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ABSTRACT Image anomaly detection problems aim to determine whether an image is abnormal, and to
detect anomalous areas. These methods are actively used in various fields such as manufacturing, medical
care, and intelligent information. Encoder-decoder structures have been widely used in the field of anomaly
detection because they can easily learn normal patterns in an unsupervised learning environment and
calculate a score to identify abnormalities through a reconstruction error indicating the difference between
input and reconstructed images. Therefore, current image anomaly detection methods have commonly
used convolutional encoder-decoders to extract normal information through the local features of images.
However, they are limited in that only local features of the image can be utilized when constructing a normal
representation owing to the characteristics of convolution operations using a filter of fixed size. Therefore,
we propose a vision transformer-based encoder-decoder model, named AnoViT, designed to reflect normal
information by additionally learning the global relationship between image patches, which is capable of both
image anomaly detection and localization. While existing vision transformers perform image classification
using only a class token, the proposed approach constructs a feature map that maintains the existing location
information of individual patches by using the embeddings of all patches passed through multiple self-
attention layers. Subsequently, the feature map, which has been transformed into three dimensions, is used to
perform decoding. This design preserves the spatial information sufficiently by excluding the fully-connected
layer, which extracts latent vectors in existing convolution-based encoder-decoders. The proposed AnoViT
model performed better than the convolution-based model on three benchmark datasets. In MVTecAD,
which is a representative benchmark dataset for anomaly localization, it showed improved results on 10 out
of 15 classes compared with the baseline. Furthermore, the proposed method showed good performance
regardless of the class and type of the anomalous area when localization results were evaluated qualitatively.

INDEX TERMS Anomaly detection, anomaly localization, vision transformer, MVTecAD.

I. INTRODUCTION
Image anomaly detection methods use image data to detect
data samples with a distribution that differs substantially from
that of normal images. Image anomaly localization aims to
find the location of defects in a given image, and is referred to
as anomaly detection from a pixel perspective [1]. Anomaly
detection in image data is an essential technology in various
fields such as manufacturing, medical care, and intelligent
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information [2]. For example, image anomaly detection is
used in the manufacturing field to make quick decisions
during visual inspection to identify defects in manufactured
products [1]. In the medical field, it is used to detect tumors
based on images collected from fMRI and CT [3]. Moreover,
image anomaly detection is used in the intelligent informa-
tion field to detect abnormal behaviors in CCTV videos [4].
By providing information on whether an image contains
defects as well as on their locations, image anomaly detection
can help experts make quick decisions and hence contributes
to improved work efficiency [5]. Therefore, the development
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of advanced image anomaly detection and localization meth-
ods is of considerable interest.

As research on deep learning has been actively con-
ducted, many deep learning-based image anomaly detection
methods have been proposed. Image anomaly detection and
localization methods using deep learning can be divided
into encoder-decoder-based methods and generation-based
methods. Encoder-decoder-based methods train a model by
compressing a normal input image and reconstructing it to be
similar to the original image [6]–[8]. Previous studies have
generally used a convolutional autoencoder (CAE) structure,
and some of these works adopted a U-Net-based model.
Anomaly detection is performed using the difference between
the original image and the image reconstructed through the
encoder-decoder. Generation-based methods learn a distribu-
tion of normal data by generating images with a distribu-
tion similar to that of an original image [9]–[12]. Anomaly
detection methods may be broadly classified into gener-
ative adversarial network (GAN)- and variational autoen-
coder (VAE)-basedmodels depending on the learningmethod
adopted. Both models identify anomalies based on the differ-
ence between an original image and an image generated from
a learned distribution.

Recent image anomaly detection methodologies can be
classified according to their input image processing methods.
One category uses the whole image, whereas the other divides
an image into patches. Most of the previous studies used
whole images, but patch-level images have been widely used
in more recent works [13]–[15]. Patch-level input is used
to generate image representation vectors that contain rich
information. If segmented image patches are used, embed-
dings can be generated per patch. Hence, information for
each detailed area in the image can be reflected well [14].
Furthermore, patch-level input simplifies the task of relative
location prediction, which is a pretext task for self-supervised
learning methods [13], [16].

In terms of model structure, existing deep learning-based
image anomaly detection methods generally learn an image
representation using a convolutional neural network (CNN)-
type model. However, because CNNs only learn local infor-
mation, they have difficulty learning the global context of an
image [17]. The recently published vision transformer (ViT)
was designed to additionally learn the global context of
an image by using a patch-level image and attention oper-
ation. Hence, ViT alleviates this problem associated with
CNNs [18].

Given this background, we propose an AnoViT model
capable of both image anomaly detection and localiza-
tion using the ViT-based encoder-decoder structure and
reconstruction error. The proposed method generates image
embeddings containing rich information for each area by
processing patch-level images. In addition, it also utilizes
the global information by learning the relationship between
patches through an attention operation. The proposed method
was applied to the MVTecAD dataset, which is most widely
used in the image anomaly detection field. The results

confirmed that the proposed method achieved improved
image anomaly detection and localization performance by
utilizing both the local and global information.

The remainder of this paper is organized as fol-
lows. Section 2 introduces prior research on the encoder-
decoder-based model and the structure of the ViT model.
Section 3 introduces the proposed method, and Section 4 cov-
ers the quantitative and qualitative experimental results.
Finally, Section 5 summarizes and concludes the work, and
provides some possible directions for future research.

II. RELATED WORK
A. ENCODER-DECODER-BASED IMAGE ANOMALY
DETECTION
The encoder-decoder-based method learns encoder E and
decoder D by minimizing a reconstruction error L between
the original image XN and an image D(E(XN )) recon-
structed from the normal image XN compressed with
encoder E .

L =
1
m

∑∥∥∥X i
N −D(E(X i

N ))
∥∥∥2 , (1)

As shown in (1), the neural network of the encoder-decoder
structure learns the distribution pN of the normal image
inherently in the optimization process. Because D(E(XN ))
has been trained to reconstruct the normal data well, the
reconstruction error increases when abnormal data are pro-
vided as input. Based on this principle, the encoder-decoder-
based method determines an image to be abnormal if the
reconstruction error is higher than a certain threshold. Con-
versely, images are identified as normal if the reconstruction
error is lower than a certain threshold [2].

A convolutional autoencoder (CAE) is a representative
model used in encoder-decoder-based image anomaly detec-
tion methods. CAE models are suitable for extracting image
representations because each layer of the CAE model uses a
convolution operation [19]. Moreover, CAE models have the
advantage of being able to identify anomalies at the image
level and the pixel level by using a score map that differs
between the original image and the reconstructed image [20].
CAE models are used in image anomaly detection and local-
ization in various fields for this reason. Specifically, they
have performed well in defect detection in semiconductor
wafer bin maps [5], detection of cracks in images of concrete
structures [8], detection of defects in images of fabric texture
[7], [21], and detection of abnormal behaviors in videos [22],
among other applications.

In CAE-based image anomaly detection, the difference
between the original and reconstructed images/videos is typ-
ically learned by calculating l1-loss or l2-loss [5], [8], [21].
When detecting defects in images of a given texture, a struc-
tured similarity index (SSIM) is sometimes added as a
loss function. This technique helps to reflect the similar-
ity between images and is especially effective for black-
and-white images [7]. In addition, multi-scale encoding and
denoised CAE are used [21], or a latent vector is extracted by
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adding a memory module [23] to construct a representation
that reflects features of the normal data well. Moreover, the
performance of anomaly detection and localization on the
publicly available MVTec benchmark dataset was compared
with other methodologies such as SSIM-CAE, AnoGAN, and
CNN Feature Dictionary [6], and the experimental results
verified that the l2-CAE exhibited the best performance.

B. VISION TRANSFORMER
Transformer was originally designed as a sequence-to-
sequence language model with self-attention mechanisms
based on encoder-decoder structure to solve natural language
processing (NLP) tasks. By using the attention mecha-
nism, the transformers have solved the problem of previ-
ous sequence-to-sequence models, which were not able ade-
quately to learn the relationship between distant words in
a sentence. Consequently, transformers have significantly
improved performance in various NLP tasks, such as machine
translation and question and answer [24]. Recently, [18] first
introduced Vision Transformers (ViTs), which were devel-
oped by modifying the encoder of a transformer model to
perform image classification tasks. Since then, ViTs have
been used in various vision fields, such as object detection
and semantic segmentation [25]–[27].

FIGURE 1. Architecture of original ViT.

As shown in Fig. 1, ViT uses an image segmented into
patch units as input. The patches are transformed into a
two-dimensional sequence to learn the relationship between
each patch throughmulti-head self-attention. Considering the
operation of ViTmodels in detail, the imageX ∈ RH×W×C is
reshaped into patches xp ∈ RN×(P2·C) and then mapped to D
dimensions (image size: (H ,W ,C), patch size: (P,P), N =
HW/P2). After these patches pass through a learnable linear
projection, two-dimensional patch embeddings are derived
as an output. The positional embedding EEEpos ∈ R(N+1)×D

is added to the patch embedding EEE, which concatenates the
[cls] token z00 = xcls, to preserve position information. The
embeddings pass through layers composed of multi-head
self-attention, an MLP block, and Layer Normalization(LN )
by the number of blocks. Among the patch embeddings
derived from the transformer encoder, only the [cls] token
is used as an input to the MLP head to perform the image
classification task.

As benchmark datasets for image classification tasks,
CIFAR-10, CIFAR-100, and ImageNet were used to conduct
an experiment on a ViT and CNN-based ResNet pretrained on
JFT-300M. The experimental results demonstrated that ViT-
type models outperformed the CNN models [18].

III. PROPOSED METHOD
A. VIT-BASED ENCODER-DECODER
In this study, we propose an encoder-decoder-based
method—which consists of an encoder using ViT and a
decoder containing a convolutional layer—and a model
structure that can perform both image anomaly detection
and localization with a reconstruction error. The proposed
method, AnoViT, reflects the relationships between image
patches in the representation through the ViT’s multi-head
self-attention (MSA). Furthermore, the proposed method
minimizes the reconstruction error, the difference between
the input image and the reconstructed image, and learns the
distribution of the normal data. The structure of AnoViT is
shown in Fig. 2.

The encoder is processed in the same manner as in
existing ViT, and provided as an input to the model. The
two-dimensional embedded patches EEE ∈ R(N+1)×D learn
the relationships between each patch through k self-attention
(SA)–namely, multi-head self-attention (MSA)–operations
according to the equations given below. A denotes the atten-
tion weight matrix, and Aij indicates the pairwise similarity
of query qqqi and key kkkj. Moreover, the attention information
is reflected in the existing embeddings through the weighted
sum of all elements value vvv of patch embedding EEE.

[ qqq,kkk,vvv] = EEEUUUqkv, UUUqkv ∈ RD×3Dh , (2)

A= softmax(qqqkkk>/
√
Dh), A ∈ R(N+1)×(N+1), (3)

SA(EEE) = Avvv, (4)

MSA(EEE) = [ SA1(EEE);SA2(EEE); . . . ;SAk (EEE)]UUUmsa,

UUUmsa ∈ Rk·Dh×D. (5)

The adjacent patch information is used to construct embed-
dings for a single patch, and information is received from
all patches in the image. Hence, rich information can be
contained in embeddings. That is, patch embeddings can be
extracted that reflect the global context of the image by using
the attention-based ViT encoder.

In contrast to existing ViTs that derive the output using
the [cls] token and an additional MLP head, the proposed
AnoViT model uses embeddings of each image patch from
the output of the ViT. In anomaly detection and localiza-
tion, it is crucial to calculate the reconstruction error at the
image and pixel levels. Hence, a representation containing
rich information on the normal image is required to calculate
the reconstruction error in the image reconstruction process.
Thus, the encoder is configured to extract patch embeddings
that contain detailed information for each area of the image
patch.

The [cls] token of the patch embeddings EEE′ ∈ R(N+1)×D

calculated through the decoder ViT encoder is excluded, and
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FIGURE 2. Architecture of AnoViT.

the remaining embeddings are rearranged to match the exist-
ing positions in the patch image and used as the feature map

F ∈ RN
1
2×N

1
2×D. Several CAEmodels tend to extract a latent

vector through the encoder and then pass it through the fully-
connected layer. However, the proposed method rearranges
the feature mapF in three dimensions. Therefore, the feature
mapF can be directly used as an input to the decoder without
being passed through an additional layer. Also, because the
fully-connected layer is not used, the feature map F can
preserve the spatial information between patches well. In the
proposed method, the decoder is configured to reconstruct an
image that is the same size as the original image. Precisely,
the decoder reconstructs an image X̂ ∈ RH×W×C from the
feature map F based on transposed convolution layers.

B. ANOMALY DETECTION AND LOCALIZATION
The proposed approach uses reconstruction error to iden-
tify anomalies. The l2-distance between the original image
and the reconstructed image derived from the output of the
ViT-based encoder-decoder model f is calculated for each
pixel, and the score map M is calculated by taking the
average pooling across the channels. In addition, Xij in (6)
denotes the (i, j)-th pixel in the input image.

M =
∥∥Xij − f (Xij)

∥∥
2 , (6)

sa = maxM. (7)

Because the proposed method learns the distribution of the
normal image, the reconstruction error increases when an
abnormal image is provided as an input because the areas con-
taining anomalies are not reconstructed well. The proposed
method utilizes this fact to detect anomalies.Anomaly score

sa is calculated by (7), which takes the maximum value in
the score map M. It is then used to identify the presence
of an anomaly in anomaly detection. In the case of anomaly
localization, score mapM is used to determine whether each
pixel in the image is abnormal or not.

IV. EXPERIMENTAL SETUP
A. DATA
The MNIST, CIFAR10, and MVTecAD datasets were used
to verify the anomaly detection and localization performance
of the proposed method. The anomaly detection performance
was evaluated using the MNIST, CIFAR10, and MVTecAD
datasets, and the anomaly localization performance was ver-
ified using the MVTecAD dataset.

1) MNIST, CIFAR10
Both the MNIST and CIFAR10 datasets comprise image data
composed of ten classes. They both consist of normal and
abnormal datasets in the same way as the general exper-
imental settings in one-class classification. Images of one
class were considered to be normal and used as training data,
whereas the remaining nine classes were defined as abnormal.
The test dataset consisted of images of both the normal and
abnormal classes. Images for both datasets were resized to
(224, 224, 3) and used to perform training and evaluation.

The MNIST dataset comprises digits ranging from 0 to 9.
It includes approximately 6,000 images per class for the
training data. 80% of the data were used to perform training
and to verify the model’s performance in the training process.
The testing data consist of 10,000 images, including both
normal and abnormal classes.
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TABLE 1. Overall performance of anomaly detection and localization.

The CIFAR10 dataset includes image data on ten objects,
with 5,000 images per class for the training data. Four thou-
sand, five hundred images were used to train the model, and
the remaining 500 images were used to verify its perfor-
mance. The testing data comprised 10,000 images, including
both normal and abnormal classes.

2) MVTec ANOMALY DETECTION DATASET
The MVTecAD dataset is an image data on 15 products. The
product group is largely classified into object and texture
classes. The object class contains ten products, and the texture
class contains five. The MVTecAD dataset consists of 3,629
normal data and 1,725 abnormal data, and the images were
resized to (384, 384, 3) for training and testing. Because
normal and abnormal images per product class are included in
the dataset, the model was trained and evaluated its anomaly
detection performance for each product class. In case of
image normalization, data are normalized with the mean and
variance from each category. TheMVTecADdataset provides
image-level labels along with the pixel-level ground-truth for
the location of anomalies. The MVTecAD dataset was also
used to evaluate the anomaly localization performance based
on this information.

B. BASELINES AND EVALUATION METRICS
Because the proposed method is a ViT-based encoder-
decoder model deisgned to perform anomaly detection using
the reconstruction error, the l2-CAE model—a CNN-based
encoder-decoder model using the reconstruction error—was
used as the baseline. Specifically, the performance of the
proposed method was compared and evaluated based on the
performance of the l2–CAE model, which was introduced
in [6]. In the research by [6], the l2-CAE model showed the
best anomaly detection and localization performance com-
pared with other models (SSIM-AE, GAN-based method,
GMM-based method, etc.) on the MVTecAD dataset. There-
fore, the l2-CAE model, which recorded the highest perfor-
mance in previous studies, was set as the baseline in this
study. The l2-CAE model of [6] adopts the CAE structure
of [7]. Hence, the l2-CAE model was re-implemented in this
study by referring to these two papers, and performance was
reported based on it.

The area under the ROC curve (AUROC), which has
been used to verify the performance of anomaly detec-
tion and localization in several previous studies, was used
as the indicator for performance evaluation [6], [13], [28].

AUROC evaluates anomaly detection and localization per-
formance based on the false positive rate (FPR) and true
positive rate (TPR). This indicator has the advantage of not
having to calculate the threshold using some of the test data
because the threshold for abnormality needs not to be set
deterministically.

C. IMPLEMENTATION DETAILS
The encoder of AnoViT uses the same structure of the ViT
model, and the model was pretrained on the ImageNet-21k
dataset, the ViT weights finetuned on the ImageNet2012
dataset were used, and the model weights provided by the
timm library were used. The weights were initialized with the
model weights containing the information about the image
representation, and image embeddings for anomaly detection
were extracted through additional training. The patch size
was set to 16, the embedding dimension was set to 768,
and the number of heads was set to 8, as in the existing
ViT-Base. The decoder comprised six blocks composed of
transposed convolutional layer and ReLU activation function.
To convert decoded image into the same size as the original
image, an upsampling layer is added to the final layer of
the decoder. The same image augmentation techniques were
applied to the proposed method and the l2-CAE model to
compare their performance. The techniques used included
random affine, vertical flip, horizontal flip, etc. Furthermore,
Gaussian smoothing, which is a postprocessing technique
applied in several previous studies on image anomaly detec-
tion [14], [29], [30] was applied to derive the final score map
through dispersing the score for each pixel into a Gaussian
distribution.

V. EXPERIMENTAL RESULTS
A. ANOMALY DETECTION & LOCALIZATION
PERFORMANCE
To evaluate the performance of the AnoViT with the
ViT-based encoder-decoder structure, the anomaly detection
and localization performance of the AnoViT was compared
with that of the l2-CAE model using the MNIST, CIFAR10,
andMVTecAD datasets. First, the results in terms of anomaly
detection using three types of data (MNIST, CIFAR10, and
MVTecAD) confirmed that the proposed method exhibited
better performance than the l2-CAE model.

Table 2 presents the anomaly detection performance on
the MNIST dataset. It shows that the performance improved
relative to the baseline in 7 out of 10 classes, and the average
AUROC increased by 1.774% compared with the l2-CAE
model. Table 3 shows the results of the experiment conducted
with the CIFAR10 dataset. The proposed ViT-based proposed
method achieved improved results compared with the l2-CAE
model in 7 out of 10 classes.

Moreover, it may also be noted that the proposed method
detected anomalies relatively better than the l2-CAE model
by over 5.624% on average. In addition, anomaly detection
was performed using the MVTecAD dataset. The results on
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TABLE 2. Performance comparison of anomaly detection methods on
MNIST.

TABLE 3. Performance comparison of anomaly detection methods on
CIFAR10.

TABLE 4. Performance comparison of anomaly detection methods on
MVTecAD.

MVTecAD dataset in Table 4 show that the proposed model
exhibited better performance than the l2-CAE model in 9 out
of 15 categories. Also, it may be observed from Table 4 that
the proposed method performed anomaly detection well in
various types (texture, object) of product images.

TABLE 5. Performance comparison of anomaly localization methods on
MVTecAD.

Moreover, Table 5 shows the results of evaluating the
anomaly localization performance of the proposed method
using the MVTecAD dataset. The performance results of the
proposed method were compared with that of the l2-CAE
model, and the anomaly localization performance improved
in 10 of 15 categories. In two categories, the performance
of the proposed method was the same as that of the l2-CAE
model. The localization performance improved the average
AUROC by 2.47% compared to l2-CAE model, regardless of
the product type in the image.

In the experiment where ViT was used as the encoder
model instead of CNN under the same conditions, such as
training and data preprocessing, the results show that the
anomaly detection and localization performance improved.
This outcome can be attributed to the fact that the global
information, as well as the local information, was addition-
ally reflected in the patch embedding through multiple self-
attention operations, which comprise the ViT.

B. QUALITATIVE ANALYSIS
The results of the localization task were qualitatively evalu-
ated by visualizing the anomaly score map of the proposed
method on the MVTecAD dataset. Fig. 3 shows the localiza-
tion results of the texture and object types of the MVTecAD
dataset. The three images on the left in Fig. 3 are texture-
type products, and the three on the right show the results for
the object-type products. For each product, the first column
shows the abnormal product image, the second column shows
the ground-truth mask, the third column is the score map
of the l2-CAE model, and the last column is the score map of
the proposed method. The figure below shows low scores in
blue and high scores in red. That is, the closer the area lies to
the red color, the higher the abnormal score threshold, which
indicates a high possibility of being an anomalous area.

Fig. 3 confirms qualitatively that the proposed method
detected anomalous areas well for all types of images,
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FIGURE 3. Qualitative result of anomaly localization in MVTecAD.

regardless of the size and shape of the abnormal area. Even
when a large anomalous area was included, such as cable
products, and when the anomalous area was very small,
such as a toothbrush or pill, the ViT-based encoder-decoder
model accurately predicted the location of the abnormal areas
compared with the l2-CAE model. In particular, in the score
map of the wood and grid product images, the l2-CAE model
derived a high abnormal score for the abnormal areas as well
as the pixels in the normal region. Hence, an area wider
than the ground- truth mask was determined to be abnormal.
By contrast, the abnormal scores of pixels in the area out-
side the anomalous area were low for the proposed method.
Hence, the proposed method found abnormal areas that were
very similar to the ground-truth mask.

VI. CONCLUSION
Image anomaly detection and localization have been used
to detect anomalies such as defects and abnormal behav-
iors in image data in the fields of manufacturing, medical
care, and intelligent information. Image anomaly detection
and localization have also been used to improve work effi-
ciency and help experts make accurate decisions. In image
anomaly detection using encoder-decoder models, it is essen-
tial to derive embeddings containing rich normal information
because a reconstruction error is calculated using an image
reconstructed from a representation containing the normal
information.

Therefore, we have proposed a ViT-based encoder-decoder
designed to perform both anomaly detection and localiza-
tion. Abnormal images and areas are detected using the
reconstruction error calculated from the proposed method.
In contrast to CNN-based encoder-decoder models that only
reflect local information in an image, theViT encoder extracts

a representation that contains the normal information in
detail, including the relationship between the image patches.
In addition, the patch embeddings derived from the encoder
are used to construct a three-dimensional feature map and
sent to the decoder to preserve the spatial information well.
The experimental result confirmed that the performance of
the proposed method was better than the CNN-based l2-CAE
model on both quantitative and qualitative evaluations.

To demonstrate that anomaly detection and localization
performance were improved by extracting a normal repre-
sentation with a self-attention operation-based encoder rather
than a model using convolution operations among encoder-
decoder-based methods, a CNN-based l2-CAE model was
selected for comparison in this study. In future research,
further performance evaluation should be performed between
the proposed method and several encoder-decoder-based
models, in addition to the l2-CAE model. Furthermore, if a
subsequent study demonstrates that the anomaly detection
and localization performance is improved when DeiT [31]
or CrossViT [32], which were developed from the basic ViT
model, is used as the encoder, this result is expected to lead to
further active investigation of vision transformer-type models
for anomaly detection.
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