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ABSTRACT The technology of the brain-computer interface (BCI) employs electroencephalogram (EEG)
signals to establish direct interaction between the human body and its surroundings with promising appli-
cations in medical rehabilitative services and cognitive science. Deep learning approaches, particularly the
detection and analysis of motor imagery signals using convolutional neural network (CNN) frameworks have
produced outstanding results in the BCI system in recent years. The complex process of data representation,
on the other hand, limits practical applications, and the end-to-end approach reduces the accuracy of
recognition. Moreover, since noise and other signal sources can interfere with brain electrical capacitance,
EEG classifiers are difficult to improve and have limited generalisation ability. To address these issues,
this paper proposes a new approach for EEG motor imagery signal classification by using a variational
autoencoder to remove noise from the signals, followed by a combination of deep autoencoder (DAE) and a
CNN architecture to classify EEG motor imagery signals which is capable of training a deep neural network
to replicate its input to output using encoding and decoding operations. Experimental results show that the
proposed approach for motor imagery EEG signal classification is feasible and that it outperforms current
CNN-based approaches and several traditional machine learning approaches.

INDEX TERMS Electroencephalography, deep autoencoder, convolutional neural network, variational
autoencoder, motor imagery.

I. INTRODUCTION
Brain-computer interface (BCI), also known as the brain-
machine interface (BMI), creates a non-muscle channel that
allows the human body to communicate directly with external
devices [1], [2]. There are three types of BCI paradigms:
invasive, partially invasive, and non-invasive. The most pow-
erful procedures, such as visual or motor implants [3], [4], are
the most invasive, but they come with many risks associated
with surgery, such as scar tissue and infections. On the other
hand, non-invasive procedures such as electroencephalogra-
phy (EEG) [5] can help with medical diagnosis and research
while also addressing real-world issues. Electrocorticography
(ECoG) [6] is a semi-invasive method that only requires
surgery to implant devices on the brain’s surface.

The most extensively studied non-invasive BCI is EEG,
which is relatively inexpensive and simple to carry out, while
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providing fine temporal resolution. As a result, it is a com-
mon method for analyzing and monitoring changes in brain
electrical activity.

The frequency range of brain oscillations is typically
between 0.5 and 40 Hz. Based on these measurements, EEG
signals are divided into five rhythms: Delta δ (0.5-4 Hz),
Theta θ (4-7 Hz), Alpha α (8-13 Hz), Beta β (14-30 Hz), and
Gamma waves γ (>30 Hz) that are all present in different
parts of the brain [7]. EEG aids in the detection of a variety
of brain abnormalities such as sleeping disorders, emotional
variance, and seizure detection, and researchers have recently
proposed user identification systems [8], neuromarketing [9]
and rating prediction systems [10].

EEG-based BCI has been studied for its effects on various
paradigms, including exogenous and endogenous characteris-
tics. One of the most common modes is motor imagery (MI).
While some oscillating activity in the brain’s sensorimotor
cortex corresponds to specific imagination, MI refers to sub-
jects performing an action by imagining a specific part of
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their body (such as the left and right hands, as well as the
feet) instead of moving it [11].

Machine learning technology is frequently used to catego-
rize and identify these MI tasks. The MI-BCI system can be
used to control external devices such as wheelchair controls
or neural prostheses for people with disabilities, as well as to
assist healthy people with difficult tasks, such as controlling
devices, automatic driving, and epilepsy diagnosis. Because
of the low cost, high availability, and lack of any manual
support with EEG signals, motor imagery BCI systems have
become increasingly powerful intelligent machines.

The MI-BCI system has traditionally been divided into
five phases: acquisition of signal data, preprocessing of data,
feature extraction, classification, and device control inter-
face [12]. MI-EEG signal collection, signal digitalisation,
and data storage are all part of the data acquisition phase.
Filtering, cleaning, and transformation of data are all part
of the data preprocessing phase. Discriminative features are
extracted from EEG signal data that contain useful infor-
mation during the feature extraction phase. The extracted
features are used as input to train machine learning models
in the classification phase. Different signals and MI tasks
can be classified using the trained models. Finally, in the
device control interface phase, the categorized signals are
converted into commands to control devices like robots and
home appliances [13]–[15].

In the field of MI-EEG research, a wide range of feature
extraction and classification techniques have recently been
used. The Common Spatial Patterns (CSP) and its variants,
such as the filter-bank CSP (FBCSP), have progressed con-
siderably in the classification of MI. Deep learning tech-
niques, on the other hand, do not rely on handcrafted features.

In this paper, a novel deep learning architecture for MI
EEG signal classification based on DAE and CNN is pre-
sented. The CNN convolution kernel is trained using an unsu-
pervised deep autoencoder. The main benefit of combining a
deep autoencoder with a CNN is that the DAE is a nonlinear
feature extraction technique that is used before classification
of a high-dimensional dataset to remove redundant informa-
tion that exists in the EEG signal. It also has a significant
advantage over other competitors because it is capable of
learning a deep neural network that is trained to replicate its
input to its output through encoding and decoding operations.

The CNN convolution kernel is trained using an unsu-
pervised deep autoencoder. The deep autoencoder is a
fully connected three-layer neural network with an unsu-
pervised training method because a label is not required
during training. Encoder training aims to learn better
representations of input data in order to train better
classifiers.

The remainder of the paper is organised as follows:
Section II provides a comprehensive review of the main
approaches developed for MI-EEG. Section lll describes the
proposed DAE and CNN approach. The experimental results
and discussion of the approach are presented in Section IV,
followed by conclusions in Section V.

II. RELATED WORK
A variety of machine learning algorithms and feature extrac-
tion methods have been studied in the field of MI-EEG
in order to overcome the limitations of small datasets and
low signal-to-noise ratios. The research background can
be formed into two groups of traditional machine learning
approaches and modern deep learning-based ones. Following
is a more in-depth discussion of these methods.

A. TRADITIONAL MACHINE LEARNING APPROACHES
Many techniques for MI-EEG classification have been pro-
posed, with the traditional method of hand-crafted feature
extraction in the time and frequency domains being one of
them. One of the most popular and powerful methods for
feature extraction is the Common Spatial Patterns (CSP) [16],
[17], which has been used in a variety of other approaches, for
example Filter-Bank CSP (FBCSP) [18], [19], Sub-band CSP
(SBCSP) [20], sparse CSP [21], and discriminative filter bank
CSP (DFBCSP) [22] that has achieved good accuracy on pub-
lic datasets such as BCI Competition IV datasets 2a and 2b.

Many researchers use time frequency signal processing
methods for feature extraction, such as the short time Fourier
transform (STFT) which was used by Tabar and Halici [23] to
extract information about time, frequency, and location from
raw EEG signals while also converting them to images, con-
tinuous wavelet transform (CWT)which was used by Lee and
Choi [24] to convert EEG signals into spectrums of time and
frequency, and empirical mode decomposition (EMD) [25].
Furthermore, principal component analysis (PCA) and inde-
pendent component analysis (ICA) are examples of dimen-
sion reduction techniques that is used to improve MI task
recognition performance [26]–[28].

In addition, traditional classifiers such as Linear Discrim-
inant Analysis (LDA) and Support Vector Machines (SVM)
have been used to discriminate hand-crafted feature vectors.
A transfer function for dimensionality reduction was pro-
posed by Ji and Ye [29] as a consolidated framework for
generalised Linear Discriminant Analysis (LDA). The frame-
work describes the characteristics of various algorithms as
well as their relationships.

The SVM can also produce promising results when com-
bined with the right features [30]. Kumar et al. [31] proposed
a mutual information based frequency band selection bases
on CSP features and LDA is used to further reduce dimen-
sionality before SVM is used to classify the patterns.

Park and Chung [32] developed a method for extracting
more discriminative CSP features for an SVM classifier using
method of channel optimal selection, resulting in 88.62%
accuracy. Furthermore, Kumar et al. [33] published a follow-
up study in which, before classifying with SVM, they use
a Long Short-Term Memory (LSTM) network for temporal
filtering and LDA for spatial filtering.

Islam et al. [34] proposed a multiband tangent space
mapping with sub-band selection (MTSMS) approach where
the tangent features of a multichannel electroencephalo-
gram (EEG) signal are estimated on each sub-band after it is
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decomposed intomultiple sub bands. Sub-bandswith features
capable of improving motor imagery classification accuracy
are selected using a mutual information analysis-based effec-
tive algorithm. Feature space is created by combining the
obtained features of selected sub-bands and to reduce the
features dimension, a principal component analysis-based
approach is used, the data is then classified using SVM.

Despite the fact that these traditional approaches have
been successful in recognising MI, designing accurate BCIs
remains a challenge, leaving room for further research in this
area.

B. DEEP LEARNING APPROACHES
In the field of EEG signals, the traditional machine learning
approach is commonly used. However, its EEG signal pro-
cessing performance and accuracy are insufficient. To address
this issue, researchers have begun to investigate the feasibility
of employing many deep learning approaches in the analysis
of EEG signals.

The CNN was used by Li et al. [35] to classify MI sig-
nals. They began by extracting primary features such as
EEG channel dependency as well as temporal features. After
that, CNN is used to extract high-level features. Moreover,
based on deep CNN, Chaudhary et al. [36] developed a
method for recognising MI tasks in a BCI system. The
DCNN is specifically used to classify EEG signals from
right hand and foot MI-tasks. The proposed method uses
time-frequency (T-F) approaches to convert the input EEG
signals into images. Short-time Fourier Transform (STFT)
and continuous-wavelet-transform (CWT) are two time-
frequency approaches that are commonly used. The DCNN
stage is used to apply the images of MI-tasks EEG signals
after T-F transformation. AlexNet, a DCNN model that has
been pre-trained, is investigated for classification. Lee and
Choi [37] constructed 2D images are used to train a CNN
model by using CWT.

Zhang et al. [38] developed a novel approach by combining
deep learning and data augmentation. To improve classifica-
tion accuracy for the small training dataset, empirical mode
decomposition method on EEG frames, two neural networks
were used to generate new artificial frames, train the weights,
and classify two classes of motor imagery signals: a CNN and
a wavelet neural network (WNN) which is a new type of neu-
ral network that replaces convolutional layers with wavelets
employed. For MI classification, Wu et al. [39] proposed
the paralle (MSFBCNN) multiscale filter bank convolutional
neural network. In a layered end-to-end network structure,
a feature-extraction network extracts temporal and spatial
features. On small datasets, you can use this method to train
an individual model for inter-subject classification, a setup
and fine-tuning strategy for networks is used to improve the
transfer learning ability.

Amin et al. [40] proposed a multi-layer CNNs (MCNN)
method for improving EEG MI classification accuracy by
combining CNNs of various characteristics and architec-
tures (CCNN) when capturing spatial and temporal features

from raw EEG data, different convolutional features are
used. The MCNN and CCNN outperform all state-of-the-art
machine learning and deep learning techniques.

Lu et al. [41] developed a new deep learning method based
on restricted Boltzmann machines (RBM). For comparison,
the frequency representation of EEG recordings was obtained
using the Fast Fourier transform (FFT) and wavelet pack-
age decomposition (WPD) separately. The frequency domain
data is then used to train a deep belief network (DBN) made
up of RBM.

Xu et al. [42] employed transfer learning to train their
CNN, which was designed to classifyMI signals. By transfer-
ring the parameters of the VGG-16 (visual geometry group)
pre-trained network to their proposed CNN model, they were
able to take advantage of it.

Alazrai et al. [43] employed the Choi-Williams distribu-
tion (CWD) transformation on EEG signals to create 2D
images for CNN input. The energy distribution in both the
time and frequency domains is reflected in these images.

Zhao et al. [44] proposed a multi-branch CNN for MI
signal classification. The 3D representation is created by con-
verting EEG signals into a 2D array sequence that keeps the
spatial distribution of sampling electrodes intact. For the 3D
representation, the classification strategy and multi-branch
3D CNN are designed specifically. Three deep learning mod-
els for decoding movements in motor imagery precisely from
raw EEG signals have been proposed by Tayeb et al. [45]:
(1) a short-term memory that is both long and short (LSTM);
(2) a spectrogram-based CNN; and (3) a recurrent convo-
lutional neural network (RCNN). State-of-the-art machine
learning techniques were outperformed by deep learning
models in terms of classification performance, which could
pave the way for the development of new robust EEG signal
decoding. Using the CNN-based BCI, they successfully con-
trolled a robotic arm in real time.

Kwon et al. [46] developed a large EEG database
based on motor imagery (MI) and proposed a deep
CNN-based framework that is subject-independent. A large-
scale MI database is used to represent the overall brain
signal patterns by using spectral–spatial input generation
which shows superior performance of the feature repre-
sentation combined with a method based on deep neural
networks.

III. METHODOLOGY
The proposed system framework is depicted in Fig 1. Each
subject data was downloaded separately making a total of
10 datawhich ismixed randomly according to trial that is later
divided into one piece of data for the test set and the remaining
nine are for the training set. The test and training set combined
data from several subjects. Each trial yielded the MI-EEG
raw signals from nine pairs of symmetrical electrodes spread
across the motor cortex, with each pair’s signals forming a
sample. Moreover, each extracted signal contains significant
amount of noise. As a result, the noise was filtered using a
variational auto encoder (VAE).
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FIGURE 1. The proposed system framework.

FIGURE 2. Timing diagram of the trial.

The proposed CNN model was trained in conjunction with
a deep auto decoder, which aids in the representation of the
input at the output layer so that both are as similar as possible.
The EEG features were learned using a 5-layer CNN, and the
dimensions were reduced using 4-layer max pooling. MI was
divided into four categories by the FC layer: left fist, right fist,
both fists, and both feet. The best training model can then be
found by comparing it to the four types of labels. Finally, the
test set was used to assess the model’s validity.

A. DATASET DESCRIPTION
The Physionet dataset [47] used in this paper was recorded by
the BCI2000 system developers [48]. It consists of over 1,500
EEGs (one and twominutes) recordings using a sampling rate
of 160 Hz from 109 different subjects. For each subject, four
MI tasks were completed: left fist (T1), right fist (T2), both
fists (T3), and both feet (T4), with each MI task requiring
21 trials. Fig 2 illustrates the trial’s timing diagram.

The trial begins at t = −2 seconds, and the subject relaxes
for 2 seconds. The target appears on the screen at t = 0, and
the symbols are described below:

1) L denotes the motor imagination of the left fist being
opened and closed.

2) R denotes the motor imagination of the right fist being
opened and closed.

3) BLR denotes the motor imagination of both fists being
opened and closed.

4) BF denotes the motor imagination of both feet being
opened and closed.

The MI task was given to the subject for four seconds.
At t = 4s, the target vanishes, indicating that the trial is
over. A new trial begins after a 2 second break [49]. The
motor imagination runs for about 4 seconds each time with
a sampling frequency of 160 Hz. As a result, each electrode’s
effective data size per test is 640. A pair of symmetric elec-
trodes are present in the sample, and their data is connected
in series. Therefore, the sample size is 1,280.

A total of 84 trials were completed by each subject on
each MI task, totalling 21 trials per MI task. The dataset in
this study was subjected to 10-fold cross validation. Each
subject’s trials were divided into ten parts. Each task class
has its own set of requirements, two test trials were used and
the remainder as training. As a result, the test set contains
8 trials, while the training set contains 76 trials. In 10 sub-
jects’ datasets (S1∼S10), there are 840 trials, 760 for training
and 80 for testing. Furthermore, each trial yielded 9 samples.
For the training of models and the validation of generalisation
performance, 10 subject dataset with 7,560 samples were
selected in this experiment.

B. PREPROCESSING
The data is subjected to a signal amplification and fil-
tration process at the time of acquisition. To demonstrate
how to segment the data stream, data segmentation was
used. The following steps were used to preprocess the EEG
dataset:

1) The data was sampled at a rate of 128 Hz.
2) The Variational Autoencoder (VAE) was used to

remove EEG noise using a blind source separa-
tion technique, based on prior EEG noise reduction
research [50].

3) The discrete wavelet transform (DWT)was used to split
EEG signals into bands; beta and Gamma waves were
considered in this experiment.

4) A common reference was used to average the data and
the pre-trial segments of three seconds were removed
due to the fact that the data was divided into 60 second
trials.
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FIGURE 3. Deep Autoencoder.

C. DEEP AUTOENCODERS
As shown in Fig 3, an autoencoder is a fully connected
artificial neural network system with a bottleneck layer [51].
In this paper, a deep autoencoder is used to extract ERP and
morphological features from EEG signals in order to help
capture neural activities related to both sensory and cognitive
processes.

The encoder and the decoder are the two blocks that make
up an autoencoder. At the bottleneck layer, the encoder’s goal
is to convert a higher-dimensional input feature vector into a
lower-dimensional representation. At the decoder end of the
autoencoder, the bottleneck features are transformed into a
higher dimensional representation, and the input and output
features drive the autoencoder learning, ensuring that the bot-
tleneck layer presents a lower dimensional representation of
the input features. The operation of encoding can be described
as follows:

z = f (θ; x) = l (Wx + n) (1)

where the input feature vector x is represented by the bot-
tleneck feature vector z, which propagates through hidden
layers. θ = {W , n}. W is the weights of the network, n is
the network biases, and l is a linear or non-linear activation
function.

At the output stage, the bottleneck feature vector z, which
propagates through hidden layers at the decoder, is mapped
to the higher dimensional representation y as

y = j
(
θ ′; z

)
= l

(
W ′z+ n′

)
(2)

where θ ′ =
{
W ′, n′

}
. As a result, the DAE output can be

expressed as a function of the encoder and decoder stages
weights and biases, namely

{
θ, θ ′

}
and written as y =

j
(
θ ′; (f (θ; x))

)
. The DAE parameters θ and θ ′ are optimised

to bring y as close to input/target x as possible while also
maximising p (x | y). Moreover, mean square error (MSE)
backpropagation between target x and network output y is
used to optimise the autoencoder parameters.

The deep autoencoder was chosen because it learns a com-
pressed representation of the input in order to reconstruct it
later, making it suitable for dimensionality reduction. It is

made up of an encoder and a decoder, which are used to deal
with or mitigate the effects of the curse of dimensionality, and
they feed the learned features to a standard CNN classifier.
The features are derived from data pertaining to the stimulus
onset of self-face images by averaging voltages in 20 non-
overlapping time-windows with a width of 10 sample points,
yielding a 5× 20matrix per trial, which only uses the selected
channels and time intervals. The sparse method was used
to expand the 5 × 20 matrixes to 20 × 20 matrixes, i.e.,
adding zero to the blank space, and a 20 × 20 feature map
was generated for each trial to organise the features for CNN
training.

D. CNN
The dataset consisted of 10 subjects and 7,560 samples, with
6,840 samples in the training set and 720 samples in the test
set. The number of layers in the structure, as well as their
parameters were determined through a series of experiments.
Five layers of CNN and four layers of max pooling have been
identified.
This paper used the deep convolution neural network as

shown in Fig 4, which is useful for identifying key features
vector.
Table 1 shows the CNN architecture that was chosen: The

input layer is the first layer; the convolutional layers are the
second, third, fifth, seventh, and ninth layers; the max pooling
layers are the fourth, sixth, eighth, and tenth layers; and the
fully connected layer is the eleventh layer.
The CNN input data format is S × E , where S denotes the

sampling amount for each channel and E denotes the number
of electrodes used. In this paper, the output of the DAE were
used as S = 488 and E = 64.
Down sampling is the core of the pooling process. Max

pooling was chosen, which is achieved by taking the largest
value of the neighbourhood’s attributes. It can better extract
feature information by suppressing the situation where net-
work parameter error causes the predicted mean value to
move. An algorithm [52] is shown in the max-pooling equa-
tion (3) below:

zx,w = max
(i,j)∈lx,w

yi,j (3)

where zx,w is the result of the kth feature map’s pooling
operator and yi,j is a pooling region that represents a local
neighbourhood around the position at (i, j) of lx,w (x,w).

The FC layer is deployed after feature extraction to
improve the network’s nonlinear mapping capacity. It inter-
prets global data and combines local features learned from
the convolutional layer to create global classification features.
In the same layer, there are no connections between neurons
in this layer, and every neuron in the preceding layer is linked
to all neurons in the layer before it.. The formula is as follows:

y(l)j = a(
n∑
i=1

x(l−1)i × w(l)
ji + b

(l)) (4)

where n denotes the previous layer’s number of neurons.
In this layer, the weight of the connections between neurons
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j and neurons I in the preceding layer is w(l)
ji , j neurons have

a bias of b(l), and the activation function is a.
A softmax layer with four neurons [t1, t2, t3, t4] that rep-

resent the four categories generates the FC layer’s output.
It maps the outputs of several neurons to the interval (0,
1), which could be thought of as a possible outcome of
multiclassification. The formula is as follows:

tn = argmax

(
et
n∑4

n=1 e
tn

)
(5)

Rectified linear units (ReLu) [53] were chosen as the acti-
vation functions as the gradient vanishing problem during
training is less likely and training convergence is faster as
follows:

f (x) =

{
0, if x > 0
x, otherwise

(6)

Furthermore, the proposed CNN architecture uses the
batch normalisation (BN) algorithm to improve classification
accuracy. The batch normalisation method involves perform-
ing normalisation processing (mean value 0 and standard
deviation 1) before each layer of the network input for each
batch of data. That is, for any neuron in this layer, x̂(k) uses
the following formula (presuming the k-th dimension):

x̂(k) =
x(k) − E

[
x(k)

]√
Var

[
x(k)

] (7)

where x(k) is the kth neuron’s original input data, E[x(k) is the

mean of the kth neuron’s input data p, and
√
Var

[
x(k)

]
is the

standard deviation of the data in the kth neuron.
Batch normalisation adds more constraints to the data dis-

tribution, improving the model’s generalisation ability. After
normalisation, the mean and standard deviation of the input
distribution are both forced to be 0 and 1. Reconstruction
of the transformation and learnable parameters γ and β are
introduced in a particular implementation to re-distribute the
data as it was originally:

z(k) = γ (k)x̂(k) + β(k) (8)

where γ (k) and β(k) represent the input data distribution’s
variance and deviation, respectively.

The formula for the batch normalised network layer’s com-
plete forward normalisation process is as follows:

µ =
1
N

N∑
i=1

X ′i (9)

σ 2
=

1
N

N∑
i=1

(
Xi′ − µ

)2 (10)

Xnormi =
Xi′ − µ
√
σ 2 + ε

(11)

X̃i = γXnormi + β (12)

where X ′i is the input, µ is the mean, and the variance is σ 2.

FIGURE 4. The proposed CNN architecture is depicted in this diagram.
5 convolutional layers, 4 max-pooling layers, and a fully connected layer
make up the model. For this work, Adam was used as the optimization
algorithm.

The training method used was mini-batch training, which
divides the total number of the sample that were trained into
reduced chunks and instead of learning one single sample,
all parameters are updated after learning one mini-batch. The
batch size used was 64.

The Adam optimisation algorithm was used to minimise
the loss function using a constant of 1× 10−5 as the learning
rate of the network in this study.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this paper, DAE was used to extract the features and the
performance of the features evaluated by using the CNN
classifiers was explored.

In the classification step, the dataset was subjected to
10-fold cross validation, with 90% of the data being used to
train the CNN model, which was then tested for robustness
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TABLE 1. Proposed CNN architecture.

FIGURE 5. The averaged global accuracy of an individual subject across a dataset of ten subjects. (a) A column chart illustrating an individual subject’s
global averaged accuracy. (b) Column chart of an individual subject’s four types of MI accuracy.

to data changes. To ensure that the model was valid, 10%
of the dataset was employed as a test set. The training and
test sets were then normalised before being sent to CNN for
processing.

A. EVALUATION METRICS
The following metrics are used to compare the proposed
method performance to that of other approaches: accuracy,
F1 score and receiver operating characteristic (ROC) curve.
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FIGURE 6. Comparison of classification performance on the physionet dataset. (a) and (b) show training and test loss function curve for 10 subjects.
(c) and (d) show training and test accuracy function curve for 10 subjects.

The following formulas are used to calculate these metrics:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(13)

Precision =
TP

TP+ FP
(14)

Recall =
TP

TP+ FN
(15)

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

(16)

where true positive (TP) is the number of positive samples
correctly classified and true negative (TN) is the number
of negative samples correctly classified. False positive (FP)
refers to the number of samples with an original negative label
that are classified as positive class, while false negative (FN)
refers to the number of positive class samples that are pre-
dicted to be negative class.

The AUC criterion is another important criterion for deter-
mining the efficiency of a classifier. As shown in Fig 7, the
area under the curve (AUC) is the probability that a classifier
will rank a set of data at a random chosen positive instance
higher than a random chosen negative instance and has a
range of 0.5 to 1. The method is more reliable if the AUC
is close to 1.0.

FIGURE 7. ROC curve.

B. CLASSIFICATION ACCURACY
To obtain valid results, all trials of a specific subject were
divided into 10 parts, nine for training and one for testing to
make sure no data blocks were split between the training and
test sets as a result of this.

The model was then trained and tested for accuracy. Data
segmentation, training, and testing were all part of the pro-
cess. Moreover, for each subject, ten cycles were created.
Their average was used to get the global averaged accuracy
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FIGURE 8. The physionet dataset mean confusion matrices for all
subjects.

of each subject. The overall accuracy (ACC) and area under
curve (AUC) for the 10 subjects are shown in Table 2.

The global average accuracy of ten subjects is 96.59%,
as shown in Fig 5(a). S4 had the best classification result.
It has 98.76% (T1), 100% (T2), 99.01% (T3), and 99.46%
(T4) MI accuracies, respectively. S10 has the lowest average
accuracy, whileMI accuracies are 91.11% (T1), 89.17% (T2),
97.56% (T3), and 90.12% (T4), respectively as shown in
Fig 5(b). T2 has the lowest accuracy, indicating that S10
has the worst classification effect on T2. On four MI, the
average accuracy of ten subjects is 96.08% (T1), 95.29%
(T2), 96.87% (T3), and 96.41% (T4). Both fists and right
fist are the best and worst of the four types of MI tasks
respectively.

Fig 6 illustrates the loss and accuracy function curves of
the physionet dataset for 10 subjects. The convergence of the
models can be seen under a variety of conditions. The number
of iterations is represented by the abscissa, while the loss and
accuracy values are represented by the ordinate. As shown
in Fig 6(a) and (b), for the first two epochs, the loss on the
training set decreases rapidly. The loss in the test set does not
decrease at the same rate as in the training set, but instead
remains nearly flat over several epochs. This indicates that
our model generalises well to new data. Moreover, In the first
two epochs, the accuracy increases rapidly, indicating that
the network is learning quickly. After that, the curve flattens,
indicating that the model can be trained with fewer epochs as
shown in Fig 6(c) and (d).

The mean confusion matrices for all subjects is shown
in Fig 8 which show their group-level classification results.
The percentage of correct classification is represented by
the numbers in the diagonal lines, while the percentage of
misclassification is represented by the numbers in the other
lines. Both the right hand and both feet had the best MI
discrimination.

C. PERFORMANCE COMPARISON
The work of Ma et al. [54], Pinheiro et al. [55],
Dose et al. [49], Karácsony et al. [56], Hou et al. [57] and

TABLE 2. Performance (ACC and AUC) of the proposed method for
10 subjects classification on physionet dataset.

TABLE 3. Comparison of results using the Physionet EEG database.

Lun et al. [58] who performed the same MI tasks on the
same dataset were compared to verify the effectiveness of the
proposed approach, as shown in Table 3.

Hou et al. [57] applied the Colin27 average brain for
the Physionet database, the OpenMEEG toolbox’s imple-
mentation of the boundary element method (BEM) for a
realistic-geometry head model, and extract features by using
the Morlet wavelet approach. Its preprocessing procedure is
extremely complex. Lun et al. [58], on the other hand, did
not perform any preprocessing or feature extraction on the
raw data which used as CNN input.

The proposed method outperforms the most effective pre-
sented models, demonstrating that DAE improves model
decoding performance and CNN improves model generalisa-
tion performance. The CNNmethod is effective and improves
the model’s generalisation performance in the classification
of MI.

While EEGs are frequently low-amplitude and noisy, the
patterns are not consistent between the various subjects and
patterns. However, the cross-subject model has a high level of
accuracy and performs well. In comparison to most previous
works, the VAE performs well in terms of removing the noise
and then the DAE are generating the features which are fed
to the CNN for classification.

The accuracy and stability of high-dimensional BCI classi-
fication are improved with this approach while also improv-
ing their generalisation ability. As a result, a BCI may
become more widely used and not just suitable for one
individual.
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V. CONCLUSION
This paper presents a novel DAE and CNN classifier for
motor imagery classification using EEG signals. EEG signals
from ten subjects were recorded while they performed four
MI tasks to assess the proposed framework performance. The
input images created by EEG signals are first denoised by
using the VAE algorithm and then trained for feature extrac-
tion by the DAE in this framework. The extracted features
are then classified using the CNNmodel. Using the physionet
dataset to compare the results of the DAE-CNN approach to
those of other approaches, it is demonstrated that our method
produces the most accurate results.

This study’s findings demonstrate that the proposed frame-
work is capable of distinguishing between MI tasks within
subjects. Moreover, this approach can be further tested with
a clinical-grade EEG system, and it should be investigated to
see if the number of electrodes can be reduced even further.
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