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ABSTRACT In this paper, we propose a highly feasible fully online multi-object tracking and
segmentation (MOTS) method that uses instance segmentation results as an input. The proposed method is
based on theGaussianmixture probability hypothesis density (GMPHD) filter, a hierarchical data association
(HDA), and a mask-based affinity fusion (MAF) model to achieve high-performance online tracking. The
HDA consists of two associations: segment-to-track and track-to-track associations. One affinity, for position
and motion, is computed by using the GMPHD filter, and the other affinity, for appearance is computed
by using the responses from single object trackers such as kernalized correlation filter, SiamRPN, and
DaSiamRPN. These two affinities are simply fused by using a score-level fusion method such as min-max
normalization referred to as MAF. In addition, to reduce the number of false positive segments, we adopt
mask IoU-based merging (mask merging). The proposed MOTS framework with the key modules: HDA,
MAF, andmaskmerging, is easily extensible to simultaneously trackmultiple types of objects with CPU-only
execution in parallel processing. In addition, the developed framework only requires simple parameter tuning
unlike many existing MOTS methods that need intensive hyperparameter optimization. In the experiments
on the two popular MOTS datasets, the key modules show some improvements. For instance, ID-switch
decreases by more than half compared to a baseline method in the training sets. In conclusion, our tracker
achieves state-of-the-art MOTS performance in the test sets.

INDEX TERMS Multi-object tracking, instance segmentation, tracking by segmentation, online approach,
Gaussian mixture probability hypothesis filter, affinity fusion.

I. INTRODUCTION
Multi-object tracking and segmentation (MOTS) has recently
become one of challenging research fields which has been
proposed for pixelwise intelligent systems beyond 2D bound-
ing boxes. This new vision task MOTS has been extended
from a conventional task multi-object tracking (MOT) with
segmentation. Since the MOT benchmark datasets [1]–[3]
were released, the tracking-by-detection paradigm has been
themainstream, and breakthroughs [4], [5] in object detection
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have been achieved by many deep neural network (DNN)-
based detectors [6]–[10] from various sensor domains,
such as color cameras (2D images) and LiDAR (3D point
clouds). For instance, the detection responses of [7], [8]
are 2D bounding boxes and those of [6], [9], [10] are 3D
boxes. In addition, He et al. [11] introduced a pixelwise
classification and detection method represented by instance
segmentation, which has motivated many segmentation-
based studies including MOTS.

The MOTS task was first introduced in
Voigtlaender et al. [12] with a new baseline method, new
evaluation measures, and a new MOTS dataset extended
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FIGURE 1. Flow chart of parallel multi-object tracking and
segmentation (MOTS) processing, which receives two classes of objects,
i.e., cars and pedestrians. (a) Modules (input, detection, tracking, and
output) are implemented as (b) processes (image sequencing, instance
segmentation, MOTS, and MOTS results). Our proposed MOTS framework
is denoted by MAF_HDA.

from MOTChallenge [3] and KITTI [2] image sequences.
To solve this task, most of state-of-the-art methods [13]–[18]
have exploited multi-stage approaches that separate detection
(instance segmentation) and tracking modules while some
one-stage methods [12], [19], [20] have been rarely
proposed. Luiten et al. [16] and Kim et al. [17] have
proposed MOTS methods that use a fusion of 2D box
detection, 3D box detection, and instance segmentation
results. Xu et al. [13] exploited spatial-embedding [21] to
raise instance segmentation quality which performs instance
segmentation without bounding box (bbox) proposals so
runs faster than bbox proposal based instance segmentation
like Mask RCNN [11]. Also, they devised a point-wise
representative feature extraction from input segments which
can consider foreground and background information.
Yang et al. [14] focused refining the segmentation quality
fusing two difference Mask RCNN implementations in
offline. These state-of-the art methods [13], [14], [16], [17],
[19], [20] have improvedMOTS performance through raising
the detection quality: refinement or fusion of multi-type
detections, and they necessarily involve exhausted additional
learning step. Different to those state-of-the-artMOTSworks,
in this paper, we propose an easily feasible online MOTS
method without the exhausted learning but also our method
achieves competitive MOTS performances.

Our contributions are summarized as follows:
1) We propose an easily feasible online MOTS
method consisting of (a) two-step hierarchical data
association (HDA), (b) mask-based affinity fusion
(MAF), and (c) mask merging. These key modules
can run with CPU-only execution.
2) Particularly among the key modules, (b) MAF
effectively fuses ‘‘position and motion’’ affinity
with a Gaussian mixture probability density
(GMPHD) filter [22] and ‘‘appearance’’ with single
object tracker such as KCF [23], SiamRPN [24],
and DaSiamRPN [25] to improve the MOTS
performance compared to a baseline method using
only one-step GMPHD filter association.

3) Additionally, the tracking part of proposed
method can run with CPU-only process when
KCF is used so that it can run in parallel to
simultaneously track multiple types of objects: cars
and pedestrians, in this paper (see Figure 1).
4) Finally, we evaluate the proposed method on
state-of-the-art datasets [2], [3], [12]. The results
on the training sets show that the developed key
modules efficiently improve MOTS performances
compared to the baseline method. In the results on
the test sets, our method not only shows competi-
tive performance against state-of-the-art published
methods but also achieves state-of-the-art level
performance against state-of-the-art unpublished
methods that are available at the leaderboards of the
MOTS20 and KITTI-MOTS websites.

The proposed method has high applicability due to a
feasible combination of existingmodels [22]–[25] and simple
parameter tuning unlike many state-of-the-art DNN based
tracking methods [12]–[20]. In addition, in the experi-
ments, our method shows state-of-the-art level performance.
We present the works related to the proposed method in
Section II and the details of our method are covered in
Section III. Additionally, we discuss the experimental results
in Section IV and conclude the paper in Section V. In what
follows, we use MAF_HDA as the abbreviation for our
proposed method.

II. RELATED WORKS
A. TRACKING MODELS WITH A PHD FILTER
The PHDfilter [22], [26], [27] was originally designed to deal
with radar and sonar data-based MOT systems. Mahler [26]
proposed recursive Bayes filter equations for the PHD filter
that optimize multi-target tracking processes where states and
observations are defined with a random-finite set. Following
this theory, Vo et al. [27] implemented the PHD filter by
using a sequential Monte Carlo method with particle filtering
and clustering, named the SMCPHD filter, and proposed the
governing equations by using a Gaussian mixture model with
a closed-form recursion method named the Gaussian mixture
probability hypothesis density (GMPHD) filter. Since the
GMPHD filter is tractable in implementing online and real-
time trackers, it has been recently extended and exploited
as a famous tracking model in video-based systems. While
the radar and sonar sensors receive massive number of false
positives but rarely miss any observations, visual object
detectors yield many fewer false positives and more missed
detections. Thus, in video-based tracking, noise control
processes for the original domains are simplified and many
additional techniques for visual objects have been developed.

1) POSITION AND MOTION MODELS
Song et al. [28] combined the GMPHD filter and data
association processes with two-step hierarchy to recover lost
tracks IDs. They designed an affinity model considering

60644 VOLUME 10, 2022



Y.-M. Song et al.: MOTS With Embedding MAF in HDA

position and linear motion between the tracks in the second
step association. This approach is an intuitive implementation
of the GMPHD filter to reconnect lost tracks. In addition,
they presented an energy minimization model based on
occluded objects group to correct the false associations
that already occurred in the first step association between
detections and tracks. Sanchez-Matilla et al. [29] proposed
detection confidence-based data association schemes with
a PHD filter. Strong (high-confidence) detections initiate
and propagate tracks, but weak (low-confidence) detec-
tions propagate only existing tracks. This scheme works
well when the detection results are reliable. However, the
tracking performance depends on the detection performance
and is especially weak for long-term missed detections.
Sanchez-Matilla et al. [30] utilized long short-term mem-
ory (LSTM) models to design a global motion model
for MOT.

2) APPEARANCE MODELS
More intensive tracking solutions [31], [32] have been
proposed with appearance models. Kutschbach et al. [31]
combined a naive GMPHD filtering process and kernelized
correlation filters (KCF) [23] that can update appearance
online and discriminate occluded objects. They proposed
robust online appearance learning to refind the IDs of lost
tracks. However, updating the appearance of every object
in every frame requires heavy computing resources and
inevitably increases the runtime. In Fu et al. [32], the
GMPHD filter is equipped with an online group-structured
dictionary for appearance learning and an adaptive gating
technique, which is an advanced tracking process suitable for
video-based MOT.

These online MOT methods based on the PHD filter
have successfully improved the tracking performance by
using motion and appearance learning models. We exploit
the GMPHD filter in hierarchical data association of [28]
to consider temporal information. In addition, to efficiently
apply single object tracking (SOT) as appearance affinity in
MOT, different to [31] that they simply used KCF [23] to
propagate detection loss tracks in, we devise a simple and
efficient affinity fusion model which fuse the GMPHD filter
based position andmotion affinity and SOT based appearance
affinity. As shown in Figure 2, three representative SOT
methods: KCF, SiamesRPN [24], and DaSiamRPN [25], can
discriminate falsely classified pedestrian (true class: car)
and true pedestrian since their class-independent feature
extraction abilities.

B. STATE-OF-THE-ART MOTS METHODS
Conventional MOT methods [28]–[36] have exploited the
tracking-by-detection paradigm, where the detectors [7], [8],
[37]–[39] generate 2D bounding box (bbox) results and the
trackers assign tracking identities (IDs) to the bounding
boxes via data association. Refs. [28]–[32] successfully
extended the GMPHD filter into visual object tracking as
we discussed in the previous subsection II-A. Li et al. [34]

FIGURE 2. Demonstration of class-independent discrimination ability of a
single object tracker: KCF [23], in KITTI-MOTS test 0028 sequence.

proposed a dissimilarity cost computation in form of weight
multiplied summation of appearance, structure, motion and
size based on 2D bbox. Muresan and Nedevschi [33] used
a sophisticated MOT method that aggregates features of 2D
image and 3D point cloud spaces by projecting 2D pixels
into 3D point cloud map. Unlike MOT, MOTS uses pixelwise
instance segmentation results as a tracking input beyong 2D
bbox results. Voigtlaender et al. [12] first introduced the
MOTS task. They extended the popularMOT datasets such as
MOTChallenge [3] andKITTI [2] with instance segmentation
results by using a fine-tuned MaskRCNN [11] for the same
image sequences, and proposed a new soft multi-object
tracking and segmentation accuracy (sMOTSA) measure that
can be used to evaluate MOTS methods. In addition, they
presented a newMOTS baseline method named TrackRCNN,
which was extended from MaskRCNN with 3D convolutions
to deal with temporal information. Inspired by the new task,
state-of-the-art MOTS methods [13], [14], [16], [19] have
been proposed very recently. MOTSFusion [16] proposes
a fusion-based MOTS method exploiting bounding box
detection [40] and instance segmentation [41]. It estimates
a segmentation mask for each bounding box and builds
up short tracklets using 2D optical flow, then fuses these
2D short tracklets into dynamic 3D object reconstructions
hierarchically. The precise reconstructed 3D object motion
is used to recover missed objects with occlusions in 2D
coordinates. PointTrack [13] devises a new feature extractor
based on PointNet [42] to appropriately consider both
foreground and background features. This is motivated by
the fact that the inherent receptive field of convolution-based
feature extraction inevitably confuses up the foreground and
background features. PointNet is used to randomly sample
feature points considering the offsets between foreground
and background regions, the colors of those regions, and the
categories of segments. Then the context-aware embedding
vectors for association are built after concatenation of the
separately computed position difference vectors. In addition
PointTrack exploited spatial-embedding [21] to raise instance
segmentation quality which performs instance segmentation
without bounding box. Similarly, CPPNet [19] trained their
segmentation model by using [21] and proposed copy-paste
data argumentation technique. ReMOTS [14] focused on
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FIGURE 3. Detailed processing pipeline of MAF_HDA with input (images and instance segmentation results) and output (MOTS results). The key
components are hierarchical data association (HDA), mask merging, and mask-based affinity fusion (MAF). HDA has two association steps: S2TA and
T2TA. MAF executes each affinity fusion in each association step while mask merging runs once between S2TA and T2TA.

refining the segmentation quality fusing two difference Mask
RCNN implementations in offline.

Many of state-of-the-art MOTS studies [13], [14], [16],
[19] have performed with their own pixelwise segmentation
quality increase techniques. Different to them, we propose
an easily feasible MOTS method without intensive or
additional learning techniques that can give high applicability
to research community. Our proposed method, named
MAF_HDA, exploits the tracking-by-instance-segmentation
paradigm, which performs the MOTS task by using two
popular filtering methods: the GMPHD filter [22] and the
KCF [23]. We build a two-step hierarchical data associa-
tion (HDA) strategy to handle tracklet loss and ID switches.
In each association step, position and motion affinity are
calculated by the GMPHD filter, and appearance affinity is
calculated by the KCF. To appropriately consider these two
affinities, we devise a mask-based affinity fusion (MAF)
model. Those key modules of parameters are simply tuned
through adjusting the values in 0.0 to 1.0 ranges. Moreover,
to show our final method’s efficiency, we compare four
MAF_HDA settings with a conventional KCF, a modified
KCF for MOT (KCF2), and two state-of-the-art Siamese
network based SOT methods: SiamRPN [24] and DaSi-
amRPN [25]. As a result, the four MAF_HDAmethods show
competitive performance in two popular KITTI-MOTS [2]
and MOTS20 [3] datasets against state-of-the-art MOTS
methods [12]–[20] and KCF2 shows the best performance
among the four SOTs.

III. PROPOSED METHOD
In this section, we introduce the proposed online multi-
object tracking and segmentation (MOTS) framework in
terms of input/output interfaces (I/O) and key modules in
detail. Following the tracking-by-segmentation paradigm,
the MOTS method receives image sequences and instance

segmentation results as inputs and gives MOTS results as
outputs, which are shown in Figures 1 and 3. Each instance
has an object type, pixelwise segment, and confidence score
but does not include time series information. Through the
MOTS method, we can assign tracking IDs to the object
segments and turn them into time series information, i.e.,
MOTS results.

The proposed MOTS framework is not only built based on
a HDA strategy consisting of segment-to-track association
(S2TA) and track-to-track association (T2TA) but is also
implemented as a fully online process using only information
at the present time t and the past times 0 to t − 1. In each
observation-to-state association step, affinities between states
and observations are calculated considering position, motion,
and appearance. The ‘‘position and motion’’ and ‘‘appear-
ance’’ affinities are computed by using a GMPHD filter [22]
and a single object tracking (SOT) method such as KCF [23],
SiamRPN [24], and DaSiamRPN [25], respectively. Since
these two types of affinities have different filtering domains,
one affinity can be of a much higher magnitude than the
other affinity. To appropriately consider position, motion, and
appearance information in HDA, we devise a MAF method.
Additionally, to reduce false positive segments, we adopt the
mask intersection-over-union (IoU)-basedmerging technique
between S2TA and T2TA.

In summary, the proposed MOTS framework follows the
order of (1) S2TA, (2) mask merging, and then (3) T2TA,
in which the affinities of each association are computed by
exploiting the GMPHD filter and KCF, are fused by using
MAF. Inwhat follows, we useMAF_HDA as the abbreviation
for the proposed framework (see Figure 3).

A. GMPHD FILTERING THEORY
The main steps of the GMPHD filtering-based tracking
includes initialization, prediction, and update. The set of
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states (segment tracks) and the set of observations (instance
segmentations) at time t are Xt and Zt represented as follows:

Xt = {x1t , . . . , x
Nt
t }, (1)

Zt = {z1t , . . . , z
Mt
t }, (2)

where a state vector xt is composed of {cx , cy, vx , vy}
with a tracking ID, and segment mask. cx , cy, and vx ,
vy indicate the center coordinates of the mask’s 2D box,
and the velocities of the x and y directions of the object,
respectively. An observation vector zt is composed of center
point {cx , cy} of a segment mask skt with a confidence score
δkt . The Gaussian model N representing xt is initialized by
zt, predicted to xt+1|t, and updated to xt+1 by zt+1.

1) INITIALIZATION
The Gaussian mixture model gt are initialized by using the
initial observations from the detection responses. In addition,
when an observation fails to find the association pair, i.e.,
to update the target state, the observation initializes a new
Gaussian model. We call this birth (a kind of initialization).
Each Gaussian N represents a state model with weight w,
mean vector x, input observation vector z, and covariance
matrix P, which are as follows:

gt (z) =
Nt∑
i=1

witN (z; xit ,P
i
t ), (3)

where Nt is the number of Gaussian models. At this step,
we set the initial velocities of the mean vector to zero.
Each weight is set to the normalized confidence value of the
corresponding detection response: confidence score δ given
by instance segmentation module. Additionally, the method
of setting covariance matrix P is shown in Section IV-B2.

2) PREDICTION
We assume that there already has been the Gaussian mixture
gt−1 of the target states at the previous frame t − 1, as shown
in (4). Then, we can predict the state at time t using Kalman
filtering. In (5), xit|t−1 is derived by using the velocity at time
t − 1 and the covariance P is also predicted by the Kalman
filtering method in (6) as:

gt−1(z) =
Nt−1∑
i=1

wit−1N (z; xit−1,P
i
t−1), (4)

xit|t−1 = Fxit−1, (5)

Pit|t−1 = Q+ FPit−1(F)
T , (6)

where F is the state transition matrix, and Q is the process
noise covariance matrix. Those two matrices are constant in
our tracker.

3) UPDATE
The goal of the update step is to derive (7). First, we should
find an optimal observation z at time t to update the Gaussian

model. The optimal z in the observation set Z makes qt the
maximum value in (8) as:

gt|t (z) =
Nt|t∑
i=1

wit (z)N (z; xit|t ,P
i
t|t ), (7)

qit (z) = N (z;Hxit|t−1,R+ HP
i
t|t−1(H )T ). (8)

From the perspective of application, the update step involves
data association. Finding the optimal observations and
updating the state models is equivalent to finding the
association pairs. R is the observation noise covariance.
H is the observation matrix uesd to transform a state vector
into an observation vector. Both matrices are constant in our
application. After finding the optimal z, the Gaussian mixture
is updated in the order of (9), (10), (11), and (12) as:

wit (z) =
wit|t−1q

i
t (z)∑Nt|t−1

l=1 wlt|t−1q
l
t (z)

, (9)

xit|t (z) = xit|t−1 + K
i
t (z− Hxit|t−1), (10)

Pit|t = [I − Kt iH ]Pit|t−1, (11)

K i
t = Pit|t−1H

T (HPit|t−1H
T
+ R)−1, (12)

where the set of wt|t−1 includes wt−1 (weights from the
targets at the previous frame) and wt−1 (weights of newly
born targets). Likewise, Nt|t−1 is the sum of Nt−1 and the
number of the newly born targets.

B. HIERARCHICAL DATA ASSOCIATION (HDA)
To compensate for the imperfection of the framewise one-
step online propagation of the GMPHD filtering process,
we extend the GMPHD filter-based online MOT with a
hierarchical data association (HDA) strategy that has two-
step association steps: S2TA and T2TA (see Figure 4). Each
association has different states and observations as inputs,
which are used to compute position and motion affinitypm
and appearance affinityappr (see Figure 5). Song et al. [28]
proposed a GMPHD filter based hierarchical data association
strategy. They adjust the minimum consecutive frames
for initialization in detection-to-track association and the
minimum track length for track-to-track association since
they use only GMPHD filter based position and motion
affinity for realtime speed. So false associations can be
prevented between just close tracks each other by using
reliable tracks. However, in our work, a track state is
initialized in a single frame as soon as S2TA succeeds and
the minimum track length for T2TA is 1 for fully online
process, and the false associations can be prevented by using
the appearance affinity.

To build the proposedHDA strategy, we define some online
MOT’s processing units at the present time t . St indicates the
instance segmentation results and the k th segment is denoted
by skt . T indicates a set of tracks. These units are defined in
detail as:

St = {s1t , . . . , s
k
t }, (13)
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FIGURE 4. Demonstration of the hierarchical data association (HDA)
process with (a) S2TA and (b) T2TA. Track τ live

1,t−1 can be associated with an

observation zS2TA
k,t from segment k . If S2TA fails, τ live

1,t1
becomes τ lost

1,t , and

it can succeed in T2TA with an observation zT 2TA
3,t from the live track τ live

3,t .

T livet = {τ live1,t , . . . , τ
live
i,t }, (14)

τ livei,t = {x
i
tb , ., x

i
tl }, 0 ≤ tb < tl, tl = t, (15)

T lostt = {τ lost1,t , . . . , τ
lost
j,t }, (16)

τ lostj,t = {x
j
tb , ., x

j
tl }, 0 ≤ tb < tl < t, (17)

xtb = {cx,tb , cy,tb , vx,tb , vy,tb}
T , (18)

xtl = {cx,tl , cy,tl , vx,tl , vy,tl }
T , (19)

where two attributes: ‘‘live’’ and ‘‘lost’’, indicate success
and failure in tracking at time t , respectively, which are not
compatible, and thus T lostt ∪T

live
t = T allt and T lostt ∩T

live
t = φ

are satisfied. Tt is composed of a track τi,t with identity i
which is also a set of state vectors from the birth time tb to
the last tracking time tl . In the case of τ livei,t , tl is identical
to the present time t , in the case of τ lostj,t , tl is less than time
t . Regardless of when time t is, state vector x has the center
point {cx , cy} in the segment bounding box, velocities {vx , vy}
in the x and y axis directions, an identity (ID), and a segment
mask (see (18) and (19)).

1) SEGMENT-TO-TRACK ASSOCIATION (S2TA)
In S2TA, the observations denoted by ZS2TAt are frame-
by-frame instance segmentation results St . If there are no
track states, the states XS2TAt are initialized from ZS2TAt , and
otherwise, X̄S2TAt is predicted from T livet−1 and updated by using
the GMPHD filter with the processing units as follows:

zS2TAk,t = {c
k
x,t , c

k
y,t }

T from skt , (20)

xS2TAi,t−1 = {c
i
x,t−1, c

i
y,t−1, v

i
x,t−1, v

i
y,t−1}

T from τ livei,t−1, (21)

FS2TA =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , (22)

x̄S2TAi,t = FS2TAxS2TAi,t−1, (23)

x̄S2TAi,t = {c̄ix,t , c̄
i
y,t , v

i
x,t−1, v

i
y,t−1}

T , (24)

where matrix FS2TA (22) makes (21) be (24) after multiplica-
tion (23) that is identical to (5) from the Prediction step and
c̄it is equal to c

i
t−1+v

i
t−1. In (22), 1 at 1

st row and 3rd column
and 1 at 2nd row and 4th column indicate the frame difference
between t − 1 and t . An example is ID2 in Figure 4(a).

General Kalman filter was designed for predicting a single
object in a space so it can be easily drifted by initial velocity
to find the one object. However, in MOT, the drifting can
cause false associations with other observations. Depending
onwhether the state x finds that an observation z is associated,
is born, or neither, the framewise motion v is updated as
follows:

vit =



β ∗ vit−1 + (1.0− β)

∗

{
ckx,t − c̄

i
x,t

cky,t − c̄
i
y,t

}
, if zkt is assigned to x̄S2TAi,t

{0, 0}T , else if xS2TAi,t is born
vit−1, otherwise,

(25)

where β can be differently set according to the scene context
and frame rate. The impact of β is presented in Figure 9 and 8
in detail.

2) TRACK-TO-TRACK ASSOCIATION (T2TA)
In T2TA, observations ZT2TAt and states XT2TAt (inputs) are
built from the live track set T livet and lost track set T lostt ,
respectively. Each of T livet and T lostt consists of the track vec-
tors of τ livei,t and τ lostj,t with their identities (see (14) and (16)).
The track vectors have temporal information with the birth
time tb and loss time tl . The live track’s tl is identical to the
current time t , whichmeans that the track is not yet lost, while
the lost track’s tl is less than t , which means the track was lost
before the time t (see (15) and (17)).
Since general Kalman filter only considers frame-by-frame

prediction, unlike that the Prediction step of S2TA uses the
framewise motion from time t − 1 to t , we devise a simple
trackwise motion model considering temporal information.
The trackwise motion analysis is used in T2TA as follows:

zT2TAi,t = {cix,t , c
i
y,t }

T from τ livei,t , (26)

xT2TAj,t−1 = {c
j
x,tl , c

j
y,tl , ṽ

j
x,t , ṽ

j
y,t }

T from τ lostj,t , (27)

FT2TA =


1 0 df 0
0 1 0 df
0 0 1 0
0 0 0 1

 , (28)
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x̄T2TAj,t = FT2TAxT2TAj,t−1 , (29)

x̄T2TAj,t = {c̄jx,t , c̄
j
y,t , v

j
x,t , v

j
y,t }

T , (30)

where df (i, j) (28) is the frame difference between τ livei,t ’s

first element xitb (15) and τ lostj,t ’s last element xjtl (17). The

trackwise motion vector ṽjt of (27) has two linearly averaged
velocities ṽjx,t and ṽ

j
y,t of a track, in the directions of the x-axis

and y-axis, respectively, as follows:

ṽjt = {ṽ
j
x,t , ṽ

j
y,t }

T
= {

cjx,tl − c
j
x,tb

tl − tb
,
cjy,tl − c

j
y,tb

tl − tb
}
T , (31)

where the velocities
cjx,tl−c

j
x,tb

tl−tb
and

cjy,tl−c
j
y,tb

tl−tb
are calculated by

subtracting the center position of the first object state xjtb from
that of the last state xjtl and dividing it by tl − tb, which is the
frame difference and is equivalent to the length of the track
τ lostj,t . A related example is shown in Figure 4(b) ID1.
In terms of temporal motion analysis, S2TA has the

same time interval ‘‘1’’ between states and observations
in transition matrix F , whereas T2TA has a different time
interval (frame difference) between states and observations.
The variable df depends on which state of the lost track and
observation of the live track are paired. (20)-(25) of S2TA
are the prediction step with framewise motion analysis and
update, but (26)-(31) of T2TA contain the prediction step
with trackwise linear motion analysis. Detailed examples are
shown in Figure 4.

Recent researches [16], [33] exploit both Kalman filter and
optical flow in their motion models, we exclude the optical
flow since its intensive computation. Instead, we devise
framewise motion (25) and trackwise motion (31) in HDA.
Following the proposed HDA strategy, for S2TA and T2TA,
two cost matrices can be filled by using the affinities
between the differently defined states and observations.
In the next subsection, we present an efficient mask-based
affinity calculation method considering position, motion, and
appearance for multi-object tracking and segmentation.

C. MASK-BASED AFFINITY FUSION (MAF)
We adopt a simple score-level fusion method to adequately
consider position, motion, and appearance between states
and observations. Fusing affinities obtained from different
domains requires a normalization step that can balance the
different affinities and avoid bias toward one affinity, which
may have a much higher magnitude than the others.

1) POSITION AND MOTION AFFINITY
The GMPHDfilter includes Kalman filtering in its Prediction
step, (4)-(6), designed with a linear motion model with
noise Q. Additionally, we present two different linear motion
models for the hierarchical data association with two steps,
S2TA and T2TA, as described in (25) and (31). Therefore,
the position and motion affinity between the ith state and jth

observation gives the probabilistic value w · q(z) obtained by

FIGURE 5. Detailed examples of the proposed mask-based affinity
fusion (MAF) method with the hierarchical data association (HDA):
(a) S2TA and (b) T2TA.

the GMPHD filter as follows:

A(i,j)pm = wi · qi(zj), (32)

which is acquired from (8) and (9) of the Update step.

2) APPEARANCE AFFINITY
We exploit single object tracking (SOT) methods [23]–[25]
to compute the appearance affinity between the ith state
and jth observation since instance segmentation results does
not provide appearance features to discriminate the objects
belonging to a single class, pedestrian or cars. The SOT does
not have class dependency because it was originally designed
for single-object tracking challenges such as the VOT
benchmark [43]. So it can be applied multi-class tracking
and we utilize it for calculating the appearance similarity
by matching object templates in this paper. Before applying
the SOT method, the state and observation image templates
are preprocessed by setting the backgrounds pixels to zero
in the RGB channel’s 0 to 255 ranges. This preprocessing
step ensures that he appearance affinity pays attention to
the foreground pixels based on the segment mask. The
SOT-based affinity can be derived as follows:

A(i,j)appr = 1−

∑widthj
c=xj

∑heightj
r=yj s̄(i,j)SOT (r, c)

widthj · heightj
, (33)

where s̄(·) indicates the normalized SOT similarity value,
which varies from 0.0 to 1.0 at each pixel. To verify that
single-object tracking does efficiently work in computing
this appearance affinity, one conventional method: KCF [23],
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and two state-of-the-art methods: SiamRPN [24] and DaSi-
amRPN [25], are adopted in our work.

3) MIN-MAX NORMALIZATION
In our experiments, Apm and Aappr have quite different
magnitudes, e.g., Apm = {10−9, . . . , 10−3} and Aappr =
{0.4, . . . , 1.0} (see Figure 5). To fuse two affinities, we apply
min-max normalization to them as follows:

Ā(i,j) =
A(i,j) −min1≤i≤N

1≤j≤M
A(i,j)

max1≤i≤N
1≤j≤M

A(i,j) −min1≤i≤N
1≤j≤M

A(i,j)
, (34)

where Aappr and Apm are normalized into Āappr and Āpm,
respectively. Aappr and Apm have quite different magnitudes
but are normalized 0.0 to 1.0 ranges in (34). First after
subtracting the minimum value from the original affinity
A value, and it is divided by the difference between the
maximum value and the minimum value. Then, we finally
propose a MAF model represented by:

A(i,j)maf = Ā(i,j)pm Ā
(i,j)
appr . (35)

Figures 6 and 7 show the probabilistic distributions before
MAF and after MAF. From this fused affinity, we can
compute the final cost between states and observations as
follows:

Cost(xit|t−1, z
j
t) = −α · lnA

(i,j)
maf , (36)

where α is a scale factor empirically set to 100. If one of
the affinities is close to zero, such as 10−39, the cost is set
to 10000 to prevent the final cost from becoming an infinite
value. Then, the final cost ranges from 0 to 10000.

From the different states and observations (inputs) in S2TA
and T2TA, two cost matrices are computed in every frame
and we utilize the Hungarian algorithm [44] to solve the
cost matrices, which has O(n3) time complexity, as shown in
Figure 5. Then, observations succeeding in S2TA or T2TA
are assigned to the associated states for Update, and other
observations failing in S2TA and T2TA initialize new states.

4) ANALYSIS OF AFFINITY DATA
Figures 6(a)-(c) and 7(a)-(c) show that the position and
motion affinity Agmphd and appearance affinity Akcf have
quite different data magnitudes and distributions. In our
experiments, Apm = {10−9, . . . , 10−3} and Aappr =

{0.4, . . . , 1.0} are observed. Figure 6(a) shows that the cars
have more concentrated distributions, with mean mkcf ≈
0.944 for appearance affinity than the pedestrians, with
mkcf ≈ 0.905 in Figure 7(a). On the other hand, for
the GMPHD affinity, pedestrians have more concentrated
distributions as seen in Figures 6(b) and Figure 7(b).
These facts are interpreted as follows: cars can be well
discriminated by position and motion while pedestrians
can be well discriminated by appearance. To considering
these two characteristics, we propose MAF; from the
distributions of normalized affinities Āgmphd and Ākcf in

FIGURE 6. Normalized distributions of the affinities between cars in
KITTI-MOTS training sequence 0019. KCF and GMPHD represent
‘‘appearance affinity’’ and ‘‘position and motion affinity’’, respectively.
(a) and (b) show the distributions with each average m and standard
deviation σ , and (c) shows that (a) and (b) are very different from each
other. (d) The proposed mask-based affinity fusion (MAF) method can
determine the scale difference between the KCF and GMPHD affinities
and then normalize the two affinities and fuse (multiply) them. m̄ and σ̄
denote the normalized values in (34).

Figures 6(d) and 7(d), the gaps are much closer than before,
and the two affinities are fused into Amaf by using MAF.

D. MASK MERGING
As shown in Figure 3, for mask merging, i.e., track merging,
we can utilize bounding box-based IoU or segment mask-
based IoU (mask IoU) measures that calculate boxwise or
pixel-wise overlapping ratios between two objects, respec-
tively. The two measures are represented by:

IoU(A,B) =
bbox(A)∩bbox(B)
bbox(A)∪bbox(B)

, (37)

Mask IoU(A,B) =
mask(A)∩mask(B)
mask(A)∪mask(B)

. (38)

If the value of a selected measure is greater than or equal to
the threshold tm, the two objects are merged into one object.
Mask merging is applied only between tracking objects, i.e.,
states, that are not observations, after S2TA.

E. PARALLEL PROCESSING
We assume that data association runs only between the same
class of objects. For example, if the instance segmentation
module provides two or more object classes, e.g., car
and pedestrian classes, our proposed framework is easily
expansible (see Figure 1). In this paper, we implement
the MOTS module with two parallel processes because
the datasets used for our experiments produce car and
pedestrian segments. Then, the time complexity O((|car| +
|pedestrian|)3) decreases to the slower of O(|car|3) and
O(|pedestrian|3).
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FIGURE 7. Normalized distributions of the affinities between pedestrians
in KITTI-MOTS training sequence 0019. KCF and GMPHD represent
‘‘appearance affinity’’ and ‘‘position and motion affinity’’, respectively.
(a) and (b) show the distributions with each average m and standard
deviation σ , and (c) shows that (a) and (b) are very different from each
other. (d) The proposed mask-based affinity fusion (MAF) method can
determine the scale difference between the KCF and GMPHD affinities
and then normalize the two affinities and fuse (multiply) them. m̄ and σ̄
denote the normalized values in (34).

TABLE 1. Dataset specifications for MOTS20 and KITTI-MOTS.

IV. EXPERIMENTS
In this section, we present experimental studies for the
proposed MOTS method, named MAF_HDA, in detail.
In IV-A, we note that MAF_HDA is studied with state-of-
the-art MOTS20 [12] and KITTI-MOTS [2] datasets and new
evaluation measures. In IV-B, the implementation details of
our method are addressed in terms of development environ-
ments and parameter settings. In IV-C, experimental studies
on the key parameters are addressed. In IV-D, we determine
the effectiveness of key modules through ablation studies
in the dataset training subset. The ablation studies show
that the proposed key modules comprehensively improve the
baseline model p1 remarkably in terms of IDS. In particular,
we compare the effectiveness of KCF, SiamRPN, and
DaSiamRPN as ‘‘appearance’’ affinity by using correlation

TABLE 2. Evaluation measures. sMOTSA is mainly used for measuring the
tracking performance as a key measure.

with ‘‘position and motion’’ affinity (GMPHD) as shown in
Figure 10. Finally, in IV-E, we show that the final proposed
model p6 achieves competitive performances on the test
sequences of the datasets in terms of the sMOTSA, MOTSP,
and IDS measures.

A. DATASETS AND MEASURES
MAF_HDA is evaluated on MOTS20 [12] and KITTI-
MOTS [2], which are the most popular datasets for MOTS.
Voigtlaender et al. [12] proposed new MOTS measures
and two MOTS datasets that were extended from image
sequences of MOT16 [3] and KITTI [2]. They have been
widely used for multi-object tracking with 2D bounding
box-based detection results but instance segmentation results
with the same image sequences were provided for MOTS,
created by Mask RCNN [11] X152 of Detectron2 [45].
Table 1 describes the MOTS20 and KITTI-MOTS bench-
mark datasets in terms of training and test sequences,
frames per second (FPS), resolution, and the number of
frames (Frame). MOTS20 provides six high resolution
1920 × 1080 images with 30 FPS and two low resolution
640 × 480 image sequences with 14 FPS containing only
pedestrians. MOTS02-01, MOTS20-02, and MOTS20-09 are
taken by static CCTV, and the rest of sequences are taken in
human holding moving cam. MOTS20 set are divided into
4 training sequences with 2,862 images and 4 test sequences
with 3,044 images. On the other hand, KITTI-MOTS
provides image sequences taken in the camera on a vehicle
with 1224 × 370, 1238 × 374, and 1242 × 375 resolutions
and 10 FPS, which are divided into 21 training sequences
with 8,008 images and 29 test sequences with 11,095 images.
Pedestrians and cars appear in the KITTI-MOTS scenes. The
ablation studies and experimental results using these datasets
are presented in Tables 5, 4, 7, and 6 of Section IV. For
evaluation, sMOTSA and IDS are mainly used in this paper.

These measures are mask-based variants of the original
CLEAR MOT measures [47] as follows:

MOTSA =
|TP| − |FP| − |IDS|

|M|
, (39)

VOLUME 10, 2022 60651



Y.-M. Song et al.: MOTS With Embedding MAF in HDA

TABLE 3. Threshold settings for ‘‘Mask Merging’’ and ‘‘Mask-Based
Affinity Fusion (MAF).’’

T̃P =
∑
h∈TP

Mask IoU(h, gt(h)), (40)

sMOTSA =
T̃P− |FP| − |IDS|

|M|
, (41)

whereM is a set of ground truth (GT) pixel masks, h is a track
hypothesis mask, and gt(h) is the most overlapping mask
among all GTs. In multi-object tracking and segmentation
accuracy (MOTSA), a mask-based variant of the original
multi-object tracking accuracy (MOTA), a case is only
counted as a true positive (TP) when the mask IoU value,
between h and gt(h), is greater than or equal to 0.5, but in soft
multi-object tracking and segmentation accuracy (MOTSA),
T̃P is used, which is a soft version of TP. Other details of the
measures are displayed in Table 2.

B. IMPLEMENTATION DETAILS
1) DEVELOPMENT ENVIRONMENTS
All experiments are conducted on an Intel i7-7700K CPU @
4.20GHz, DDR4 32.0GB RAM, and Nvidia GTX 1080 Ti.
We implement MAF_HDA by using OpenCV image pro-
cessing libraries written in Visual C++. The official code
implementation is available at the Github repository .1

2) PARAMETER SETTINGS
The matrices F, Q, P, R, and H are used in Initialization,
Prediction, and Update for the GMPHD filter’s tracking
process. Experimentally, the parameter matrices are set as:

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

Q =
1
2


52 0 0 0
0 102 0 0
0 0 52 0
0 0 0 102

 ,

P =


52 0 0 0
0 102 0 0
0 0 52 0
0 0 0 102

 , R =
(
52 0
0 102

)
,

H =
(
1 0 0 0
0 1 0 0

)
.

1https://github.com/SonginCV/MAF_HDA

FIGURE 8. Experimental studies for the parameters in the MOTS20
training set. The best sMOTSA and IDS scores are shown when β, tm, and
fappr are (a) 0.4, (b) 0.3, and (c) 0.5 for pedestrians. The same values are
set for the test which are presented in Tables 4 and 6.

TABLE 4. Evaluation results on the MOTS20 training set. p1 is the
baseline method and p6 is selected as a final model.

We uniformly truncate the segmentation results under
threshold values, which are 0.6 for cars and 0.7 for
pedestrians.

C. EXPERIMENTAL STUDIES ON KEY PARAMETERS
Figures 9 and 8 address experimental studies on key
parameters of our method and show that the parameters
such as β (framewise motion update ratio in S2TA), tm
(upper threshold for mask merging with mask IoU), and fappr
(upper threshold for Aappr in MAF) can be tuned by simple
numerical studies. In Figure 9, comparing (c) to (e) and
(d) to (f), mask IoU is less sensitive to parameter settings and
shows better sMOTSA and IDS than IoU. The final parameter
settings are summarized in Table 3 whos values are learned in
MOTS20 and KITTI-MOTS training sets and are identically
set for evaluation in the training and test sets as shown in
Tables 5, 4, 7, and 6.

D. ABLATION STUDIES
For the ablation studies, MAF_HDA is evaluated on the
training sequences of MOTS20 and KITTI-MOTS.
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FIGURE 9. Experimental studies for parameters β, tm, and fappr in the KITTI-MOTS training set. The best sMOTSA and IDS scores are shown when
β is (a) 0.4 and (b) 0.5 for cars and pedestrians, respectively. The best scores are observed setting tm to (c) 0.3 and (d) 0.4 with the Mask IoU
measure and setting fappr to (g) 0.85 and (h) 0.85. The same values are set for the test which are presented in Tables 5 and 7.

TABLE 5. Evaluation results on the KITTI-MOTS training set. p1 is the baseline method without any proposed modules. KCF2 indicates a simplified version
for MOT which uses fixed-size window instead of multi-scale windows used in the referenced version of KCF. We select p6 as a final model.

1) KEY MODULES
As discussed in Section III, our method includes three key
modules: HDA, mask merging, and MAF. HDA consists of
S2TA and T2TA in order. Then, we can rearrange these
modules with ‘‘MAF in S2TA’’, ‘‘Mask Merging’’, and
‘‘MAF in T2TA’’ considering serial processes as described
in Table 5. Additionally, either IoU (37) or Mask IoU (38) for
‘‘Mask Merging’’ can be selected.

2) EFFECTIVENESS OF THE KEY MODULES
As seen in Tables 5 and 4, when the key modules ‘‘MAF in
S2TA’’, ‘‘Mask Merging’’, and ‘‘MAF in T2TA’’ are added to
the baseline method p1 one by one, our method shows incre-
mental and remarkable improvements. Comparing p1 and p2,
p1 exploits one-step GMPHD filtering in computing only
position and motion affinity, but p2 considers the position-
motion affinity with the GMPHD filter and appearance
affinity by the KCF in ‘‘MAF in S2TA’’. The remarkable
improvements in IDS and FM indicate that the proposed
affinity fusion method works effectively. Comparing p2 and
p3 in both Tables, because the results are advanced only in
KITTI-MOTS, ‘‘Mask Merging’’ may merge more than two
segments of one object into one segment or not. However,

we can see that at least Mask IoU works better than IoU in
the merging of the results of p3 and p4. In p5 and p6, ‘‘MAF
in T2TA’’ is applied to our method, where KCF extracts
the appearance affinities by using multi-scale windows, but
KCF2 uses fix-size window to rely on the object sizes
from instance segmentation responses. In addition, we apply
two more state-of-the-art SOT methods: SiamRPN [24] and
DaSiamRPN [25], in the proposed appearance affinity model.
In MOTS20, Table 4, p6, p7, and p8 show comparative
performances, but in KITTI-MOTS, Table 5, p7 and p8 show
worse than p6 and even worse than p5 and p6 for cars.
Figure 10 shows that reason. SiamRPN shows a biased
correlation so DaSiamRPN shows too wide correlation in
appearance affinity space for cars. We think that is because
cars are hard to be discriminated especially in relatively low-
resolution of KITTI-MOTS images and tiny-size of objects.
On the other hand, KCF’s moderate correlation can be
appropriate to be fuses with GMPHD filter seeing the better
performance. Moreover, since [24], [25] exploit the siamese
network which requires GPU processing, those methods
cannot extract appearance affinities for dozens of objects in
data association steps in parallel with one single GPU. Thus,
even if they presented 100 FPS in SOT, p6 and p7 run at
1.0-2.0 FPS. Comparing the settings without T2TA, from
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TABLE 6. Evaluation results on the MOTS20 test set. Proposed methods are denoted by MAF_HDA. The red and blue results indicate the first and second
best scores among online processing (proc.) approaches. The bold results indicate the best scores among offline proc. approaches. ‘‘not available (n/a)’’
FPS indicates the case that only total FPS is provided. ‘-’ denotes unpublished results in their paper and the MOTS20 leaderboard
at https://motchallenge.net/results/MOTS/.

TABLE 7. Evaluation results on the KITTI-MOTS test set. Proposed methods are denoted by MAF_HDA. The red and blue results indicate the first and
second best scores among online processing (proc.) approaches. The bold results indicate the best scores among offline proc. approaches. ‘‘not available
(n/a)’’ FPS indicates the cases that only total FPS is provided. All entries are available at http://www.cvlibs.net/datasets/kitti/old_eval_mots.php.

p2 to p4, and with T2TA, p5, p6, p7, and p8, the results show
that HDA with MAF reduces IDS very effectively in both
datasets and KCF2, the simplified version of KCF, shows
faster FPS and better performance in terms of sMOTSA,
MOTSA, IDS than the conventional KCF and the state-of-
the-art SOT methods [24], [25].

Numerically, when adding the key modules ‘‘MAF in
S2TA’’, ‘‘Mask Merging’’, and ‘‘MAF in T2TA’’ one by
one, as shown in Tables 5 and 4, and Figure 12, our MOTS
method shows incremental improvements from p1 to p6.
The baseline method p1 is numerically improved as follows:
for the KITTI-MOTS Cars training set, sMOTSA changes
from 73.7 to 78.5 and IDS changes from 1,322 to 212;
for the KITTI-MOTS Pedestrians training set, sMOTSA
changes from 56.4 to 62.3 and IDS changes from 800 to 140;
and for the MOTS20 training set, sMOTSA changes from
64.5 to 65.8 and IDS changes from 686 to 234. Thus,
p6:MAF_HDAKCF2 are selected as our final model.

E. TEST RESULTS
We evaluate the proposedMOTSmethod against state-of-the-
art MOTS methods [12]–[20] in the test set of the MOTS20
and KITTI-MOTS benchmarks. Tables 6 and 7 show the
evaluation results and Figure 11 describes comparisons of

FIGURE 10. Correlation maps between appearance affinities: KCF,
SiamRPN, and DaSiamRPN, and position-motion affinity: GMPHD,
in KITTI-MOTS.

speed (FPS) vs. MOTS accuracy (sMOTSA and IDS) where
our method is denoted by MAF_HDA.

1) SPEED COMPARISON W/SEGMENTATION
For fair comparison of one-stage MOTS methods [12], [19],
[20] and multi-stage methods [13]–[18], we present not
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FIGURE 11. Comparisons of speed (FPS) vs. MOTS accuracy (sMOTSA and IDS) against state-of-the-art methods in KITTI-MOTS and MOTS test sets.

FIGURE 12. Visualization of the segmentation and MOTS results on KITTI-MOTS test sequence 0018. (b), (c), and (d) are the results of the three
different settings of the proposed method, which are based on the same segmentation results (a) from MaskRCNN [11]. Comparing (b) the
baseline model p1 and (c) the model p4 with S2TA and mask merging (without T2TA), in (b), the IDs, ‘‘0, 2, 4, 6, 8’’, of the five pedestrians at the
right side of the scene are switched except the person w/ ID 2, but, in (c), only the pedestrian w/ ID 0 gets switched to ID 24. In (d) the final
model p6, the five IDs are preserved since T2TA can find the IDs after occlusion with trees at the right side. In addition, the car w/ ID 7 at frame
0 are recovered at frame 15, while (b) and (c) do not recover the car w/ ID 7 that are switched to ID 17.

only tracking speed but also detection and segmentation
speed in Tables 6 and 7. Speed of the public segmentation,
Mask RCNN X152, and speed of private segmentation,
PointTrack, are measured in our environment presented
in Subsection IV-B. Other speeds are referenced from
their paper. PointTrack [13], SORTS+RReID [15], and
EagerMOT [17] introduce fast tracking speeds 22.2, 36.4,
and 90.9 FPS, respectively, but including detection and
segmentation, the speeds drop to 4.3, 2.3, and 1.96 FPS.
Likewise multi-detector fusion based methods EagerMOT
and MOTSFusion [16] show similar speed 1.96 and 2.3 FPS.
Among those state-of-the-art methods, one-stage methods
CPPNet [19] and TraDeS [20] show faster speeds 7.0 FPS and
11.5 FPS respectively, but still not enough to achieve realtime
speeds which are 30 FPS forMOTS20 and 10 FPS for KITTI-
MOTS. Among the proposed methods, MAF_HDAKCF2
achieves 4.6 FPS in MOTS20 and 10.9 FPS in KITTI-MOTS
with tracking only, and 1.6 FPS in MOTS20 and 2.8 FPS
in KITTI-MOTS with segmentation and tracking. Compared
to others, MAF_HDAKCF2 shows moderate speeds (see
Figure 11(a)-(b)). Therefore, efficiency of MOTS method in
terms of speed versus accuracy is still a challenging issue.

2) ACCURACY COMPARISON W/SOTA METHODS
Some state-of-the-art methods [13], [16], [17], [19] have
tackled raising the detection and segmentation quality, Eager-
MOT andMOTSFusion utilized fusion ofmulti-detector from
multi-domain, and PointTrack and CPPNet focus on learning
segmentation model from scratch of MOTS20 and KITTI-
MOTS training sets. The former has promising performance
since that multi-source detectors can complement each other.
However it inevitably needs heavy computing resources.
The latter can achieve fine performance as seen in Table 7
if fine data such as over 8,000 images with uniformed
resolutions of the KITTI-MOTS training set is given as
seen in Table 1. However, in 2,862 images of MOTS20
training set with various resolutions like 1920 × 1080 and
640 × 480, their MOTS accuracy drops sharply contrast to
Mask RCNN based methods such as [14] and MAF_HDA
(see Figure 11(a) and (c)).
To summarize numerically, we refer to Tables 6

and 7. First, in particular, comparing the variants of
MAF_HDA with KCF, KCF2, SiamRPN, and DaSiamRPN,
MAF_HDAKCF2 shows the best performance in terms of
speed and accuracy. MAF_HDASiam and MAF_HDADaSiam
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show drastic speed drop compared to MAF_HDAKCF and
MAF_HDAKCF2 Those results follow the evaluation results
in the training sets (see Tables 5 and 4). Against state-of-the-
art MOTS methods [12]–[20], our proposed method named
MAF_HDAKCF2 ranks 2nd sMOTSA score (1st among
the online approaches), 69.9, in the MOTS20 test set.
In addition, MAF_HDAKCF2 ranks 3rd sMOTSA score, 65.0,
for pedestrians and 3rd sMOTSA score, 77.2, for cars in the
KITTI-MOTS test set.

V. CONCLUSION
In this paper, we propose a highly feasible MOTS method
named MAF_HDA, which is an easily reproducible reassem-
bly of four key modules: a GMPHD filter, HDA, mask
merging, and MAF. These key modules can operate in the
proposed fully online MOTS framework which tracks cars
and pedestrians in parallel CPU-only processes. In addition,
the key parameters can be simply tuned through experimental
studies adjusting the values in 0.0 to 1.0 ranges, and
these modules show remarkable improvements in evaluation
on the training sets of MOTS20 and KITTI-MOTS in
terms of MOTS measures such as sMOTSA and IDS.
In the test sets of the two popular datasets, MAF_HDA
achieves very competitive performance against the state-
of-the-art MOTS methods. In future work, we expect
that the proposed MOTS method will be reproduced and
extended in research community with a more precise
and simpler position and motion filtering model and
more rapid and sophisticated appearance feature extrac-
tors such as deep neural network-based re-identification
techniques.
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