organized as follows:
Section II describes the methodology, including the exper-

imental setup, CXR image preprocessing, and combining 2D
and 1D CNN-based (Novel CNN-based) classifier. Sections
III and IV present the feasibility tests and experiment results
for clinical applications, and the conclusions, respectively.

II. METHODOLOGY
A. EXPERIMENTAL SETUP
The NIH CXR dataset comprised 112,120 PA X-ray images
with disease labels from 30,805 patients (which are collected
from 1992 to 2015) [2], [13], which are collected from text

radiological reports using natural language processing and
are stored in hospitals’ picture archiving and communication
systems. This medical image database shows common tho-
racic diseases, which can be detected and located with mul-
tilabels by validating using artificial intelligence methods.
These disease labels are expected to be > 90% accurate for
supervised learning classification in thorax disease screening.
This dataset contains 14 disease labels, such as pneumonia,
effusion, infiltration, nodule mass, and cardiomegaly, and one
of these labels is cardiomegaly. We will select 200 images
from this medical image database, including 100 images with
cardiomegaly (positive label) and 100 images with normal
condition (no-finding labels). The enlargement of the cardiac
silhouette may be due to cardiomegaly, pericardial effusion,
or anterior mediastinal mass. The cardiothoracic ratio (CTR)
is an aided index to assess the enlargement of the cardiac
silhouette, and CTR can be represented as follows [3]–[9]:

CTR =
MHCD
MHTD

(1)

MHCD = D1 + D2 (2)

where CTR is measured on PA CXR view (as seen in
Figure 1), which is the ratio of MHCD to MHTD, inner
edge of ribs / edge of pleura). A mean index for normal
condition is 0.42 – 0.50; < 0.42 indicates pathologic, and >
0.50 is usually used to identify the abnormal conditions for
indicating > 0.55 as cardiomegaly and 0.50 to 0.55 as mild
cardiomegaly [7], [30], [31]. Hence, CTR can be used as
a threshold value for cardiomegaly evaluation. Then, the
labeled CXR images can be used to train the deep-learning
based CNN as a classifier for separating normal condition
from cardiomegaly.

B. CHEST X-RAY IMAGE PREPROCESSING
The CXR images can be converted from Digital Imaging
and Communication in a medicine format to a tagged image
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file (TIF) format. The TIF is a lossless image format, which
can lower the computation time for automatic CXR image
examinations. Each size of the CXR image is specified as
1,024 (width) × 1,024 (length) pixels, 8 bites / pixel, with
0 – 255 gray-scale values. In addition, image processingmust
speed up the pattern recognition task; thus, we need to reduce
the sizes of X-ray images before feeding images into the mul-
tilayer CNN-based classifier. Hence, we perform rescaling
to downscale images from 1,024 × 1,024 pixels to 420 ×
420 pixels and maintain sufficient image visual details for
indicating heart contours, as shown in the normal condition
(no finding) and cardiomegaly in Figure 2. Then, the 100 ×
200 bounding box (BB) is used to extract the region of
interest (ROI) for obtaining the pathologic information of
cardiomegaly, as shown in the gray-scale feature maps in
Figure 2.

C. COMBINING 2D AND 1D CONVOLUTIONAL PROCESSES
FOR IMAGE ENHANCEMENT AND FEATURE EXTRACTION
In dealing with the 2D CXR image and increasing the
classification accuracy, we aim to use 2D and 1D
convolutional-pooling processes for image enhancement and
feature extraction. In 2D spatial convolutional processes (as
seen in Figure 3), two fractional-order convolution (FOC)
masks are used to process 2D CXR images and extract
low-level features, such as heart’s edges and corners. Each
fractional-order mask is moved with a stride of 1 (stride= 1)
and with zero padding in the horizontal and vertical direc-
tions, which can be set as a 3 × 3 sliding window with
different fractional-order parameters, v ∈ [0, 1], to perform
the operations of convolutional weights and the general form
of the FOC, which can be presented as follows [23]–[25]:

FOCIxy = FOC(Ixy,M , v)T (3)

where FOC(•) is the fractional-order operator; Ixy, Ixy ∈ [0,
255] is the pixel value at location (x, y) in a 2D CXR image,
where the image dimension is calculated as n × n, x = 1, 2,
3, . . . , n, and y = 1, 2, 3, . . . , n;FOCIxy is themapping value at
location (x, y); v is the fractional-order parameter. Moreover,
based on the Grümwald–Letnikov theory [25], [31], [32],
M is the 3 × 3 fractional-order mask, and the mask matrix
can be represented as follows:

Mx =

 0
v2 − v

2
0

0 −v 0
0 1 0

 ,My = MT
x =


0 0 0

v2 − v
2
−v 1

0 0 0

 (4)

where Mx and My are the FOC masks in the horizontal and
vertical directions, respectively. Each FOC mask multiples
each element by the corresponding input pixel values, Ixy, and
then obtains an enhanced feature pattern containing spatial
features. The 2D convolution can be performed by a FOC
mask in the x direction and then convolvingwith another FOC
mask in the y direction, which act as two low-pass frequency
filters [10] and then remove the high-spatial-frequency com-
ponents from a CXR image. It serves as a smoothing filter for

edge detection [23]–[25], [32]. The results of the convolution
processes are combined and normalized as follows:

FOCI ∼=
|FOCIxy,x | + |FOCIxy,y|

255
(5)

where FOCIxy,x and FOCIxy,y are the convolution results in
the horizontal and vertical directions, respectively.

After the first image enhancement, using the 100 ×
200 BB at the specific region, the feature map of a heart
can be extracted from the enhanced CXR image and then
can be flattened (FLAT) from a matrix presentation, FOCI
(image: 100 × 200), to a vector presentation, FLATIx (sig-
nal: 1 × 20,000). Then, 1D convolutional operator is used
to perform the second image enhancement process, and
X [i] = FLATIx[i] ∗H [j] (symbol ‘‘∗’’ is the convolution
operator) can be presented in a discrete–time convolutional
form [26]:

X [i] =
M−1∑
j=0

H [j]FLATIx[i− j] (6)

H [j] = exp[
−1
2

(
j− 1
σ

)2] (7)

where X [i] is a 1D convolution summation with sampling
point, i = 0, 1, 2, . . . , N− 1 (the number of sampling point,
N = 20,000 in this study), which is an N + M− 1 point
signal running from 0 to N + M− 2; H [j] is a discrete
Gaussian function as a 1D convolution mask with the sliding
stride = 1, which is used to enhance the feature of FLATIx
with sampling point, j = 0, 1, 2, . . . , M− 1 (M = 200 in
this study,M is the data length of the 1D convolution mask).
After 1D convolution processes, the enhanced signal, X , can
be obtained by the summation of all the multiplications of
the first enhanced signal, FLATIx[i − j], and the weighted
values of H [j]; then, pooling is used to reduce feature signal
dimension, which can be expressed as follows:

x[i] = X [40i], i = 1, 2, 3, . . . , n′ (8)

n′ ≈
N +M − 2

40
(9)

where x[i] is the subsampling feature signal obtained with
a sliding stride = 40. Hence, the vector dimension of the
feature signal can be reduced from N +M− 2 to n′ without
zero-padding (n′ ≈ 500). As seen in Figure 4, for feature
maps of normal condition (CTR ≤ 0.50) and cardiomegaly
(CTR> 0.50), the number of feature parameters is reduced
to≈ 25% of the total number of a feature map, and can retain
key feature, which can reduce the computational complexity.
In addition, as shown in Figure 4, feature maps in vector
form (as 1D feature signals) are used to preliminarily quantify
the different levels (red and green feature maps) for further
classification applications.

D. MULTILAYER CLASSIFIER IN CLASSIFICATION LAYER
In the classification layer (as seen in Figure 3), a multilayer
connected network, consisting of an input layer, a pattern
layer, a summation layer, and an output layer, is used to
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FIGURE 4. Feature maps for normal condition (CTR ≤ 0.50) and cardiomegaly (CTR > 0.50) as representations in matrix forms and vector forms.

establish a classifier with a feeding feature signal for further
cardiomegaly screening. The pattern layer can map the 1D
feature signal and output into a high-dimension space by
using a linear combiner. Hence, the output of the pattern layer
can be represented as follows:

yk (x) =
K∑
k=1

wkigk (xi), i = 1, 2, 3, . . . , n′ (10)

gk (xi) = exp[−
K∑
k=1

(xi − wki)2

2σ 2
k

] (11)

where wki is the network-weighted values between the input
layer and pattern layer, as a matrix W = [wki]K×n′(n′ =
500), which can be set by usingK× 500 input training feature
signals. Classifier’s output can be normalized as follows:

yj =

K∑
k=1

wkjyk (x)

K∑
k=1

gk (rk )

=

K∑
k=1

wkju, u =
yk (x)

K∑
k=1

gk (rk )

(12)

where Y (k) = [y1(k), y2(k), 1] is the network-weighted values
between the pattern layer and summation layer, which can be
set by K× 3 output training patterns, encoded as (1) Normal
Condition: [1, 0, 1] and (2) Cardiomegaly: [0, 1, 1].
In training the classifier, identifying the smoothing param-

eter is required, σk , σ = σ1 = . . . = σk = . . . = σK ,
to minimize the function of mean squared error (MSE) for
multiclass classification:

MSE =
1
K

K∑
k=1

(tj − yj)2 ≤ ε (13)

where tj is the jth desired target outputs referring to the input
signals in the training dataset; T = [t1, t2] for multiple
classes, and ε ∈ (0, 1) is a tolerance error. The gradient
descent method is used to adjust the optimal parameter, σopt ,
using the iteration computations [25], [26], [32], and the
gradient values can be computed as follows:

∇ =
∂MSE
∂σ

≈ (tj − yj)(
∂sj
∂σ
− yj

∂gk
∂σ

gk
) (14)
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FIGURE 5. Distributions and statistics of normal condition and
cardiomegaly for 100 enrolled subjects.

∂sj
∂σ
= 2(

K∑
k=1

wkigk )(
(xi − wki)2

2σ 3 ) (15)

∂gk
∂σ
= 2(

K∑
k=1

gk )(
(xi − wki)2

2σ 3 ) (16)

Hence, the optimal parameter, σopt , can be refined using the
iteration computation:

σ (p+ 1) = σ (p)− η∇ (17)

where η is the learning rate, 0 < η ≤ 1; p is the number of
iteration computations, p = 0, 1, 2, 3, . . . , pmax , and pmax is
the maximum iteration number. The optimal parameter, σopt ,
can be used to minimize the function ofMSE.

III. EXPERIMENTAL RESULTS AND DISCUSSION
TheNIHCXR image dataset [2], [13] was used to validate the
intended medical purpose and evaluate the proposed combin-
ing 2D and 1D CNN-based classifier for two-class classifica-
tion. Each enrolled image was resized from 1,024 × 1,024
pixels to 420 × 420 pixels (96 dpi, with a bit depth of
32 bits), which were converted from digital imaging and
communication in a medicine format to a tagged image
file (TIF) format. The TIF format is a lossless image that
could lower the computation time [24]. Figure 5 shows the
distributions and statistics of normal condition (CTR≤ 0.50)
and cardiomegaly (CTR>0.50) for 100 enrolled subjects.
Given a specific BB with 100 × 200 pixels, feature maps
could be screenshot from the 100 CXR images and then
could be used to train the proposed classifier. In an automatic
cardiomegaly screening design (as seen in Figure 6), four
processes were identified: (1) CXR image enhancement using
2D spatial fractional-order convolutional processes, (2) fea-
ture map extraction (ROI), (3) 1D convolutional pooling,
and (4) cardiomegaly screening with the combination of 2D
and 1D CNN-based classifier. The proposed digital image
process and classifier algorithms were implemented on a
tablet PC using a high-level graphical programming language

in LabVIEW and MATLAB software (NITM, Austin, TX,
USA), and the GPU (NVIDIA R©GeForce R©RTXTM2080 Ti,
1755 MHz, 11 GB GDDR6) was used to speed up the exe-
cuted time for digital image processing and pattern recog-
nition tasks. Table 1 shows the related data of the proposed
multilayer classifier, including its layer functions, manners,
and feature maps. The feasibility study was validated as
described in detail in the subsequent sections.

A. FEASIBILITY TESTS FOR THE PROPOSED MULTILAYER
CLASSIFIER
For the 200 enrolled subjects from the NIH CXR image
database, we extracted 200 feature maps using the 2D
convolutional process and 1D convolutional pooling, includ-
ing 100 normal map and 100 abnormal maps for car-
diomegaly. In this study, we randomly selected 100 trained
feature maps to train the multilayer classifier in the learn-
ing stage. Then, using 100 pairs of input–output feature
maps, we established a fully connected topology network,
consisting of 500 input nodes, 100 pattern nodes, three
summation nodes, and two output nodes in the classifica-
tion layer (as seen in Figure 3 and Table 1). In the lit-
erature [23]–[25], the 3 × 3 fractional-order convolutional
mask using fractional-order parameters v = 0.20 − 0.40,
(v = 0.30 was selected) could yield promising results for
image enhancement and remove noise [23]–[25], as shown
in Figure 7. Hence, the heart’s edge and contour could be
identified and then easily selected from a CXR image. Then,
in the feature extraction layer, 1D convolutional pooling
was used to extract the feature patterns in vector form and
reduce the feature parameters, thereby addressing overfitting
in the learning stage. The trained feature maps (as shown
in Figure 4) were fed into the classifier, and the convergent
condition was set as the tolerance value, ε ≤ 10−2, and
the initial condition, that is, σ0 = 1.0000. Furthermore, the
gradient descent method was used to adjust the smoothing
parameter in the pattern layer to minimize the MSE func-
tion using the iteration computations. Figures 8(a) and 8(b)
show the training history curves for the proposed classifier,
as optimal parameters and MSEs versus iteration numbers,
respectively. Using different learning rates, η = 0.3 − 0.6,
and the gradient descent method required< 20 iterative com-
putations to reach the specific convergent condition. Given
these optimal solutions (Figure 8(b)), the optimal param-
eter, σopt ≈ 0.0.0581, could minimize the MSE function
and increase the classification accuracy in the learning stage
(100% accuracy). The overall iteration computations reached
an average CPU time of 4.8430 s to refine the optimal param-
eter. Hence, the proposed classifier showed feasibility for
automatic cardiomegaly screening using PA CXR images in
clinical applications

B. CROSS-VALIDATION TESTS FOR PROPOSED
MULTILAYER CLASSIFIER
For feasibility tests in clinical applications, the collected
feature maps were divided into two groups, including the
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FIGURE 6. Flowchart of automatic cardiomegaly screening design for clinical applications.

TABLE 1. Related data of the proposed combining 2D and 1D CNN-based multilayer classifier.

FIGURE 7. Image enhancement via 2D spatial convolution with fractional-order parameters, v = 0.2 − 0.8, for CXR image.

trained dataset and untrained dataset, and then the trained
and untrained feature maps were randomly selected to train

the classifier, which was used to validate the classifier by
performing 10-fold cross-validation. As shown in Table 2,
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TABLE 2. Evaluation criteria of the proposed classifier, including precision (%), recall (%), accuracy (%), and F1 score.

FIGURE 8. Training history curves for the proposed multilayer classifier.
(a) Optimal parameters versus iteration numbers with different learning
rates, and (b) mean squared error versus iteration numbers with different
learning rates.

four criteria were used to evaluate the proposed classifier
model, including precision (%), recall (%), accuracy (%),
and F1 score indexes [23], [32]. Accuracy (%) was an index
to measure the percentage of correct classification; thus,
a classifier had been established in the recalling stage. For
screening positive cases, we could observe that the recall (%)
index, which indicated the number of positive cases, could
be predicted. The precision (%) index was also known as the
positive predictive value (PPV), which indicated the number
of positive cases (including the correct percentage). The F1
score index was a harmonic mean of the precision (%) and
recall (%) (combining the precision and recall into a single
screening metric), which indicated that the F1 score provided
equal weight to precision and recall, including the errors of
false positives and false negatives; a classifier could obtain a
high F1 score, whereas both precision (%) and recall (%) had
high values.

After training the classifier using 100 trained feature maps,
100 untrained feature maps, including 50 for normal subjects
and 50 for cardiomegaly subjects, were randomly selected
from the dataset to validate the classifier. Using the same
validation process, 10-fold cross-validations were performed;
the experimental results of the proposed classifier are shown
in Table 3, with an average precision (%) of 97.60% and
an average recall (%) of 99.20% for predicted abnormality
and correctly identified abnormality (true positive [TP] for
CTR> 0.50), respectively, an average accuracy of 98.40% for
correctly identified normal and cardiomegaly, and an average
F1 score of 0.9838 for the proposed classifier performance
on classification tasks, which was greater than 0.9000, indi-
cating the potential application of the classification model.
In addition, recall (%) as an index of PPV, was greater than
80% based on the predictive performance of the classifier.
Hence, we could recommend the combination of 2D and 1D
CNN-based classifier to automatically screen the presence of
cardiomegaly on PA CXR images in clinical applications.

C. DISCUSSION
Experimental tests showed promising results for the proposed
classifier in automatic cardiomegaly screening using PACXR
images. In addition, the 10-fold cross-validations were per-
formed, as seen in Table 3, and the manual method with CTR
estimation (using equations (1) and (2)) in 100 CXR images
had good reproducibility and accuracy, with average CTRs
of 0.4377 and 0.6307 for identified normal condition and
cardiomegaly, respectively. Using the related classifier’s data
in Table 4, we also established a multilayer 2D CNN-based
classifier consisting of a fractional-order convolutional layer
with two convolution masks (Stride = 1), a kernel convolu-
tional layer with 16 kernel convolution masks (Stride = 1),
16 maximum pooling masks (Stride = 2) in a pooling layer,
a flattening layer, and a fully connecting classification net-
work (multi-layer perceptron). The fully connecting network
consisted of an input layer (1, 250 nodes), two hidden layers
(168 and 64 nodes), and an output layer (2 nodes). The 2D
CNN-based classifierwas implemented using the open source
Tensorflow platform (Version 1.9.0) in Python [33], [34].
The same trained and untrained feature maps with 10-fold
cross-validation obtained an average precision of 97.80%,
an average recall of 98.20% for predicting the possible car-
diomegaly and correctly identifying TP, an average accuracy
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TABLE 3. Experimental results of 10-fold cross validation for the proposed multilayer classifier.

of 98.00% for correctly identifying normal condition and
cardiomegaly, and an average F1 score of 0.9799 for verifying
the classifier performance. The proposed multilayer classifier
also performed better than the multilayer 2D CNN-based
classifier, as shown by the experimental results in Table 4.
However, the multilayer 2D CNN required more feature
parameters for trained the classifier and then increased high
computational complexity with the iteration computations.
In addition, the GPU needed to accelerate the training process
and parallelize computations with the multi convolution and
pooling processes. It took an average CPU time of < 300 s
for training the classifier. Hence, under the same multilayer
architecture, the performance of the proposedmultilayer clas-
sifier was superior to that of the 2D CNN-based classifier.
In specific, the proposed multilayer classifier had less feature
parameter requirement in the 2D convolutional layer, simpler
linear weighted sums for the 1D convolutional process to deal
with the 1D feature signals, and simpler classifier implement
process compared with the 2D CNN-based classifier.

In clinical diagnosis, clinicians and radiologists could
rapidly use visual inspection to identify the normality or
abnormality on PA CXR images and then compute the CTR
indexes. However, manual inspection was time consuming,
and the diagnostic results were dependent on readers’ inter-
pretations and experiences. The proposed combination of
2D and 1D CNN-based classifier’s diagnostic tests took
less than 2 s CPU time in dealing with 100 CXR images.
Hence, automatic screening could address the insufficient
human resources for manual screening and allow clini-
cians and radiologists to focus on follow-up medical strate-
gies. Some advantages of the proposed classifier are shown
below:

• The feature maps could be enhanced in 2D spatial con-
volutional processes by identifying the heart’s edge and
contour and removing noise;

• The featuremaps in vector form (as feature signals) were
used to quantify the different levels for separating the
normal condition from cardiomegaly.

• The dimension of feature patterns could be reduced to
improve the overfitting problems;

• The multilayer classifier could be easily established by
the trained dataset with the key input-output paired fea-
ture maps and easily implemented using high-level pro-
gramming languages (Language C/C++ or MATLAB
software).

In addition, the proposed classifier had a limitation in iden-
tifying heart enlargement or myocardial hypertrophy. The
determination of the heart size, such as four chambers (ventri-
cles and atriums), was an important measurement parameter
to evaluate potential cardiomegaly. Cardiac echocardiogra-
phy (CECHO), cardiac magnetic resonance imaging (CMRI),
and cardiac computed tomography (CCT) [35]–[38] were
superior to chest radiography, which provided good imaging
to assess the heart chamber size and determine the heart
chamber. The results of CECHO showed promising sensi-
tivity and specificity in determining cardiac chamber sizes
[36], [39], as the gold standard, and high correlation between
CTR indexes and heart sizes. Compared with the expensive
manners, such as CMRI and CCT, this study recommended
that the CXR images were easy and cheap; thus, it could
directly estimate the CIR index for heart size measurement
in preliminary examination during first-line examination;
hence, during automatic screening tool verification, the larger
the F1 score (> 95%), the proposed multilayer classifier had
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TABLE 4. Related data the multilayer 2D CNN-based classifier and experimental results of 10-fold cross validation.

the better performance in separating the normal condition
from cardiomegaly and the greater its authenticity for an
informed decision.

IV. CONCLUSION
We developed a combining 2D and 1D CNN-based classifier
with CXR images to identify the disease present in normal
condition or cardiomegaly during first-line examination, and
the performance of the proposed classifier was also validated.
In the convolutional layer, the sequence of 2D fractional-
order and 1D kernel convolutional processes was used to
enhance the image and remove unwanted noise, which could
help to extract the 2D feature maps with specific BB and
to transform into 1D feature signals for further classification
tasks. Flattening and 1D pooling processes could reduce the
dimension of the feature map, leading to low computational
operations for real-time digital image processes and pat-
tern recognition tasks. Using 10-fold cross-validation, ran-
domly untrained feature map was fed into the classifier,
and its pattern recognition scheme showed promising results
in separating the normal condition from the cardiomegaly,
as the average recall, average precision, average accuracy,
and average F1 score were greater than 95% for screen-
ing abnormalities. The experimental results indicated that
the training model, computational efficiency, and automatic
screening were better than the manual method in clinical
application. Training and examining the classifier and CXR
images would take less than 5.0 s. Using image examinations,
such as CECHO, CMRI, and CCT [35]–[38], the four cham-
bers of the heart could be accurately estimated to evaluate
the enlarged heart or myocardial hypertrophy (left ventricular
hypertrophy). Considering the absence of pain or immediate
risk, the above imaging manners were a potential way to
measure heart size, muscle thickness, and pumping function
to discover cardiomegaly, such as left and right ventricular
hypertrophy. Routine chest radiography could also rapidly

inspect dilated cardiomyopathy, which might increase heart
size on a CXR image, such as right/left atrial shadow (atrial
enlargement) or right / left ventricular hypertrophy (ventric-
ular enlargement) [40], [41]. Therefore, the proposed mul-
tilayer classifier could replace the manual manner for tasks
requiring specific expertise and experience (clinicians and
radiologists) for medical image examinations. In addition, the
trained dataset could be divided into four classes, including
normal condition (CTR ≤ 0.50), mild cardiomegaly (0.50 <
CTR ≤ 0.55), moderate cardiomegaly (0.55 < CTR ≤ 0.60)
[7], [8], and severe cardiomegaly to train the proposed clas-
sifier, which could maintain its intended medical purpose
in real-world application and could also raise its indication
in clinical applications as a computer-aided decision-making
tool.
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ABBREVIATIONS
CXR Chest X-Ray
CTR Cardio-Thoracic Ratio
MHCD Maximal Horizontal Cardiac Diameter
MHTD Maximal Horizontal Thoracic Diameter
DenseNet Dense Convolutional Network
ResNet Residual Network
FC-ResNets Fully Convolutional Residual Network
U-Net Fully Convolutional Network
PA Posteroanterior
CT Computed Tomography
NIH National Institutes of Health
CNN Convolutional Neural Network
FBP Forward and Back Propagation
BB Bounding Box
ROI Region of Interest
FOC Fractional-Order Convolution
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FLAT Flattened
PPV Positive Predictive Value
CECHO Cardiac Echocardiography
CMRI Cardiac Magnetic Resonance Imaging
CCT Cardiac Computed Tomography
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