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ABSTRACT Forecasting crime is complex since several complicated aspects contribute to a crime. Predict-
ing crime becomes more challenging because of the enormous number of everyday crime episodes in varied
places. Though there are many established machine learning and deep learning techniques, law enforcement
officers face challenges in preventing crime from occurring promptly. An efficient way of law enforcement
is required to lower the crime rates. This paper proposed an effective multi-module method for predicting
crime using deep learning techniques. Our proposed method has two modules: Feature Level Fusion and
Decision Level Fusion. The first module employs temporal-based Attention LSTM, Spatio-Temporal based
Stacked Bidirectional LSTM, and Fusion model. The Fusion model leverages the prior two models’ training
data. The temporal-based model is the source model for the transfer learning technique on the dataset of
different cities. By applying this technique, the training time of the model is reduced. In the second module,
the Spatio-Temporal based Attention-LSTM, Stacked Bidirectional LSTM, and the result of feature-level
fusion module are used to get the final prediction. The proposed architecture predicts the next hour based on
the data from the past twenty-four hours. The estimated number of crimes in any category for a particular
location can be obtained as the output of our suggested model. It also enables law enforcement to get insight
into future crime occurrences based on category, time, and location. This work concentrated mainly on the
USA’s San Francisco and Chicago cities for the experimental analysis. For the San Francisco and Chicago
datasets, our model has the Mean Absolute Error of 0.008, 0.02, the Coefficient of Determination of 0.95 and
0.94, and the Symmetric Mean Absolute Percentage Error of 1.03% and 0.6%, respectively. The proposed
model outperforms numerous other well-known models.

INDEX TERMS Attention LSTM, crime prediction, crime trend, fusion model, multi-module deep learning
model, multivariate time series, Stacked Bidirectional LSTM.

I. INTRODUCTION

Analyzing time-series data to extract meaningful statistics
and other characteristics is the main target of Time Series
Analysis. This information highly dominates in predicting
future values based on previously observed data. Due to
continuous urbanization and growing populations, violent
crimes and accidents are on the rise. Extracting information
and analyzing the hidden patterns, the co-relation between
these vast amounts of data through Big Data Analysis (BDA)
is one of the trending approaches nowadays [1], [2].
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BDA can help revolutionize how authorities maintain and
protect people from crime. As the population grows, crime
activity patterns become more varied and complex. It requires
new approaches to understand and tackle it. Finding the
pattern, predicting the future crimes, and matching these
patterns with newly available data through data analy-
sis are the main strategies to tackle the crime problem.
Thus, predicting the likelihood of dealing with crime at a
specific time or place will be convenient through the
time-series-based BDA. The system can predict the possi-
bility by looking for precipitating factors such as geograph-
ical location, economic condition, time of the year, and
environment [3], [4].
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FIGURE 1. An abstract diagram of deep learning based proposed method (Model A represents ATTN-LSTM model for temporal feature, Model B
represents St-Bi-LSTM model, and Model C represents ATTN-LSTM model for Spatio-temporal features).

Crime is one of the most predominant and alarming adver-
sities in our society, and its prevention is a vital task [4].
Crime analysis and prediction is a systematic approach for
analyzing and identifying different patterns, relations, and
trends in crime and disorder [2]. Crime occurrences are com-
mon all over the world, mainly in cities. It hinders funda-
mental human rights and brings collapse to the structure of
society. It is not always possible for the law enforcers to
find out in which areas the crime rate is high at a specific
time manually. Because the motives of occurring crime are
dynamic and there is no proper utilization of existing crime
data. Suppose an automated system having a higher accuracy
of prediction is available to the law enforcers. In this case,
they can take the necessary precautions to decrease crime to
a specific rate. Some commonly used techniques to predict
and forecast crime data are: logistic regression, support vector
machine (SVM), Naive Bayes, k-nearest neighbors (KNN),
decision tree, multilayer perceptron (MLP), random forest,
and eXtreme Gradient Boosting (XGBoost), time series anal-
ysis using LSTM and autoregressive integrated moving aver-
age (ARIMA) models. In recent years, deep-learning (DL)
based models are also used for forecasting purposes, such
as- crime forecasting [1], [5], [9], air quality forecasting [6],
wind speed forecasting [7], etc. Safat et al. [5] conducted
an experiment employing all of the models that can predict
more than 35 types of crime and provided a yearlong crime
prediction. Feng et al. [1] did such a study using prophet
model, neural network, and LSTM along with data visual-
ization. This model works better only with the data from
the previous three years. Sometimes, the LSTM arrangement
makes it impossible for the memory cell to retain informa-
tion over numerous time steps [8]. However, the model of
Feng et al. needs more training data and data mining tech-
niques to understand crime patterns better. Data mining is one
of the fundamental techniques of BDA. It is innovative and
growing research and helps deduce useful information and
hidden patterns from data. It not only helps us in discovering
new knowledge but also in enhancing our mastery of known
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ones [2]. Rayhan et al. [9] performed a Spatio-temporal
Attention-based study to predict crime of top 4 categories.
Their model cannot predict categories having a small amount
of data.

Since the prediction of crime can assist authorities in
maintaining social order, a deep learning-based multi-module
generic method for predicting crime in various cities is pre-
sented. This study forecasts the number of crimes in various
categories in several districts for each city. It also analyzes
how the trends impact crime occurrence. Locations were
considered to picture the crime hot spots better. We pro-
cessed the characteristics to obtain the required form and
then chose the characteristics based on the correlation. After
that, our proposed model was trained and evaluated. There
are three types of information in the dataset: categorical,
temporal, and spatial. We developed the Attention-LSTM
(ATTN-LSTM) model to process the categorical-temporal
data and the Stacked Bidirectional LSTM (St-Bi-LSTM)
model to process the spatial information. Predicting crime
with the same model for multiple cities may result in a
significant loss since the attributes of one location may not
have the same quantity of unique data as another. Hence,
feature level fusion (FLF) and decision level fusion (DLF)
modules were applied to overcome all the drawbacks of the
current state-of-the-art. Our goal throughout the study was to
predict crime more effectively than previous methodologies
employing time and particular location. Figure 1 shows an
abstract depiction of this model. Our contributions to this
work are the following:

« We proposed a robust multi-module approach for deal-
ing with category, geographical, and temporal infor-
mation. A method for combining these characteristics
into a single model utilizing two degrees of fusion was
developed.

o LSTM cells were fabricated with Swish activation to
deal with the vanishing gradient issue and negative
inputs in backward propagation to emphasize the utiliza-
tion of LSTM.
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o A weighted system was implemented to determine the
loss for the DLF module. The calculation is based on
the inputs of this module.

o A method for combining three models was devised
in DLF. We utilized the majority vote approach and
all-pairs shortest distance to forecast each crime cate-
gory based on the outputs of the three models. Hence,
the suggested model predicted crime with minimal
inaccuracy.

Our code is uploaded at https://github.com/

NowshinTasnim/Spatio_Temporal_Crime_Prediction.git.

The remaining portions of this paper are organized as

follows. We reviewed our study on similar works in Section II
and analyzed the data in Section III. The motivation of
this work is provided in Section IV. An explanation of
the developed architecture is given in Section V, and the
working procedure for this study is discussed in Section VI.
In Section VII, the results of the suggested work are analyzed.
Finally, the paper is concluded in Section VIII.

Il. LITERATURE REVIEW

With the ever-changing society, crime patterns are also chang-
ing. Moreover, the incidence of crime is increasing. The
traditional approaches are mostly out of date in this regard.
Many deep learning-based supervised, semi-supervised, and
unsupervised techniques are used to predict crimes and check
the trends. The integration of modern technology into crime
prediction helps the authorities take necessary precautions.

A. BASELINE NETWORKS

Feed-forward ANN or multi-layer perceptron is most suc-
cessful in time-series forecasting as it does not require
the data distribution beforehand [10]. Using DL in time-
series forecasting, the temporal dependence and structure
can be easily learned [11]. Integrating Recurrent neural net-
work (RNN) configuration in deep learning has changed the
way of processing data in the case of forward-dependency
networks. Moreover, this configuration can solve many real-
world problems. LSTM can process an entire sequence,
not only a single data point. So, while working with time-
series data, the LSTM network is quite useful [5], [12]-[14].
Schuster et al. [15] used the concept of LSTM and improved
it by coming up with the idea of Bidirectional LSTM
(Bi-LSTM). The model can better understand the context
by including feed-forward and feed-backward networks.
Said et al. [16] and Kim et al. [17] showed that the use of
Bi-LSTM enables one to get the correlations and changed
values of variables in the series simultaneously during the
processing of multivariate time series data. The variation of
each time-series data plays an important role in forecasting.
Using Bi-LSTM, we can analyze these variations.

Said ef al. [16] described the use of stacking several
Bi-LSTM layers in multivariate time-series data in case of
prediction. By using such layers, the model can learn about
spatial-temporal features from the dataset and predict the
next timestep more accurately [18], [19]. Sometimes, these
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stacked layers reduce unnecessary information while pro-
cessing the series of data. St-Bi-LSTM performed better in
predicting the future from the sequence instead of using
several LSTM layers [20]. So far, Bi-LSTM has performed
outstandingly in diverse fields that include time-series-based
forecast, COVID-19 case prediction, wind power forecast,
and many more [16], [17], [21].

A more appropriate way to reduce redundant data while
processing is to use an Attention-based model. It takes the rel-
evant parts of the input data and removes the redundant data
while performing a task. An attention-based model works
well for sequence modeling as the distance between the input
and output layers does not affect the modeling dependen-
cies [22], [23]. In most contexts, this type of mechanism
is used with a RNN to create an encoder-decoder based
sequence to sequence architecture [22], [24]-[28]. Though all
the above mechanisms work smoothly for a small sequence,
they are not effective enough for a long one. In such circum-
stances, the self-attention or intra-attention mechanism works
better. This method creates a relationship between several
positions of a single data sequence to represent this single
input. This representation helps in maintaining long-range
dependency [29]. The path length of long-range dependency
is generally the shortest to learn about the sequence eas-
ily [30]. Moreover, the execution of self-attention layers
is faster than the RNN in most cases [29]. Attention and
Self-attention mechanisms are mostly used for computer
vision and natural language processing like speech enhance-
ment, text prediction, and summarising [25], [31]-[34]. Nev-
ertheless, only one approach is not enough for dependent data
of varied features. It requires the fusion of models [35], [36].

B. CRIME PREDICTION AND CLASSIFICATION

BDA has shown tremendous results in criminological aspects
in finding the trends and relationships between data [1].
Feng et al. [1] described how the stateful LSTM and Prophet
models work in crime analysis. They tracked the crimes and
predicted likelihood by following related facts and patterns.
Their model works better with three years of data but cannot
perform similar results for data spanning a longer period of
time.

A Spatio-temporal based RNN was introduced by
Wang et al. [37], [38] to predict the total number of crimes.
This method used a multi-factor crime prediction model
consisting of adaptive hierarchical structured residual con-
volution units and non-convolution models. The layers are
independent of each other in this model. They achieved a
good accuracy but could not detect categories separately.
They also used the internalization technique to address the
resource consumption issue for its deployment in the real
world [37]. However, the spatial data mining model proved
to be an excellent approach to detect crime hot spots [39].

Agarwal et al. [40] and Tayal et al. [41] used the K-means
clustering-based model to show the crime patterns based
on year. It also has the same problem as Spatio based sys-
tem. These clustering models can work only with categories
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TABLE 1. Brief summary of the related works.

Authors Techniques

Crime Dataset

Weakness/Remarks

Feng et al. [1] LSTM and Prophet model

San Francisco, Chicago, and
Philadelphia

Cannot perform well for data more than
three years.

Feng et al. [2] KNN, Naive Bayes,

Random forest, XGBoost

San Francisco, Chicago, and
Philadelphia

Did not correlate with time-based trends.

Rayhan et al. [9] AIST

Chicago,USA

Cannot work with small dataset.

Wang et al. [37], [38] Spatio-temporal based RNN

Los Angeles, USA

Cannot detect categories separately.

Agarwal et al. [40] Kmeans clustering

England and Wales, UK

Cannot work with small dataset.

Tayal et al. [41] Kmeans clustering

India

Cannot perform time-based analysis.

Kumar et al. [42] Naive-Bayes-based model

Cheltenham, UK

Trained with specific categories.

ToppiReddy et al. [43] KNN and Naive Bayes classification

UK

Low accuracy across various categories.

Sivaranjani et al. [44] K-means, Agglomerative, and

Tamilnadu, India

Calculate the exact time of the crime

DBSCAN is not practical.
Pednekar et al. [45] K-means, Agglomerative, and India Calculate the exact time of the crime
DBSCAN is not practical.
TABLE 2. Attributes in dataset.
Crime Data Attributes

Pdld, IncidntNum, Incident Code, Category, Descript, DayOfWeek, Time, PdDistrict, Date, Resolution, Address, X, Y, location,

San Francisco

Neighborhoods information, Supervisor Districts, Fire Prevention Districts, Zip Codes, Fix It Zones, Civic Center Harm Reduction

Project Boundary, CBD, BID and GBD Boundaries as of 2017, Areas of Vulnerability, Central Market Tenderloin Boundary, HSOC

Zones, OWED PublicSpaces, datetime.

Chicago

ID, Case Number, datetime, Block, IUCR, Primary Type, Description, Location Description, Arrest, Domestic, Beat, District, Ward,

Community Area, FBI Code, X Coordinate, Y Coordinate, Year, Updated On, Latitude, Longitude, Location

having more than a certain amount of data and cannot perform
time-based analysis.

Rayhan et al. [9] developed an attention-based deep learn-
ing model capturing the non-linear spatial dependence and
temporal patterns of a particular crime category. The self-
attention network can emphasize the dependencies among
the features and get better results than uniform LSTM in
predicting the time-series-based data. They kept the model’s
fundamental structure interpretable. This model dynamically
establishes a spatial-temporal association for each crime cat-
egory based on prior crime occurrences and repeating crime
trends. The limitation of this work is that the crime categories
must have a large amount of training data.

Kumar et al. [42] proposed a Naive-Bayes-based model
for crime classification. Their method involves combining
the history of some crime occurrences with incident-level
crime data to identify the most likely criminal in a given
incident. It works well for some categories, but the cumulative
accuracy was near 50%. A similar kind of approach was taken
by ToppiReddy et al. [43] for crime classification. They used
the KNN and Naive Bayes classification systems. They took
the day information with the location to know whether a crime
would occur and in which category the crime would occur.

An improved method of crime classification using Clus-
tering approaches was proposed by Sivaranjani et al. [44] and
Pednekar et al. [45]. They used the K-means, Agglomerative,
and DBSCAN clustering techniques to make crime clusters.
Then they merged the information from the three resultant
clusters to predict the class. This approach has high accuracy,
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but calculating the exact time of the crime is an impossible
job.

Gradient boosted decision trees worked better than
KNN, Naive Bayes, and Random Forest Classification for
correlation-based selected features and categories with a large
number of data points. Feng et al. [2] used forecasting meth-
ods to generate data using crime trends of recent years. This
model predicts crime categories for a given time and loca-
tion using tree classification. It performs better than KNN
and Naive Bayesian approaches. They merged the crime
categories having a small amount of data. However, for a
relationship with the trends, time-based analysis is necessary.

Different deep learning models perform better in a given
sector for a specific criterion. However, for crime forecasting,
the success rate of those models has not reached equilibrium.
A summary of the current state-of-art is presented in Table 1.
There is still work to be done to address the deficiencies of
today’s state-of-the-art.

lll. EXPLORATORY DATA ANALYSIS

A. DATASET COLLECTION AND DESCRIPTION

We collected the crime data of San Francisco and Chicago,

respectively, from the San Francisco city-county data por-

tal [46], and the Chicago data portal [47] from 2003 to 2017.
There are 2, 115, 112 crime incidents in San Francisco

and 5, 547, 827 crime incidents in Chicago dataset. However,

we are using data from 2004 to 2017 due to a data deficiency

in 2003. Hence, 1, 970, 039 crime incidents for San Francisco
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FIGURE 2. Total crime in each day over the 14 years.

and 5, 071, 866 crime incidents for Chicago are in our dataset.
The existing attributes are listed in Table 2.

The daily crime occurrence from 2004 to 2017 for San
Francisco and Chicago are shown in Fig. 2. From the figures,
we observe that the two cities’ crime rate changes are not the
same. Moreover, the Chicago dataset shows seasonality. The
crime rate in San Francisco has been almost the same over
the 14 years. However, it is decreasing over the 14 years in
Chicago, which is still higher than in San Francisco. Seasonal
trends in the data impact the whole model in time-series
forecasting. In the case of crime prediction, these kinds of
trends help to understand the pattern and find out the crime
hot spots.

To anticipate crime, we need information from prior
instances, such as the time and location of the crime and
the sort of crime committed. So, for each city, the following
existing features from the dataset were used:

1) Date — Date of the crime occurrence.
2) Time — Timestamp of the crime incident.

VOLUME 10, 2022

3) Categories/Primary type — Type of the crime that took
place.

4) PdDistrict/District — Police Department District name
where the crime took place.

The weather data of San Francisco and Chicago were taken
from Wonder Weather Forecast [48] and used to check the
temperature trends on the Kelvin scale. The publicly available
dataset consists of hourly-based weather information. Hence,
we utilized the average temperature of each hour from this
dataset.

B. ANALYZING THE EXISTING FEATURES

After checking the correlation between features, we chose
features having a higher correlation from the acquired dataset.
The information about year and month from the dates col-
umn of the San Francisco dataset and the datetime column
of the Chicago dataset was retrieved. We visualized the
monthly distribution of crimes during the 14 years using these
extracted data, as shown in Fig. 3. From Fig. 3a, crime data
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distribution can be observed. It is high for January, March, the temperature is high from August to October due to the
May, August-October over the 14 years for San Francisco. summer season.

In May, July, August, and October, the crime rate is high in For the same reason, the temperature in Chicago is high in
Chicago, as shown in Fig. 3b. Generally, in San Francisco, July and August. Hence, there is a possibility that temperature
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plays a role in crime occurrence. We can also see that the
crime rate in San Francisco is high in March and May.
The crime rate in Chicago is high in May and October, but the
temperatures in these months are lower than in the summer
season.

Analyzing the yearly number of crimes per police district
for San Francisco and Chicago from Fig. 4, we can find the
most crime occurring districts. Throughout the 14 years, the
maximum number of crimes occurred in the Southern District
of San Francisco and the district 8 and 11 of Chicago. These
were the hot spots for crime in those years. With those facts,
the deduction is that the environment of a district or area
holds importance in crime occurrence. Thus, while predicting
the crime occurrence, considering the districts as one of the
critical features for the model is necessary. However, many of
the existing models did not consider the space in the feature.

IV. TECHNICAL MOTIVATION

After reviewing the data, inevitable flaws are discovered in
the current models. These flaws aspired us to establish a
generalized model that will perform better than the current
state-of-arts. To do so, we investigated the shortcomings of
these models and presented several improvements.

A. CHUNKING OFF THE UNNECESSARY INSTANCES AND
EMPHASIZE ON RELATED INSTANCES

Feng et al. [1], [2] trained their model using the whole city
as a location. However, designating the region of a city plays
an essential function in controlling crime incidence. In our
work, the input features include the information about the
locations utilizing the police department district for each
city. We needed to implement Bi-LSTM and ATTN-LSTM
in the model to deal more efficiently with the area-based
information.

Our model has a St-Bi-LSTM layer to train the informa-
tion of the police departments of the cities. It also has an
Attention-based sub-model to learn the temporal aspects of
the cities. Bidirectional RNN has two layers side-by-side.
The second layer is a replica of the network’s first recurrent
layer. In the first layer, the input sequence is the provided
input. The input sequence in the second layer is the reverse
of the provided input. Even if the input sequence is very
long, the chances of losing any information from the whole
input become pretty minimal here. For RNN, the depth of the
network is more important than the memory cells of a layer.
The depth of our model is boosted by stacking two Bi-LSTM
layers. By chunking off some unnecessary observed instances
of the first layer in the second layer, this model helps the net-
work to predict better than the network having one Bi-LSTM
layer with the same number of memory cells. Bi-LSTM
also solves the vanishing and exploding gradient problem
that vanilla RNN has. Furthermore, it provides considerably
cleaner back-propagation compared to vanilla RNN.

The attention model overcomes the limitations of encoder-
decoder-based approaches. This model examines the relation-
ships between the nodes and maintains the nodes that play a
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significant role in creating the output. As a result, the model
selects the appropriate nodes for training and minimizes the
input size of the next layer [29]. It is important to keep only
the relevant instances in sequential data training and remove
unnecessary observed instances to produce a better output.

B. ACCELERATING CONVERGENCE IN LEARNING
PROCESS USING TRANSFER LEARNING

Rayhan et al. [9], Feng et al. [1], [2], Wang et al. [37], [38]
made remarkable progress in crime analysis and forecasting.
However, their models require a longer compilation time for
the large datasets. Furthermore, if the dataset contains data
spanning more than a decade, these models will not perform
well. Each city in our collection had a massive quantity of
data. To address the compilation time issue, employing the
transfer learning technique to converge a learning process is
a smart option. In the case of solving a new problem, a model
can use the previously trained model knowledge if the two
are comparable. This action is called “Transfer learning™.
If there is not a decent amount of data to train with or the
training time is excessive, transfer learning technology can
help solve these problems. It makes the learning process faster
and increases accuracy [49].

For example, Dsoyrce and Dryrge; are two different domains
having learning tasks Tsource and T7yger, respectively, where
Tsource # Trurger- However, the knowledge of the source
model is similar to the target model’s. Hence, one can use
this knowledge of the first model for the second model by
transferring it (Fig. 5). Here, both of the models produce
different outputs. In this work, the temporal features of the
Chicago dataset are learned by applying the knowledge from
the ATTN-LSTM model, which has only the temporal fea-
tures of San Francisco. It reduced the training time.

Tsource
| Dsource P Modell |—> > Ouputsyse
Transfer
Knowledge | Trrger
(e - T~y

FIGURE 5. Transfer learning technique.

C. GENERALIZING THE MODEL

Some developed models used FLF to get generalized per-
formance. However, to get a better result, DLF is also
required [2], [9], [38]. Our model employed two levels of
fusion. The Fusion approach can transform weak learners
who are marginally better than a random guess into strong,
aggregated learners who can make correct predictions. Fur-
thermore, the generalization power is far greater than that
of base learners [50]. In our work, the proposed model is
a generalized model that can predict crime in any location
without losing its efficacy. Different cities have different
values for a single feature. Our model deals with these various
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.. h
prediction result. o !
V. PROPOSED ARCHITECTURE
. . Cq. C
DL approaches work phenomenally for time-series-based tl X + i -

forecasting. Taking inspiration from our study, we developed
a DL-based architecture for predicting crime. Fig. 6 depicts
the proposed architecture. The whole architecture is divided
into four sub-models. The proposed work uses the St-Bi-
LSTM model, the ATTN-LSTM model, and two levels of
Fusion models. This novel architecture can overcome the
issues of the current state-of-art.

In our work, the LSTM cells of the Bi-LSTM layers and
ATTN-LSTM layers are designed using the Swish activation
function to avoid particular concerns with our dataset.

1) LSTM CELL

LSTM cells are a special kind of RNN cell with the capability
of handling long-term dependencies. It has three gates- forget
gate (f;), input gate(i;), and output gate(o;). The designed
LSTM cell looks like Fig. 7. The equations are the following:

i o

f _ o W (htl)
o o Xt

8
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FIGURE 7. LSTM cell.

G=f@®c_1+idg
hy = o ® Swish(c;) (1)
2) SWISH ACTIVATION

Swish is a smooth, non-monolithic function that matches or

outperforms ReLU in different machine learning problems.
It is derived from SILU activation. The equation for Swish is
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FIGURE 8. St-Bi-LSTM.
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FIGURE 9. ATTN-LSTM.

the following:

14

SWiSh(V) = m

@)
where, B is a trainable parameter. Swish can be termed as v
time sigmoid Bv, and this function does not have a vanishing
gradient problem. Also, ReLU produces 0 output for nega-
tive inputs. It cannot be back-propagated where Swish can
partially handle this problem.

The description of the sub-models is given in the
following.

A. STACKED BIDIRECTIONAL LONG SHORT-TERM
MEMORY (ST-BI-LSTM)

The St-Bi-LSTM model is designed with two TimeDis-
tributed wrapped Dense layers for training the geographical,
temporal, and derived features of the cities.

A TimeDistributed wrapper predicts one value per timestep
for the whole input sequence. It allows applying the men-
tioned layer to each part of a sequence. So, this requires
that the Bi-LSTM hidden layer return a sequence of val-
ues (one per timestep) rather than a single value for the
whole input sequence. Two Dense layers with a TimeDis-
tributed Wrapper minimize the size of the input of those
layers and consider each part of the sequence while doing
so. Finally, we got the desired sequence of outputs for
this model. The architecture of this model can be seen in
Fig. 8. Some dominant parameters for this model are given
in Table 3.

VOLUME 10, 2022

l 24 x 128

56

¢ 24x12
Bi-LSTM

24 x 64

i 24 x 128

Dense
kA J
TimeDistributed

TimeDistributed

24x11

Output

Dense

Decoder

Attn-L.STM

v 24x128
24 x 64

Y

Dense

Tmmestributed

Dense

24x11

Qutput

TABLE 3. St-Bi-LSTM model parameters.

Hyper Parameter

Value

Number of features

19

Number of units per layer

Bi-LSTM - 128

Bi-LSTM - 64

TimeDistributedDense - 64

TimeDistributedDense - 11

Early stopping

Based on Validation loss

Patience = 10

Restores best weights

Optimizer

Adam

Activation

Swish

(ATTN-LSTM)

In Fig. 9, the architecture for an encoder-decoder model with
ATTN-LSTM is shown. Here, nf indicates the number of
features. The value of nf is 19 for Spatio-temporal features
and 17 for the architecture with only the categorical-temporal
feature. At first, the features are given as input to an LSTM

B. ATTENTION BASED LONG SHORT-TERM MEMORY

layer, which serves as an encoder.

Then the encoded output is passed to the multiplicative
self Attn-LSTM layer to decode the data sequence. A mul-
tiplicative self-sequential-attention layer performs better for
sequential data input than a vanilla attention layer. First, the
input sequence is taken and matched as a row and column of
a matrix. Then the hidden states are calculated. The hidden
state vectors (/) are the sequence of specific features of the
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input. After that, the context vector (/) is computed using
the weighted sum of the 4 vectors. The attention vector (e)
gives the output score of the feed-forward neural network.
Applying Softmax to calculate the weights (a), the scores of
the attention vector will be distributed fairly. The equations
for the multiplicative self-attention layer are following:

a; = Softmax(e;) 3)
er.y = Swish(xI Waxy + by) “)
ll‘ = Zat,t/xt, (5)

t/
by = Swish(x] Wy +xE W, + by) (©)

where, a holds the attention weights, e is the attention vector,
[ is the context vector, and / holds the scores.

The decoded output is passed to a dense layer with a
TimeDistributed wrapper so that each part of the sequence
is processed separately. This layer is followed by another
dense layer to downstream the output sequence. The main
parameters for this model are given in Table 4.

TABLE 4. ATTN-LSTM model parameters.

Hyper Parameter Value ‘

19 (For Spatio-temporal analysis),
17 (For Temporal analysis)
LSTM - 128

Self-Attention - 128
TimeDistributedDense - 64
Dense - 11

Number of features

Number of units per layer

Based on Validation loss
Patience = 10

Restores best weights
Adam

Activation Swish

Early stopping

Optimizer

C. FEATURE LEVEL FUSION (FLF) MODULE

The Fusion sub-model concatenates the ATTN-LSTM (where
nf = 17) and St-Bi-LSTM model. This architecture is shown
in Fig. 6 as the FLF module. ATTN-LSTM and St-Bi-LSTM
model layers (excluding the last layer of both models) is
used as stream A and stream B, respectively, for merging.
The weights of these two streams are not updated during the
training. Stream A contributes to temporal features of a city,
and stream B contributes to spatial features. These streams
help to create a generalized model for forecasting crimes.
Then Stream A and Stream B are concatenated, followed by
a TimeDistributed dense layer and a dense layer. This kind of
fusion is known as ‘“‘Feature level Fusion”.

D. DECISION LEVEL FUSION (DLF) MODULE

To avoid problems due to anomalies in the data and to
get more accurate results, the DLF module is introduced.
Here, the ATTN-LSTM (for Spatio-temporal features),
St-Bi-LSTM, and FLF are all taken to get the final

48018

prediction. This sub-model is shown in Fig. 6 as the DLF
module. DLF chooses the most appropriate outcome among
the three outputs. For the DLF module, majority voting and
the all-pairs shortest distance are implemented to find our
proposed model’s final crime prediction. At first, the module
checks if the predictions for each crime category support
the majority voting system. Otherwise, the all-pairs shortest
distance is applied for selecting the output. This module uses
a weighted average system to measure the loss. The following
is a short description of the prediction and loss calculation
techniques in the DLF module.

1) MAJORITY VOTE
In the case of a majority vote, if an element frequently occurs
and more than the rest of the inputs, it is a majority element.
In our work, if the predictions of a category for any two
models are the same, it is the final output. The equation for
the majority vote is:

Cr=>"Y 0ic==5 @)

i=1 j=1

where, m denotes the number of models; y denotes the pre-
diction of a specific hour for those models; c is the crime
category; C* is the majority vote for the ¢ crime.

2) ALL-PAIRS SHORTEST DISTANCE

Finding the minimum distance between any two elements
is the intention of the all-pairs shortest distance technique.
Sometimes, to calculate the shortest distance, the distance
from the mean of the elements is used [51]. Our DLF model
uses the deviation from the mean to find the final prediction
for each category among the 3 outcomes. The equation is:

m 1 & . ~
De =min [ = (b — e ®)
i=1 mjzl

3) WEIGHTED AVERAGE LOSS

This technique prioritizes some values by assigning weights.
In this work, the DLF module calculates the average loss for
each city using the weighted average loss for each district of
that city. It calculates the weight for each model by checking
the proximity of the prediction to each category. The equa-
tions for calculating loss are:

1 m
lossy, = ~ Z(weighth * Loss(yjr)) )
j=1

where, L is the PdDistrict.

|
loss,, = — E (weighted _avg_lossy) (10)
p
L=1

where, p denotes the number of total PdDistricts for a city.
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Crime Category

LARCENY/THEFT -> 26.2%
OTHER OFFENSES -> 16.5%
NON-CRIMINAL -> 13.1%
ASSAULT -> 10.4%
VEHICLE THEFT -> 6.5%
DRUG/NARCOTIC -> 6.4%
VANDALISM -> 6.3%
WARRANTS -> 5.3%
BURGLARY -> 5.0%
SUSPICIOUS OCC -> 4.4%

(a) Percentage of some crime categories for San Francisco

FIGURE 10. Top 10 crimes over the 14 years.

VI. EXPERIMENT
A. EXPERIMENTAL SETUP
For execution purposes, we used the google colab platform
for this work. The specifications of the Google Colab plat-
form are:

o IxTesla K80 (2496 CUDA cores)

« Ixsingle core hyperthreaded Xeon Processors @2.3Ghz

« 13 GB RAM

« 108 GB Run time HDD

o OS: Linux Kernel

Short experiments like validating the code’s functionality
were performed on a desktop computer.

B. FEATURE SELECTION METHOD

Features play a vital role in predictive models. The model pre-
dicts more accurately when the correlation between features
and the target value is strong. In this study, the R-value is used
to measure this correlation. The equation for R-value is given
below:

D v, V)
I = PR S — 7
where, r is the correlation coe_fficient, f; is the values of the
feature variable in a sample, f is the mean of the values of
the feature variable, ¢; is the values of the target variable in a

sample, 7 is the mean of the values of the target variable, and
ns is the total number of samples in the dataset.

(1)

C. DATA PRE-PROCESSING

The data were not in the form we expected. Hence, we pro-
cessed the data to get the required formation. The steps of
pre-processing are given in the following.

A sorted, hourly-based DateTime column was made for all
the data by merging the Date and Time columns. Information
about the day, year, and week was extracted from the date.
Eq. (12) and (13) encoded this information into a signal. The
equations for cyclic features are the following:

Cyclicy = sin(timestamp * (2 z)) (12)
s

Cyclicy = cos(timestamp * (2 * z)) (13)
s
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Crime Catagory

LARENCY/THEFT -> 22.8%
BATTERY -> 19.5%

CRIMINAL DAMAGE -> 12.4%
DRUG/NARCOTIC -> 11.6%
ASSAULT -> 7.0%

OTHER OFFENSES -> 6.6%
BURGLARY -> 6.4%

VEHICLE THEFT -> 4.9%
DECEPTIVE PRACTICE -> 4.4%
ROBBERY > 4.1%

(b) Percentage of some crime categories for Chicago

where,
s = 86400 seconds for a day,
s = 604800 seconds for a week, and
s = 220898664 seconds for a year

These signals help to co-relate the periodical nature with
the data. After this step, the features of missing timestamps
within the chosen 14 years range were masked using the ones
of the first timestamp of the dataset.

From the weather data, we took the average tempera-
ture (Kelvin) per hour. It was divided into 3 categories accord-
ing to (14). Here, O indicates low, 1 indicates medium, and
2 indicates high. This categorized temperature information
is the derived feature for our hourly timestamp-based crime
data.

0, if tempgy, <273
if 273 < tempgyg < 305 (14)

2, otherwise

temp = 1 1,

There are different unique values for the two features-
Category and District. For these two cities, some of the data
pre-processing steps are different. These steps are described
below with respect to cities:

1) SAN FRANCISCO CRIME DATA

The total number of crimes per category was analyzed to
find the 10 top ones out of 38 crimes which are shown
in Fig. 10a. The results showed that “Larceny / Theft”
occurred more often than other crimes. The second highest
crime occurrence was ‘“‘Other offenses”. The third-highest
one was ‘“Noncriminal”. During the analysis, it was found
that the lowest total number of crimes for a category was 14.
Many categories had less than 100, 000, except the top 7.
For balancing the dataset, these low count categories were
merged. There were 38 categories in total. Each category was
mapped with a unique number from 0 to 37. We divided
the categories with fewer data into 3 groups for merging,
leaving the top 7 categories. Clustering approaches were used
to make these groups - GRPO, GRPI1, and GRP2. GRPO
consists of warrants, burglary; GRP1 consists of suspicious
occ, robbery, missing person, fraud; and GRP2 consists
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of the rest categories. After merging, there were 10 types
of crime categories. These Categories’ name and mapped
ids are: larceny/theft (1), other offenses (2), non-criminal
(3), assault (4), vehicle theft (5), drug/narcotic (6), vandalism
(7), GRPO, GRP1, and GRP2. After that, the unique PdDis-
tricts name was converted to a unique numerical value as
Pdld ranging from 1 to 10. Then, we counted each category’s
crimes based on hourly timestamp and police department
district id.

2) CHICAGO CRIME DATA
After analyzing the total number of crimes per category, the
10 top ones out of 31 crimes are acquired. These crimes are
shown in Fig. 10b. The results showed that “Larceny / Theft”
occurred more often than other crimes. The second-highest
crime occurrence was ‘““Battery”. The third-highest one was
“Criminal damage” . In the case of the Chicago dataset, the
lowest total number of crimes for a category is 11, and there
are many categories having data less than 300, 000, except
the top 7. We merged these categories to have balanced data.
The 31 categories in this dataset were mapped with a unique
number from 0 to 30. The smaller categories were merged
into 3 groups, the same as San Francisco data. The GRPO
consists of deceptive practices and vehicle theft. The GRP1
consists of robbery and criminal trespass, and GRP2 consists
of the rest categories. Therefore, the 10 categories name and
their mapped ids are larceny/theft (1), battery (2), criminal
damage (3), drug/narcotic (4), assault (5), other offenses (6),
burglary (7), GRPO, GRP1, and GRP2.

So, the acquired data from both datasets are the following:

1) PdDistrict id — Unique id given for unique police

department districts.
2) Cyclic encoded the day, week, and year information
data.
3) Count of crime per category for the hourly timestamp.
4) Categorized temperature for the hourly timestamp.

Among these four features, PdDistrict id and temperature
differ from city to city. Hence, we excluded these two features
from the transfer learning technique to create a generalized
model. Since these two features are among the main factors in
crime, these features are processed using another model. The
correlation between acquired features and the crime category
is shown in Table 5 using (11).

D. WINDOW GENERATION

The acquired data was split into train, test, and validation
set in a ratio of 7:1:2. Since our dataset is time-series-based,
the first 70% data are for training, the last 10% data are for
testing, and the rest of the 20% is for the validation. Then
windows of data having 24 x 17 inputs and 24 x 19 inputs for
each window were generated. The windows mainly represent
the input sequences. The 24 denotes the data of 24 hours of a
day. We mapped the data of 24 sequential hours per sequence
for input. The model predicted the same data sequence length
after moving one hour ahead from the starting of the input
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TABLE 5. R-value of features with respect to the crime category.

Feature R-Value
PdDistrict -0.4262
Day of Week 0.3431
Day of Month -0.0825
Month 0.1831
Year -0.3669
Cyclicapay -0.3652
Cyclicypay 0.5766
Cyclicaweek 0.5781
Cyclicyw eek -0.7431
temperature -0.6560
| t=0 ‘ t=1 ‘ ‘ t=22 ‘ t=23 ‘Input
Model
| t=1 ‘ t=2 ‘ ‘ t=23 ‘ t=24 ‘Predictions
| t=1 ‘ t=2 ‘ ‘ t=23 ‘ t=24 |Labels

FIGURE 11. Data window generation for training, testing and validation.

sequence. Thus, the model is taking 24 hours data as an
input data point and is predicting data of the next hour and
the previous 23 hours as shown in Fig. 11. In 24 x 19, the
19 denotes the 19 features to predict in the next time step.
These features are the encoded signals of day, week, and year,
police department district id, temperature category, previous
hour’s count of 10 categories, and the total number of crimes
in the last hour. In 24 x 17, 17 denotes the number of features.
These features do not include police department district id
and temperature category.

E. TRAINING METHOD

Our main goal was to predict the number of each crime cate-
gory using Spatio-temporal information. To do so, we trained
the models according to Algorithm 1 using some evaluation
metrics.

The generated windows are applied in the input of the
models according to the requirements. Our model takes
24 sequential hours data and predicts the crimes in the next
hour (25" hour). After going through this algorithm, we have
got the crime prediction of each category for ATTN-LSTM
(Spatio-temporal), St-Bi-LSTM, and FLF models.

Here, Adam optimizer updates the gradients stochasti-
cally, and Early stopping avoids over-fitting the model. The
models were evaluated based on the Mean Absolute Error
(MAE), Mean Squared Error (MSE), Mean Squared Log-
arithmic Error (MSLE), Coefficient of Determination (R?),
and Symmetric Mean Absolute Percentage Error (SMAPE).
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Algorithm 1 Training Strategy

Input : Training data (Classified Spatio-temporal fea-
tures), « (patience)
Output . Spatio-temporal based prediction of each

crime category for sub-models, Temporal
based prediction for ATTN-LSTM model
Initialization: Initialize weights of Spatio-temporal based St-
Bi-LSTM, ATTN-LSTM and Temporal based
ATTN-LSTM model randomly; for initiating
weights of Fusion model, use the weights of
trained St-Bi-LSTM and ATTN-LSTM (only
using temporal features) models
while Maximum iteration is not reached do
Train St-Bi-LSTM and ATTN-LSTM Models: Gen-
erate output of given input data using swish acti-
vation; update the weights of the decoder stacked
LSTM-network and the encoder dense-network using the
gradient from the Adam optimizer and the loss function
MAE given in (15);
Load Weights of FLF Model: Take the weights of St-
Bi-LSTM and ATTN-LSTM (only using temporal features)
models after trimming the last two layers and load them into
FLF model;
while Weights of St-Bi-LSTM and ATTN-LSTM models are
not loaded in FLF model do
if layer index is odd then
‘ load this layer weights from St-Bi-LSTM model,
else
‘ load this layer weights from ATTN-LSTM model;

Train the Fusion Model:

while Maximum iteration is not reached do

Using Swish activation and Adam optimizer, update only
the FLF model’s last three layers (dense layers and the
output layer) without changing the weights of other lay-
ers;

The Early stopping monitored the validation loss and stopped
the training if the same loss occurred 10 times consecutively
within 100 epochs. It also restored the model weights from
the best value of validation loss. The MAE loss of Bayview
for the training and validation dataset in the FLF module is
given in Fig. 12. The amount of loss is decreasing with the
increasing epochs. At the end of the training, the losses are
near 0.02 for both data samples. Moreover, the MAE values
for other areas are very low for training data. It indicates that
our proposed model has good training accuracy on test and
validation data.

F. EVALUATION CRITERIA

For performance evaluation, our architecture used Mean
Absolute Error (MAE), Mean Squared Error (MSE), Mean
Squared Logarithmic Error (MSLE), R?> and Symmetric
Mean Absolute Percentage Error (SMAPE) which are given
in (15)—(19).
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FIGURE 12. Training loss for a region of San Francisco using FLF module.

1) MEAN ABSOLUTE ERROR (MAE)

MAE is an estimator of the mean deviation of the observed
value from actual values. For example, there are n data points
in a sample, y and y represent the vector of prediction values
and the vector of True values, respectively. Therefore, the
equation for MAE is:

1<
MAE = — 20% —yil)
1=

15)

2) MEAN SQUARED ERROR (MSE)

It estimates the mean of the squared deviation of estimated
values from the true values. Suppose there are n data points
in a sample. We have generated the prediction vector for all
the data of this sample. For this case, the MSE is computed
as the equation given below:

1 n )
MSE =~ % (i =5’ (16)

i=1

3) MEAN SQUARED LOGARITHMIC ERROR (MSLE)

MSLE estimates the ratio between estimated values and the
true values. In this case, the equation for MSLE is given
below:

1 n
MSLE = - "(log(yi + 1) — log(i + 1)) (17)
n i=1

4) COEFFICIENT OF DETERMINATION (R?)

R? is the ratio of the variation of the predicted variable.
It indicates the closeness of actual and predicted values.
Suppose the ratio of the sum of square regression (SSR)
and the total sum of square (SST) tends towards zero, the
fitness of a model increases. For n data points in a sample,
y is the mean of all true values. In this case, the equation
for R? is:

Z;’:]()’i - )71)

RP=1- 4
Y3 — )

(18)
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TABLE 6. Evaluation metrics of san francisco for proposed model.

Location Sample of Data MAE MSLE MSE SMAPE(%) ‘ R?
BAYVIEW Validation 0.0071 0.0018 0.0080 0.93 0.9616
Test 0.0069 0.0018 0.0080 0.90 0.9616
CENTRAL Validation 0.0081 0.0020 0.0104 0.97 0.9652
Test 0.0083 0.0021 0.0156 0.95 0.9627
INGLESIDE Validation 0.0060 0.0016 0.0071 0.79 0.9605
Test 0.0054 0.0015 0.0064 0.71 0.9596
MISSION Validation 0.0172 0.0050 0.0235 2.28 0.9276
Test 0.0190 0.0056 0.0265 242 0.9312
NORTHERN Validation 0.0106 0.0026 0.0147 1.24 0.956
Test 0.0116 0.0029 0.0254 1.24 0.9485
PARK Validation 0.0061 0.0016 0.0064 0.90 0.9470
Test 0.0053 0.0014 0.0054 0.80 0.9483
RICHMOND Validation 0.0042 0.0012 0.0045 0.62 0.9590
Test 0.0044 0.0013 0.0051 0.61 0.9593
SOUTHERN Validation 0.0116 0.0026 0.0210 1.15 0.9697
Test 0.0108 0.0025 0.0169 1.10 0.9726
TARAVAL Validation 0.0057 0.0015 0.0206 0.71 0.9410
Test 0.0056 0.0016 0.0180 0.70 0.9501
TENDERLOIN Validation 0.0053 0.0014 0.0063 0.73 0.9617
Test 0.0043 0.0012 0.0047 0.64 0.9612

5) SYMMETRIC MEAN ABSOLUTE PERCENTAGE ERROR
(SMAPE)

SMAPE is a percentage (or relative) error-based accuracy
measure. It helps to analyze the sensitivity of seasonal time-
series-based forecasting [52]. The model predicts better when
the value of SMAPE is closer to zero. The equation of
SMAPE is given below:

1 |y — i
SMAPE =~ 3 izl 009
n (i +yi)/2

i=1

(19)

G. FINAL OUTPUT GENERATION

The outputs of the ATTN-LSTM (where nf = 19), FLF
module, and stream B are fused such that the DLF model
had all the necessary information. This resulted in our model
predicting each crime category’s count better than the current
state-of-arts.

In Algorithm 2, the way of merging the outputs of 3 dif-
ferent models in the DLF module is described. The model
generates the final result by applying (7), (8) and calculates
the final loss using (9). The value of n is 3 for these equations
as there are 3 models to get the result of DLF. At first,
this module checks if the inputs support the majority vote.
Otherwise, it applies all-pairs shortest distance to get the final
output. Then, the model calculated the loss of the final output
using our weighted system. After doing all the steps accord-
ing to this algorithm, the number of crimes per category for a
specific hour and area is forecast.

VII. RESULT ANALYSIS

A. RESULT OF PROPOSED ARCHITECTURE

The idea of time-series forecasting with deep learning mod-
els was amalgamated to predict crime. All models were
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Algorithm 2 Strategy of Final Prediction

Input : Prediction of the Spatio-temporal based st-Bi-
LSTM, ATTN-LSTM, and FLF Module
Output : Spatio-temporal based prediction of each

crime category using majority voting or
all-pairs shortest distance on the DLF level
Prediction in DLF:
while Each Input data do
Final Prediction: Get the final prediction using majority
vote given in (7) or all-pairs shortest distance given in (8);
if Majority Vote of any prediction > threshold then
‘ Final Result: Prediction of the most voted model;
else
Calculate Distance Matrix: Calculate all-pairs
shortest distance for each model using (8) and store
them in all-pairs loss matrix;
Final Result: Prediction of the model which has the
minimum average loss in the all-pairs loss matrix;

Calculate Loss for Proposed Model: Find the weight for
each model, calculate the loss of each PdDistrict for predicted
result using weighted average system given in (9), and calcu-
late the loss for each city using (10);

evaluated for each location of a city using MAE (15),
MSE (16), MSLE (17), R* (18), and SMAPE (19). Finally,
the evaluation metrics of each city for our proposed method
using (9) and (10) is shown in Tables 6 and 7. Temperature
is the derived feature in our model. Evaluation metrics for
sub-models is listed in the appendix in Tables 9 and 10.
We can observe the performance for the ATTN-LSTM model
for temporal features, ATTN-LSTM model for all features,
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TABLE 7. Evaluation metrics of Chicago for proposed model.

Location of Chicago | Sample of Data MAE MSLE MSE SMAPE(%) ‘ R?
10 Validation 0.0252 0.0104 0.0271 1.20 0.847
Test 0.0301 0.0124 0.0333 1.36 0.8637
20 Validation 0.0178 0.0069 0.0303 0.87 0.8722
Test 0.0192 0.0077 0.0206 0.94 0.8470
30 Validation 0.0167 0.0057 0.0187 0.80 0.9123
Test 0.0156 0.0053 0.0150 0.76 0.8959
40 Validation 0.0124 0.0027 0.0114 0.55 0.9456
Test 0.0116 0.0026 0.0117 0.52 0.9663
50 Validation 0.0084 0.0020 0.0063 0.40 0.9542
Test 0.0083 0.0020 0.0063 0.39 0.9536
6.0 Validation 0.0094 0.0018 0.0071 0.41 0.9670
Test 0.0095 0.0019 0.0099 0.41 0.9544
70 Validation 0.0095 0.0017 0.0107 0.41 0.9422
Test 0.0087 0.0016 0.0058 0.39 0.9645
8.0 Validation 0.0107 0.0019 0.0083 0.45 0.9679
Test 0.0104 0.0019 0.0075 0.44 0.9666
9.0 Validation 0.0085 0.0016 0.0059 0.39 0.9628
Test 0.0082 0.0015 0.0055 0.38 0.9611
100 Validation 0.0087 0.0015 0.0058 0.40 0.9613
Test 0.0089 0.0016 0.006 0.40 0.9612
11.0 Validation 0.0125 0.0022 0.0256 0.52 0.9541
Test 0.0117 0.0021 0.0093 0.50 0.9648
12.0 Validation 0.0094 0.0017 0.0064 0.45 0.9586
Test 0.0100 0.0018 0.0071 0.47 0.9601
14.0 Validation 0.0080 0.0015 0.0051 0.41 0.9499
Test 0.0084 0.0016 0.0056 0.42 0.9528
150 Validation 0.0097 0.0019 0.0074 0.50 0.9497
Test 0.0090 0.0018 0.0061 0.48 0.9459
16.0 Validation 0.0093 0.0018 0.0063 0.50 0.9379
Test 0.0093 0.0018 0.0064 0.50 0.9361
170 Validation 0.0084 0.0018 0.0057 0.48 0.9253
Test 0.0087 0.0018 0.006 0.49 0.9264
18.0 Validation 0.0110 0.0023 0.0099 0.51 0.9346
Test 0.0126 0.0025 0.0124 0.53 0.9424
19.0 Validation 0.0128 0.0027 0.0107 0.61 0.9248
Test 0.0129 0.0028 0.0113 0.61 0.9257
20.0 Validation 0.0078 0.0018 0.0048 0.53 0.9468
Test 0.0080 0.0019 0.0051 0.53 0.9474
2.0 Validation 0.0120 0.0032 0.0107 0.63 0.9505
Test 0.0119 0.0032 0.0106 0.62 0.9501
240 Validation 0.0113 0.0030 0.0094 0.62 0.9497
Test 0.0118 0.0032 0.0103 0.63 0.9482
250 Validation 0.0180 0.0050 0.0202 0.78 0.9533
Test 0.0175 0.0049 0.0195 0.77 0.9505

St-Bi-LSTM model, Feature level Fusion model, and pro-
posed model from these tables.

In the Spatio-temporal based analysis on the San Francisco
dataset, ATTN-LSTM performed well in Bayview based on
MAE. At the same time, St-Bi-LSTM worked well in Mission
and Northern. The MAE loss for these two models in these
three places is 0.02. However, the R? values for St-Bi-LSTM
for all these three places are highest. For Bayview, Mission,
and Northern, the values of R? for this model are 0.967,
0.97, and 0.971, respectively. For the rest of the locations, the
Fusion model performed better among the sub-models shown
in Table 9. The MAE loss is from 0.0101 to 0.0299 and the

VOLUME 10, 2022

R? value is from 0.9643 to 0.9765 for those places. However,
the values of SMAPE are the lowest for all locations in
the fusion model. The ATTN-LSTM took the most relevant
instances while St-Bi-LSTM chunked the irrelevant ones off
while training. Hence, these two models contributed to the
improved outcome of the Fusion model of the feature level.
In other words, both of the models were important in the case
of prediction using a large dataset.

For this dataset, the temporal-based ATTN-LSTM model
had the highest R?, MAE and SMAPE value concerning
Spatio-temporal based models. The values of R?, MAE and
SMAPE are 0.988, 0.12, and around 9%, respectively. Here,
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Crime Category

BN LARCENY/THEFT -> 25.5%
8 OTHER OFFENSES -> 30.2%
B NON-CRIMINAL -> 3.6%
B ASSAULT -> 0.5%

BN VEHICLE THEFT -> 2.7%
E DRUG/NARCOTIC -> 23.8%
8 VANDALISM -> 7.5%

B GRPO -> 2.3%

I GRP1->3.1%

B GRP2 -> 0.9%

(a) Predicted crime for Bayview of San Francisco

Crime Category
LARCENY/THEFT -> 14.7%
BATTERY -> 10.9%
CRIMINAL DAMAGE -> 12.0%
DRUG/NARCOTIC -> 17.5%
ASSAUILT -> 7.2%

OTHER OFFENSES -> 7.7%
BURGLARY -> 6.0%

GRPO -> 10.5%

GRP1 -> 10.6%

GRP2 -> 2.9%

(b) Predicted crime for Area-2.0 of Chicago

FIGURE 13. Some examples of crime prediction of a specific hour and specific location for the proposed model.

TABLE 8. Comparative analysis with some of the current state-of-the-art for crime datasets dating back more than a decade.

Models Sample of Evaluation metrics of San Francisco Evaluation metrics of Chicago
Proposed By Data MAE | MSLE | MSE | SMAPE | R? MAE | MSLE | MSE | SMAPE | R?
E SARIMAX(1,1,1.2) Validation 1.2531 | 0.4750 | 2.7581 100.00 -0.0061 1.0906 | 0.3742 | 2.1081 100.00 -0.0580
= Test 1.2408 | 0.4483 | 2.8146 100.00 -0.0063 | 1.2309 | 0.3164 | 2.6379 100.00 -0.0196
:2 FBProphet Validation 1.2856 | 0.3631 | 3.1071 103.24 0.1245 0.9590 | 0.2783 1.6210 105.76 0.0867
Test 1.2816 | 0.3727 | 3.0382 104.81 0.1085 0.9959 | 0.2874 | 1.7937 109.12 0.0245
Feng et al. [1] Validation | 0.4477 | 0.0910 | 0.3214 58.35 0.2549 1.8344 | 0.2544 | 9.7052 62.27 0.1997
' Test 0.4442 | 0.0901 | 0.3202 58.35 0.2520 1.9376 | 0.2932 | 9.6717 64.61 0.1945
= Validation | 0.2382 | 0.0457 | 0.1870 20.25 0.5624 | 0.5667 | 0.1926 | 0.9250 47.86 0.3528
54 Rayhan et al. [9]
2 Test 0.2320 | 0.0443 | 0.1845 20.20 0.5606 | 0.5678 | 0.1873 | 0.9425 47.72 0.3516
j Wang et al. [38] Validation | 0.0288 | 0.0068 | 0.0306 3.34 0.8538 0.0816 | 0.0462 | 0.1301 4.83 0.7516
[ ’ Test 0.0284 | 0.0067 | 0.0297 3.31 0.8502 | 0.0824 | 0.0461 | 0.1294 4.80 0.7509
Validation | 0.0082 | 0.0021 | 0.0123 1.03 0.9549 | 0.0201 0.008 0.0267 0.57 0.9416
Our Proposed Model
Test 0.0082 | 0.0022 | 0.0132 1.01 0.9550 | 0.0202 0.008 0.0278 0.57 0.9376
10
Il Actual value
w B W Proposed Model
g B Rayhan et al.[9]
E 6 Bl Wang et al.[38]
o BN Feng et al.[1]
E 4 BN SARIMAX
g e FBProphet
=
- . .
0 . -

Total count

FIGURE 14. The actual number of crime occurrence and prediction of the number of crime occurrence of an specific hour for Area-6.0 of
Chicago (using some current state-of-the-arts and our proposed model).

we took the whole city as one location. However, the crime
patterns are different for areas under a city.

The evaluation results of our proposed model for each loca-
tion of San Francisco are given in Table 6. After observing
the outcomes of both tables, we concluded that the loss in
the proposed model for this dataset is relatively less than the
rest of the sub-models. The MAE loss of test and validation
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dataset in crime prediction for each area is less than 0.02 here.
In the case of MSLE and MSE, the values of the proposed
model for each area are less than 0.003 and 0.027, respec-
tively. These values are way lower than the sub-models. The
SMAPE value for each location is also less than the sub-
models. This value is between 0.61% to 2.42%. Our model
fused the categorical, temporal, and spatial information by
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TABLE 9. Evaluation metrics of San Francisco for sub-models.

Location Derived Feature Model Dataset MAE MSLE MSE SMAPE(%) ‘ R2
San Francisco ATTN-LSTM Validation 0.1240 0.0199 0.3888 9.21 0.9874
Test 0.1185 0.0194 0.3743 8.60 0.9883
ATTN-LSTM Validation 0.0207 0.0061 0.0272 2.39 0.9569
Test 0.0199 0.0061 0.0271 2.77 0.9567
BAYVIEW Temperature SLBI-LSTM Validation 0.0244 0.0048 0.021 3.14 0.9665
Test 0.0224 0.0048 0.0207 2.92 0.9669
Fusion Validation 0.0213 0.0048 0.021 2.56 0.9663
Test 0.0212 0.0048 0.0212 2.56 0.9663
ATTN-LSTM Validation 0.0242 0.0064 0.0336 3.07 0.9625
Test 0.0245 0.0067 0.0584 2.93 0.958
CENTRAL Temperature StBi-LSTM Validation 0.0283 0.0056 0.028 3.69 0.9687
Test 0.0282 0.0059 0.0335 3.55 0.9684
Fusion Validation 0.0232 0.0057 0.0289 2.49 0.9676
) Test 0.0247 0.006 0.0352 2.55 0.9673
ATTN-LSTM Validation 0.0184 0.0055 0.0239 2.57 0.956
Test 0.0162 0.0051 0.0217 2.28 0.9544
INGLESIDE Temperature St-Bi-LSTM Validation 0.0229 0.0043 0.0191 2.99 0.9647
Test 0.0198 0.004 0.0172 2.64 0.964
Fusion Validation 0.0166 0.0042 0.0189 1.98 0.9651
) Test 0.015 0.0039 0.0167 1.83 0.9651
ATTN-LSTM Validation 0.0804 0.0242 0.1118 11.22 0.8863
Test 0.0884 0.027 0.1246 11.89 0.8928
MISSION Temperature SLBI-LSTM Validation 0.0213 0.0059 0.028 2.5 0.9703
Test 0.0234 0.0065 0.032 2.68 0.9721
Fusion Validation 0.0229 0.006 0.0299 2.44 0.9685
Test 0.0258 0.0069 0.0354 2.66 0.9691
ATTN-LSTM Validation 0.0424 0.0098 0.0579 5.12 0.9425
Test 0.0465 0.0108 0.1157 5.07 0.9276
NORTHERN Temperature SLBI-LSTM Validation 0.0215 0.0057 0.0292 2.5 0.9707
Test 0.0229 0.0061 0.0352 2.57 0.971
Fusion Validation 0.0215 0.006 0.0309 2.25 0.9691
Test 0.0235 0.0066 0.0373 2.35 0.9689
ATTN-LSTM Validation 0.0251 0.0063 0.0255 3.87 0.9294
Test 0.0217 0.0057 0.0217 3.39 0.9316
PARK Temperature SLBi-LSTM Validation 0.0127 0.0032 0.0128 1.7 0.9647
Test 0.0112 0.003 0.011 1.58 0.9652
Fusion Validation 0.0111 0.0032 0.0126 1.46 0.9647
) Test 0.0101 0.003 0.0109 1.38 0.9649
ATTN-LSTM Validation 0.0149 0.0041 0.0157 2.29 0.953
Test 0.0152 0.0044 0.0177 2.23 0.9533
RICHMOND Temperature St-Bi-LSTM Validation 0.0118 0.003 0.0116 1.65 0.9651
Test 0.0125 0.0032 0.0131 1.68 0.9652
Fusion Validation 0.0101 0.003 0.0115 1.35 0.965
) Test 0.0109 0.0032 0.013 14 0.9652
ATTN-LSTM Validation 0.0391 0.0086 0.0801 4.04 0.9629
Test 0.0352 0.0082 0.0591 3.77 0.9683
SOUTHERN Temperature SLBI-LSTM Validation 0.0332 0.0068 0.0436 3.32 0.9776
Test 0.0316 0.0066 0.0401 3.22 0.978
Fusion Validation 0.0299 0.0069 0.0466 2.74 0.9761
Test 0.0288 0.0067 0.0428 2.69 0.9765
ATTN-LSTM Validation 0.0204 0.0055 0.1072 2.61 09171
Test 0.0195 0.0058 0.0909 2.46 0.9347
TARAVAL Temperature SLBI-LSTM Validation 0.0169 0.0038 0.0169 2.1 0.9641
Test 0.0164 0.004 0.0179 2.03 0.9647
Fusion Validation 0.0127 0.0037 0.0161 1.58 0.9652
Test 0.0133 0.0039 0.0173 1.63 0.9657
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TABLE 9. (Continued.) Evaluation metrics of San Francisco for sub-models.

Location ‘ Derived Feature Model Dataset MAE MSLE MSE SMAPE(%) ‘ R?
ATTN-LSTM Validation 0.0172 0.0047 0.0207 2.61 0.9583
Test 0.014 0.0039 0.0153 2.27 0.9582
TENDERLOIN Temperature SLBi-LSTM Validation 0.0192 0.004 0.0176 2.35 0.9644
Test 0.0154 0.0034 0.0133 2.01 0.9635
Fusion Validation 0.0132 0.0039 0.017 1.62 0.9653
Test 0.011 0.0033 0.0128 1.44 0.9643

using 3 different sub-models in the DLF. This module took the
best outcome from those sub-models using majority vote (7)
and all pair shortest distance (8). We calculated the weighted
average loss (9) of this module based on the inputs. So, the
loss is less than the rest of the models. The value of R? for
each location of this city is between 92% to 97%. So, our
model worked as intended for the San Francisco dataset.

The loss of proposed model and sub-models for the
Chicago dataset are given in Tables 7, 10. In the case of
this dataset, ATTN-LSTM performed better for some places.
St-Bi-LSTM using the transfer learning technique has fared
better for the remaining ones among the sub-models. After
comparing the values of MAE, MSLE, MSE, SMAPE and
R?, it is clear that our proposed model worked better than
most of the sub-models for this dataset. The losses and the R?
value are better here for the same reason as the San Francisco
dataset. For the proposed model, the value of MAE is less
than 0.035, MSLE is less than 0.015, MSE is less than 0.55,
SMAPE is between 0.4 to 1.36 and R? is between 84% to 98%
for each location.

The average loss for each city is calculated by combining
the losses of each region using (10). These values are listed
in Table 8. For the San Francisco dataset, the cumulative
average MAE loss is 0.0082, MSLE loss is 0.002, MSE losses
are 0.0132 (test data), 0.0123 (validation data), SMAPE is
1.03 and R? is 0.955. The cumulative average MAE loss
is 0.02, MSLE loss is 0.008, MSE loss is 0.027, SMAPE
is 0.57 and R? is 0.94 for the Chicago dataset. From these
values, we can state that our model had a satisfactory amount
of losses and R2. Thus, introducing the DLF module into the
model was a good decision.

A transfer learning technique is implemented to train some
features in the Chicago dataset. In this case, the source model
is the Attn-model of the San-Francisco dataset. By applying
this technique, the training time is decreased by 30 minutes,
considering the other sub-models.

If any of the sub-models are not added to our model,
the model would not co-relate the different types of fea-
tures, avoid unnecessary instances and emphasis on related
instances, or reduce training time through learning conver-
gence. Furthermore, our goal of making a generalized model
would not be fulfilled.

Some predictions of our model are given in Fig. 13.
The predictions for an area are plotted using a pie chart
here. Fig. 13a is the prediction of crime for Bayview
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of San Francisco. Fig. 13b is the visualization of the crime
prediction for Area-2.0 of Chicago. In these figures, one
can observe the predicted percentage of each crime cate-
gory for an hour for a specific area of both cities. Here,
the “Other offenses” percentage is highest for Bayview of
San Francisco, and “Drug/Narcotic” is highest for
Area-2.0 of Chicago. From these percentages, the law
enforcers can know the crime rate for each category for an
hour. They will be able to take necessary precautions to
reduce the crime occurrence. Our model can also predict the
number of crimes per category for these areas.

B. COMPARATIVE STUDY

In Table 8, the evaluation metrics for the San Francisco
dataset and Chicago dataset for some established models
and our proposed model can be observed. Some renowned
DL and non-DL-based methods are implemented to illus-
trate this comparative study. The models are evaluated on
the same train, test, and validation sets. In case of DI-based
method, the model of Feng et al. has the highest loss,
Rayhan et al.’s model has the second-highest, and our pro-
posed model has the last for both datasets. Our proposed
model has an MAE loss of 0.008 and 0.02 for the two datasets,
but other models have error near 0.44 and 1.83 [1], 0.24 and
0.57 [9], 0.03 and 0.08 [38]. For both datasets, the MAE
values for SARIMAX are close to 1.2 and for FBProphet
are close to 1.3 (San Francisco) and 1.0 (Chicago). From
these results, we can perceive that our proposed model has
the smallest loss, and it performs better among these 6 mod-
els. Moreover, our proposed model has the highest R” value
among the 6 models. The values are approximately 0.95 and
0.94 for both datasets in our model. For other models, the
values are 0.25 and 0.19 [1], near 0.56 and 0.35 [9], 0.85 and
0.75 [38], 0.1 and 0.09 (validation), 0.03 (test) (FBProphet),
—0.006 and —0.05(validation), —0.02 (test) (SARIMAX) for
the San Francisco and Chicago dataset, respectively. It is
known that the closer the value of R? to 1, the better the model
predicts the values. Since the R? of our proposed model is
closer to 1, we can claim that the proposed model predicts
better than the current state-of-art. The SMAPE values for our
proposed model are the lowest of all other models. It proves
that the model is predicting better than the rest of the models.
Our proposed model has SMAPE values of 1 and 1.5 for both
dataset.
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TABLE 10. Evaluation metrics of Chicago for sub-models.

‘ Location ‘ Derived Feature ‘ Model ‘ Dataset MAE MSLE MSE SMAPE(%) ‘ R2

Chicago ATTN-LSTM Validation 1.3049 0.2063 3.8324 9.57 0.9597
Test 1.3166 0.2174 3.7001 9.01 0.9598
ATTN-LSTM Validation 0.0252 0.0047 0.0197 4.45 0.9617
Test 0.029 0.0053 0.0309 4.63 0.9652

L0 Temperature St-Bi-LSTM Validation 0.0777 0.0339 0.0886 12.62 0.8235
Test 0.0923 0.0399 0.1154 14.37 0.8435

Fusion Validation 0.1102 0.0359 0.0852 14.31 0.9207
) Test 0.138 0.0466 0.0437 16.69 0.9234
ATTN-LSTM Validation 0.0151 0.0047 0.0166 2.46 0.9558
Test 0.0151 0.0049 0.017 2.41 0.9578

20 Temperature SLBIi-LSTM Validation 0.0533 0.0217 0.0551 8.98 0.8557
Test 0.058 0.024 0.0603 9.73 0.8507

Fusion Validation 0.091 0.0302 0.4527 13.19 0.9207

Test 0.0982 0.0332 0.1196 14.19 0.7069
ATTN-LSTM Validation 0.0258 0.0052 0.0187 5.05 0.9604
Test 0.0232 0.005 0.0173 4.5 0.9599

30 Temperature SLBI-LSTM Validation 0.0469 0.0166 0.0447 7.67 0.9052
Test 0.0436 0.0151 0.0397 7.16 0.9076

Fusion Validation 0.0993 0.0329 0.1848 13.97 0.9207

Test 0.0964 0.0325 0.1135 13.81 0.7379

ATTN-LSTM Validation 0.0323 0.006 0.0236 572 0.962
Test 0.0274 0.0056 0.0209 5.1 0.9616
40 Temperature SLBIi-LSTM Validation 0.0286 0.0048 0.0181 4.28 0.9708
Test 0.0269 0.0046 0.0165 4.07 0.9695

Fusion Validation 0.1106 0.0368 0.1742 14.93 0.7269

Test 0.1052 0.0356 0.1986 14.48 0.9457

ATTN-LSTM Validation 0.0352 0.0051 0.0181 6.48 0.9557

Test 0.0329 0.005 0.0179 5.87 0.9563
50 Temperature SLBI-LSTM Validation 0.0183 0.0037 0.0125 2.92 0.9697
Test 0.0179 0.0037 0.0123 2.88 0.9694

Fusion Validation 0.0717 0.0245 0.0718 10.15 0.8285

) Test 0.0737 0.0255 0.0727 10.52 0.8242

ATTN-LSTM Validation 0.0536 0.0071 0.0297 7.89 0.9543

Test 0.0539 0.0071 0.0294 7.74 0.9545
6.0 Temperature SLBi-LSTM Validation 0.0225 0.0047 0.0178 3.45 0.9723
Test 0.0226 0.0048 0.0177 3.46 0.9724

Fusion Validation 0.0483 0.0096 0.0408 5.63 0.9372

) Test 0.0502 0.0101 0.1258 591 0.8103

ATTN-LSTM Validation 0.0674 0.0081 0.0331 9.9 0.9451
Test 0.0635 0.0075 0.0295 9.65 0.9404
70 Temperature SLBIi-LSTM Validation 0.0221 0.0045 0.017 3.35 0.9719
Test 0.0204 0.0042 0.015 3.15 0.9694

Fusion Validation 0.0399 0.0072 0.1506 45 0.7021

Test 0.035 0.0065 0.0257 4.16 0.9492
ATTN-LSTM Validation 0.0938 0.0106 0.0547 12.76 0.9334

Test 0.0906 0.0102 0.0433 12.71 0.9351
3.0 Temperature SLBI-LSTM Validation 0.0233 0.0049 0.0199 3.41 0.9734
Test 0.0226 0.0048 0.0188 3.31 0.9719

Fusion Validation 0.0418 0.0071 0.0338 4.47 0.9587

Test 0.0409 0.007 0.0306 4.44 0.9553

ATTN-LSTM Validation 0.0915 0.0103 0.0439 14.13 0.9098

Test 0.0894 0.01 0.0384 14.12 0.9068

90 Temperature SLBIi-LSTM Validation 0.0177 0.004 0.0139 2.76 0.9701
Test 0.0168 0.0038 0.0129 2.64 0.9687
Fusion Validation 0.0219 0.0045 0.0213 247 0.9574

Test 0.0209 0.0044 0.0225 2.41 0.9551

ATTN-LSTM Validation 0.101 0.0118 0.0488 16.73 0.8919

Test 0.1054 0.0123 0.0519 17.2 0.8881
10.0 Temperature SLBi.LSTM Validation 0.0176 0.0038 0.0132 2.61 0.9698
Test 0.0176 0.0039 0.0134 2.61 0.9699

Fusion Validation 0.0185 0.0041 0.0191 2.12 0.963

) Test 0.0191 0.0041 0.0197 2.18 0.9642

ATTN-LSTM Validation 0.1436 0.0185 0.1046 22.8 0.9019
Test 0.141 0.0179 0.0854 22.28 0.8924

1.0 Temperature SE-Bi-LSTM Validation 0.024 0.0049 0.0231 3.15 0.9761
Test 0.0222 0.005 0.0204 3.07 0.9737

Fusion Validation 0.04 0.0065 0.4779 3.6 0.8302

) Test 0.0325 0.0056 0.0303 3.41 0.9653
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TABLE 10. (Continued.) Evaluation metrics of Chicago for sub-models.
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ATTN-LSTM Validation 0.1307 0.0157 0.0664 22.18 0.8541
Test 0.1365 0.0162 0.0713 22.61 0.8637
12.0 Temperature StBi-LSTM Validation 0.0167 0.0038 0.0134 2.65 0.9708
Test 0.018 0.004 0.0151 2.78 0.9716
Fusion Validation 0.0175 0.004 0.0174 2.01 0.9657
Test 0.0199 0.0043 0.0205 2.16 0.9653
ATTN-LSTM Validation 0.1263 0.0164 0.0618 23.99 0.7981
Test 0.1312 0.0167 0.065 24.32 0.8148
14.0 Temperature StBi-LSTM Validation 0.0126 0.0031 0.01 1.98 0.9672
Test 0.0132 0.0033 0.0111 2.02 0.9687
Fusion Validation 0.0121 0.0032 0.0121 1.55 0.9637
) Test 0.0136 0.0034 0.0144 1.67 0.9635
ATTN-LSTM Validation 0.1569 0.025 0.094 30.1 0.7824
Test 0.1504 0.0234 0.0815 29.48 0.7552
15.0 Temperature SLBi-LSTM Validation 0.0149 0.0036 0.0125 222 0.971
Test 0.0134 0.0034 0.0107 2.09 0.968
Fusion Validation 0.0155 0.0038 0.028 1.89 0.9463
Test 0.0133 0.0034 0.0156 1.73 0.9598
ATTN-LSTM Validation 0.1626 0.0273 0.0975 31.86 0.677
Test 0.1605 0.0271 0.0967 31.65 0.6677
16.0 Temperature StBi-LSTM Validation 0.0133 0.0031 0.0098 2.09 0.9677
Test 0.0134 0.003 0.0096 2.08 0.9672
Fusion Validation 0.0111 0.0032 0.0147 1.47 0.9602
Test 0.011 0.0031 0.0174 1.44 0.9563
ATTN-LSTM Validation 0.1638 0.0305 0.0988 33.93 0.5606
Test 0.1667 0.0305 0.1043 33.95 0.5699
170 Temperature StBi-LSTM Validation 0.0101 0.0026 0.0076 1.63 0.9664
Test 0.0105 0.0027 0.0082 1.66 0.9664
Fusion Validation 0.0086 0.0026 0.0105 1.24 0.961
) Test 0.0089 0.0027 0.0101 1.28 0.9633
ATTN-LSTM Validation 0.2124 0.0408 0.1814 35.76 0.5907
Test 0.2363 0.0444 0.2229 36.22 0.6495
18.0 Temperature StBi-LSTM Validation 0.013 0.0031 0.012 1.76 0.9733
Test 0.0156 0.0035 0.016 1.94 0.9753
Fusion Validation 0.013 0.0033 0.0203 1.55 0.9685
Test 0.0163 0.0037 0.02 1.74 0.9717
ATTN-LSTM Validation 0.2365 0.0509 0.2057 40.39 0.5127
Test 0.2402 0.0512 0.2158 40.15 0.5182
19.0 Temperature StBi-LSTM Validation 0.0168 0.0034 0.0123 2.39 0.9714
Test 0.0168 0.0035 0.013 2.37 0.9716
Fusion Validation 0.0132 0.0037 0.0176 1.64 0.9647
Test 0.0137 0.0038 0.0184 1.65 0.9661
ATTN-LSTM Validation 0.1756 0.0398 0.1058 41.36 0.8176
Test 0.1792 0.0409 0.1111 41.29 0.8211
200 Temperature SLBi-LSTM Validation 0.0067 0.0017 0.0043 1.36 0.9615
Test 0.0069 0.0018 0.0045 1.37 0.9623
Fusion Validation 0.0053 0.0017 0.0047 0.93 0.9587
) Test 0.0055 0.0018 0.0054 0.95 0.955
ATTN-LSTM Validation 0.2652 0.0701 0.2367 48.51 0.7995
Test 0.2642 0.0694 0.2351 48.37 0.8022
2.0 Temperature StBi-LSTM Validation 0.0106 0.0029 0.0089 1.6 0.9678
Test 0.0104 0.0029 0.0088 1.57 0.9669
Fusion Validation 0.0089 0.0029 0.0123 1.28 0.9634
Test 0.0089 0.0028 0.0114 1.27 0.9632
ATTN-LSTM Validation 0.2562 0.0689 0.2162 48.78 0.7995
Test 0.2663 0.0712 0.2347 48.76 0.7823
24.0 Temperature StBi-LSTM Validation 0.0092 0.0025 0.0072 1.55 0.9665
Test 0.0098 0.0027 0.0081 1.59 0.9668
Fusion Validation 0.0075 0.0025 0.0075 1.17 0.9653
) Test 0.0081 0.0027 0.0089 1.22 0.9653
ATTN-LSTM Validation 0.3853 0.1089 0.4599 57.43 0.7843
Test 0.3797 0.1065 0.4441 56.76 0.7669
25.0 Temperature SLBi-LSTM Validation 0.0175 0.0045 0.0163 2.35 0.9721
Test 0.0165 0.0043 0.0154 2.25 0.971
Fusion Validation 0.0148 0.0045 0.0167 1.85 0.9716
Test 0.0142 0.0044 0.0163 1.79 0.9702
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The predicted number of crimes for a specific hour for
all the 6 models can be distinguished from Fig. 14. The
blue bar denotes the true/actual value. We took Area-6.0 of
Chicago for this visualization. This visualization shows that
our model predicted the number of crimes closer to the
true value. The actual value is 2. Our model predicted a
little higher than the actual value. In contrast, the model of
Wang et al. [38] predicted a little lower than the actual value.
The attention-based model of Rayhan et al. [9] predicted
close to 3. The SARIMAX model predicted 5 crimes for the
specific hour. The models of Feng et al. [1] and FBProphet
predicted the highest value among these 6 models. The pre-
dicted total number of crimes is approximately 9 for these
models. Hence, this model does not perform well. Based on
this prediction, we can conclude that our model outperformed
the other 5 models.

The mentioned state-of-arts have limitations regarding the
length of data [1], [9], [38]. Our model can manage data from
over a decade without losing any plausibility. We employed
the ATTN-LSTM model and the transfer learning technique
in the St-Bi-LSTM model to deal with this problem.

A few models [1] did not consider Spatio features of a city.
We utilized the knowledge of a city’s districts or regions and
categorical-temporal information to forecast crime. So, our
model has no limitations regarding Spatio features.

All four models have FLF in the architecture. However,
our model has two Fusion module levels- FLF and DLF. The
FLF module merges the Spatio-temporal features along with
the categorical information. The model learns more about the
different outcomes from Spatio-temporal based sub-models
in the DLF module. Hence, the model can predict more
accurately the number of crimes for each category and each
location with the help of this learning. Finally, we can state
that our proposed model is an effective method for forecasting
data.

VIIl. CONCLUSION AND FUTURE WORK

In this work, the fusion technique is applied to predict crime
on an hourly timescale for two cities in the USA. Introduc-
ing the DLF module into our architecture helped to predict
the best result. Moreover, the use of the Transfer learning
technique reduced the training time to a certain amount.
Our model can predict crime from Spatio-temporal based
Categorical data and has overcome all the limitations of the
current state-of-the-art.

Although our model performs well, there are some disad-
vantages, such as the training time of the whole system being
more than moderate. Due to the small amount of data in some
categories, we need to re-categorize them into 3 groups.

In the future, to overcome these problems, we plan to
develop a model that requires less time to train and can also
work with a small amount of data in a category.
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