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ABSTRACT Urban forests play an important role in urban ecosystems. They can not only beautify the
urban environment but also help protect biodiversity and maintain ecological balance. Effective urban forest
management is a basic requirement to ensure sustainable development. Traditional urban forest management
usually requires the investment of a lot of materials and labor to conduct field research. RGB high-resolution
aerial images have emerged as an efficient source of data for use in the detection and mapping of individual
trees in urban areas. In recent years, there has been impressive progress in the field of deep learning methods
for use in object detection. Semi-supervised learning is an effective way to deal with the problem that deep
learning requires a large amount of labeled data. In this paper, we proposed an improved faster region-based
convolutional neural network (Faster R-CNN) with Swin transformer method. Based on existing datasets,
the model was trained and then transferred to new datasets. The method was evaluated within three distinct
urban areas: a green space, a residential area and a suburban area. The experimental results indicate that our
method achieved higher performance than other Faster R-CNN models. This method provides a reference
in automated individual tree detection based on high-resolution images in urban areas for urban forestry
managers.

INDEX TERMS Individual tree detection, swin transformer, faster R-CNN, urban forestry.

I. INTRODUCTION
Urban cities are built as human settlements and are the main
areas of activity; meanwhile, they significantly contribute
to climate change, and similarly, levels of vehicle exhaust
emissions, incineration firing and industrial waste gas emis-
sions. These threats have severely negative influences on the
mental and physical health of those who live in urban cities.
Urban trees warrant and support a range of vital social and
environmental services to improve the air quality of cities
in terms of air pollutants and particulate matter, increase
the resilience of habitats and lower the urban heat islands
effect [1], [2]. A forest resource survey is an indispensable
and important link in urban forestry management. It can
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provide deep understanding of the status of forest resources
and provide a reliable basis for forest resource management.

In previous studies, high-resolution images have been
recommended for individual tree detection [3]–[10], high-
resolution AGB estimation [11]. These studies verified the
possibility of distinguishing urban forest canopies from other
urban land covers with high accuracy. Jiao et.al [6] segmented
trees and acquired locations and radii of the proposed cost
function. In particular, the authors utilized shadows to calcu-
late tree heights considering the image-taking conditions in
terms of the sun angle and the time when each image was
taken. Parmehr et al. [7] used the random forest model to
achieve the detection of tree crown with overall accuracy
of 79.3% over satellite imagery. Furthermore, in compli-
cated urban areas, Ucar et al. [8] extracted woody vegetation
by combining airborne imagery and Airborne Laser Scan-
ning (ALS) data with an overall accuracy of 80%. Urban
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environments are complex, which can be caused by cars,
buildings, electronical lines and shadows. These hinder the
automatic and efficient acquisition of data regarding tree
canopies. However, the use of individual tree crown detection
applications in land parcels can significantly support policy
mechanisms [12].

Object detection aims to locate individual occurrences of
a class (e.g., trees) within an image [13]. It is beneficial to
account for carbon procedures at the stand, landscape and
national levels [14]. In particular, this is crucial in urban
areas, due to the fact that these images are heterogeneous
and complex. Due to the fact that they are cost effective
and easy to access, Aerial RGB images are widely applied,
even though they lack three-dimensional information [15].
Additionally, there is spectral similarity between species in
RGB scenes, which can be a hindrance for most automatic
methods [16]. To avoid the object detection of RGB images
from being labor intensive and cost intensive, these problems
must be addressed.

Deep learning (DL) a field that is currently trending in
machine learning and it focuses on fitting large models with
millions of parameters for a variety of tasks [17]. DL often
employs Convolutional Neural Networks (CNNs) to detect
objects based on image classification and anchor box regres-
sion [18]. Faster R-CNN, which is a well-known object detec-
tion model, gives high-recall region proposals at low cost
through Region Proposal Network (RPN), can significantly
improve the efficiency of object detection. XIA et al. [23]
developed an FPN-Faster R-CNNmodel, combining a feature
pyramid network (FPN) and a Faster R-CNN. Santos et al.
[19] chose Faster R-CNN, YOLOv3 and RetinaNet to eval-
uate their application performance in a forested urban area
in Brazil. The authors explored the potential of DL in an
experimental way. ZamboniThgeThe et al. [20] tested three
advanced architectures: Faster R-CNN, RetinaNet and ATSS.
They compared methods in two dimensions: quantitative and
qualitative task completion, wherein ATSS performed better
in a quantitate inspection and Faster R-CNN and RetinaNet
were shown to have higher accuracy. For further develop-
ment, the authors extended their study to investigate 21 novel
deep learning methods; this provided a valuable reference
for the application of deep learning [21]. Culman et al. [22]
implemented RetinaNet to distinguish isolated and densely
distributed date and canary palms with other Phoenix palms
in a straightforward way. The results reported a mean average
precision of 0.86. ROSLAN et al. [18] integrated a GAN
based model and a RetinaNet model to detect individual tree
crowns; the results showed excellent F1 scores. However,
datasets are the foundation of deep learning, which need large
amounts of labeled training data. Manual labeling is time
consuming and labor intensive. LiDAR based individual tree
detection was used to create sample data, and then, the Reti-
nanet model was used to detect trees in the image [23], [24].
The use of existing datasets for deep learning tree detection
is one motivation of this paper.

FIGURE 1. An annotated patch of Campo Grande dataset. The bounding
boxes for each tree considered as ground truth are represented in red.

CNNs (VGG, Resnet34 and so on) were used to extract
features in Faster R-CNN. However, a conventional feature
extraction network encounters difficulty in producing abun-
dant features due to the restricted size of the area in the input
image. Dense and high-resolution predictions are required
in these receptive fields. Previously, CNNs have not fully
leveraged various feature maps from convolution or attention
blocks conducive to object detection. Swin transformer [25]
has a great capacity in sequence-based image modeling.
Transformers are the first models that completely depend on
self-attention to calculate input and output representations.
The self-attention window improves feature extraction via
local self-attention window calculation and cross-window
connectivity. This hierarchical network can be used to make
predictions at multiple feature scales.

In this paper, a transformer-based feature extraction net-
work was introduced in Faster R-CNN to detect trees in urban
areas. Based on existing datasets, transfer learning was used
to retrain the model so that it could be used for predictions in
new dataset. To the best of our knowledge, our study is the
first time that Swin Transformer was used in tree detection in
urban areas. The goals of our work were as follows:

1) To fine tune the model weights by appropriating Swin
transformer as a backbone.

2) Based on the idea of transfer learning, to use labeled
datasets to predict different types of datasets in different
regions.

II. STUDY AREA AND DATA
Three primary sources of data were used in our experiments:
one public and three private datasets.

A. CAMPO GRANDE DATASET
The Campo Grande dataset [21] includes two RGB high-
resolution, airborne orthoimages with a ground sample dis-
tance (GSD) equal to 0.1m of the Campo Grande urban area,
Mato Grosso do Sul state, Brazil. The orthoimages were
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TABLE 1. Guangzhou dataset.

FIGURE 2. Location of study sites.

split into 220 non-overlapping patches of 512 × 512 pixels
(Figure 1). A total of 3382 trees were identified as ground
truth.

B. GUANGZHOU DATASET
Three study areas were selected to test the method. The
three sites were located in Guangzhou, Guangdong province,
China, as shown in Figure 2. The first study site is green space
in the city, which covers 0.18km2. The second study site is a
habitation composed of buildings, a pond and few trees, and
the last site is located in the suburbs, which covers 1.1km2.
These different study sites were selected because the trees
included in these sites have different distribution character-
istics, rendering it feasible to analyze the performance of the
method for this study. Table 1 displays the three sites in this
study. Ground Sample Distance (GSD) is 0.1m.

UAV based RGB imagery was acquired in April-October
2020 using a DJI Phantom 4 Pro (DJI Technology Co.,
Ltd., Shenzhen, China). The raw images acquired using the
drone were processed using Agisoft Metashape v.1.5.5. The
orthoimages with a GSD equal to 0.1m were used. Figure 3-5
show the orthoimages of Site 1, Site 2 and Site 3.

III. METHOD
A. FASTER R-CNN
Faster R-CNN, which is a two-stage detector, consists of
three sections: 1) the feature extraction network; 2) the region

FIGURE 3. Orthoimage of site 3.

FIGURE 4. Orthoimage of site 2.

FIGURE 5. Orthoimage of site 1.

proposal network (RPN); and 3) the region of interest (ROI)
head. The feature extraction network was used to produce a
feature map. By using a low-dimensional convolution layer,
the RPN was implemented by scanning each region on the
learned feature map, and then, multiple proposals on the
feature map were predicted for each region. The proposals
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FIGURE 6. Faster R-CNN model.

FIGURE 7. (a) The architecture of a Swin transformer (Swin-T); (b) two successive Swin transformer blocks (W-MSA and SD W-MSA are
window-based multi-head self-attention and window-based multi-head self-attention with spatial displacement, respectively [25].

were operated with ROI pooling to acquire the feature vec-
tors. Subsequently, two fully connected layers (FCs) were
adopted to predict the class and location of the proposals [26].
Figure 6 presents the traditional Faster R-CNN model.

As reported in [21], two-stage methods have higher per-
formance in object detection. Here, firstly, regions that could
have contained objects were filtered, and then, most negative
regions were eliminated.

B. SWIN TRANSFORMER FEATURE EXTRACTION
As shown in Figure 7a, the input image was segmented
into non-overlapping patches by a patch partition layer. Each
patch was handled as a ‘‘token’’, and its feature could be
regarded as a string of raw pixel values. The architecture
of Swin transformer has four stages. Considering a H ×
W image, a token is a vector of an image patch with the
size of 4 × 4. Linear embedding is applied on this token
to map it in a vector with dimension C. In the architecture,
stages 1-4 produce H/4 × W/4, H/8 × W/8, H/16× W/16
and H/32× W/32 tokens, respectively. Each stage consists
of a patch merging block, a local perception block and some

Swin transformer blocks. The detailed structure of the Swin
transformer block is shown in Figure 7b. The block consists
of window-based multi-head self-attention (W-MSA), shifted
windowsmulti-head self-attention (SW-MSA) andmultilayer
perceptron (MLP). Inserting a layer norm (LN) layer in the
middle makes the training more stable and uses a residual
connection after each module.

C. IMPLEMENTATION
Considering that the feature extraction and utilization param-
eters of the basic network are relatively insufficient, this study
drew on the intensive use of Swin transformer as a backbone
to extract feature maps. To overcome the shortcomings of
CNNs’ poor ability to extract global information, we chose
the Swin transformer as a basic backbone network to build a
networkmodel for individual tree detection in high-resolution
RGB images.

The methodology work-flow chart is shown in Figure 8.
Firstly, the network was trained by using Campo Grande
dataset to detect the Guangzhou dataset. Subsequently, the
predicted results with high confidence score were used to
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FIGURE 8. General processing chain: The detection network was trained by using Campo Grande dataset,
Once trained, the network was applied to detect trees in Guangzhou dataset. The predicted results with
high confidence score were used to retrain the detection model, Once retrained, the network was applied
to detect trees.

FIGURE 9. Results predicted by initial model: (a) score = 0.957,
(b) score = 0.926, (c) score = 0.897, (d) score = 0.668, (e) score = 0.281,
(d) score = 0.183.

retrain the detection model. The retrained network was
applied to predict trees in the images not used for training.
Finally, the accuracy metrics were computed on the predicted
results.

Transfer learning is a technique of fine tuning a pre-trained
model which can result in decently performing models for
tasks with limited data. In this study, the Campo Grande
dataset could be used to train our model. However, it was
noted that without any fine tuning, the model did not perform
very well in new datasets. Manual labeling is time consuming
and labor intensive. There were no labeled data available to
perform this fine tuning. Some noisy data labels were gen-
erated by this initial model which could be used to fine tune
the model. Hence, a semi-supervised approach was used to
fine tune the base model further. The labeled data were taken
from the previously predicted results using the same model.
However, the average confidence score was low. These data
were filtered out and used as the retraining data. The true

FIGURE 10. IoU.

object should have had higher confidence scores, as shown
in Figure 9.

A stochastic gradient descent optimizer with a momen-
tum of 0.9 and weight decay of 0.0001 was applied.
The initial learning rate was empirically set to 0.001[20].
We used Pytorch as the DL framework, and the compi-
lation environment was Python 3.6.13 and Pytorch 1.8.0.
The training and testing procedures were implemented with
CUDA-compatible NVIDIAGPU (GeForce RTX2080 super,
8 GB RAM).

D. PERFORMANCE EVALUATION
The Intersection over Union (IoU), which is the ratio between
the union and the intersection of predicted box and ground
truth box, was used to measure overlap, as shown in
Figure 10 and (1). When a predicted box reaches a greater
IoU than the threshold, the prediction is classified as true
positive (TP). Otherwise, the prediction box is a false positive
(FP). Furthermore, if a ground truth box is not detected, it is
considered a false negative (FN). We calculated precision,
recall, and F1 score at an IoU threshold of 0.5 for each
image patch. Precision, recall and F1 Score were calculated
according to (2)-(4).

IoU =
A ∩ B
A ∪ B

(1)
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FIGURE 11. The training and validation loss curves of Faster
RCNN (Swin-T).

P =
TP

TP+ FP
(2)

R =
TP

TP+ FN
(3)

F1 =
2× P× R
P+ R

(4)

IV. RESULTS
Here, we present the results of our experiments. We chose
different types of experimental datasets to perform statistical
analysis, which included the Campo Grande dataset and the
Guangzhou dataset.

The results are organized in three sections: First, the
Campo Grande dataset was trained using the proposed
approach to provide an initial model; later, the model was
applied to the Guangzhou dataset to predict tree canopies;
after filtering the predicted result, the model was retrained.

A. CAMPO GRANDE DATASET
In this section, we discuss the performance of Faster R-CNN
(Swin-T) and other models used in [21]. The training, valida-
tion, and testing sets comprising 60%, 20% and 20% of the
available images, respectively.

Figure 11 illustrates the training and validation loss curves
of 100 epochs. The training loss decreased rapidly after a
few epochs, fluctuating in the following epochs, and then
stabilized at the end. The stable trends indicated that the
training epochs could meet the requirements.

Table 2 shows the performance for Faster R-CNN
(Swin-T), Faster R-CNN (Resnet50) and some models in
[19] with the average precision (AP50) and an IoU value
of 0.5. The performance of Faster R-CNN (Swin-T) was
shown to have similar precision to FSAF, which had the best
performance with respect to AP50. Additionally, the Faster
R-CNN (Swin-T) achieved higher performance than Faster
R-CNN and RetinaNet.

B. GUANGZHOU DATASET
Here, we chose three kinds of land parcels covering residen-
tial, urban green space and suburban areas. Figures 12-14

TABLE 2. Performance of the methods.

FIGURE 12. Predicted results regarding green space, red: Faster R-CNN
(Swin-T); yellow: Faster R-CNN (Resnet50).

show the tree detection achieved using Faster R-CNN
(Swin-T) and Faster R-CNN (Resnet50) represented by a red
box and a yellow box, respectively.

With regard to green space (Figure 12), as for smaller
tree crowns and even medium-sized ones, Faster R-CNN
(Swin-T) had good assertiveness. However, for larger crowns,
we observed a decrease in the performance in areas where
many trees overlapped with each other. Even so, Faster
R-CNN (Resnet50) showed worse robustness under the same
conditions.

As we can see in Figure 13, Faster R-CNN (Swin-T)
has better assertiveness in areas with buildings and shad-
ows. Correspondingly, there are instances of false detection,
where buildings are recognized as trees using Faster R-CNN
(Resnet50).
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FIGURE 13. Predicted results regarding residential area, red: Faster
R-CNN (Swin-T); yellow: Faster R-CNN (Resnet50).

Regarding suburban areas, despite missed detections of
agglomeration or overlap of trees, Faster R-CNN (Swin-T)
works well (Figure 14). As for less complex landscapes and
the interference factor in suburban districts, synthetically, the
proposed model can achieve excellent performance.

Table 3 presents tree detection counts of three overall
land parcels for residential areas, green spaces and suburban
districts. Additionally, Figures 15-17 show the application
of the proposed model in different scenarios. The results
demonstrate that our method can effectively geolocate trees
and delineate tree distribution.

C. STREET TREE DETECTION
Street trees are an important part of urban ecological envi-
ronments and have multiple functions such as dustproofing
and noise reduction, shading. Therefore, it is necessary to
monitor their growth status. The quick and cheap obtainment
of the stock of street trees is an area of importance for urban
foresters. Here, we tested the performance of methods with
regard to the detection of street trees. We annotated a small
amount of street trees, similar to Figure 1. As can be seen
from Table 4, the F1 of the proposed method was 0.948,
which was larger than the Faster R-CNN (Resnet50) score
of 0.898; the proposed method was shown to have higher
detection precision and recall, which led to higher F1 scores.

FIGURE 14. Predicted results regarding suburban area, red: Faster R-CNN
(Swin-T); yellow: Faster R-CNN (Resnet50).

TABLE 3. Number of detected trees.

Moreover, as shown in Figure 18, the Faster R-CNN
(Swin-T) benefits from the attention mechanism and thus
performs better than Faster R-CNN (Resnet50). The majority
of street trees were detected by the Faster R-CNN (Swin-T)
method. However, some false detections and missed detec-
tions were caused by Faster R-CNN(Resnet50). Thus, our
method was shown to achieve much better detection perfor-
mance than the comparison methods in terms of the detection
of street trees.

D. COMPUTATIONAL COMPLEXITY
Table 5 shows the mean and standard deviation of the time for
training(141 images) and validation(35 images). The image
size is 512 × 512. The time is the average in seconds to
execute the methods in an epoch. it becomes faster by using
the proposed architecture.

Table 6 shows the mean and standard deviation of the
time for tree detection. The time is the average in seconds
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FIGURE 15. Predicted result of site 1.

FIGURE 16. Predicted result of site 2.

to execute the methods on an image (512× 512). it becomes
faster by using the proposed architecture.

V. DISCUSSION
The results presented in the previous sections demonstrate
that the proposed method could detect trees effectively in the
study areas. An existing labeled dataset can be used to train
deep learning models to recognize trees and transfer them to
another dataset. However, as shown in the results, the method
in this paper is not effective enough to handle an intersection
of trees; an agglomeration of trees was detected as one tree.
The method was tested in different urban land types: green
space, suburban and residential areas. The proposed method
worked well in suburban and residential areas in spite of some
detection mistakes in the overlap between trees. The method

FIGURE 17. Predicted result of site 3.

TABLE 4. Performance of the methods.

used in this paper could detect some small trees on roofs.
Similarly to other methods, the method in this paper was
not effective in the detection of many dense forests, and the
detection of high-density objects was also a problem [21].

Comparably, the Faster R-CNN (Resnet50) model pro-
duced some false detections, as it recognized some houses,
cars, etc., as trees, which rarely occurred in the pro-
posed method. The Swin transformer has been used in
remote sensing classification, object detection and instance
segmentation [27]–[29]. As has been previously presented,
the experimental results demonstrate the powerful ability of
Swin transformer.

As urban scenes are more complex and heterogeneous,
there were some hindrances in terms of tree delineation
such as some overlap between objects and shadows and
other situations. In these scenarios, LiDAR [30]–[32] or
multispectral airborne LiDAR [33] can be integrated to
enhance the detection accuracy by providing altitude infor-
mation. The combination of LiDAR and imagery has recently
become popular for use in urban forest inventories [34].
Zhang et al. [35] proposed a framework to segment individ-
ual trees in urban areas using airborne LiDAR and aerial
images, and NDVI derived from hyperspectral images was
used to separate vegetation points from point clouds, and
then, individual trees were segmented from vegetation points.
However, expensive costs and the complex processing flow
limit the wide application of this technique.

Aval et al. [36] used airborne hyperspectral data and a
DSM and a vector layer of roads derived from the OSM
database to detect street trees, and the F1 score was shown to
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FIGURE 18. Street tree detection, red: Faster R-CNN (Swin-T); yellow:
Faster R-CNN (Resnet50).

be 0.75-0.91. Our method could also detect street trees with
high accuracy. However, it should be noted that in our dataset,
the street trees were scattered and rarely overlapped with each
other.

Even though the proposed method displayed good perfor-
mance in experiments, our research aimed to detect single
trees in an urban area. The detection of all of the trees in urban
scenes is a considerably more challenging task. This area of

TABLE 5. Training time of the methods.

TABLE 6. Computational cost of the methods.

research is still incipient, and it is worth further investigation
regarding the most appropriate techniques and different types
of data sources.

VI. CONCLUSION
We presented a deep learning method for the detection of
individual trees in urban areas based on high-resolution RGB
images. The developed model can achieve reutilization in
other urban scenes. We explored the method using different
datasets. The results show that the model achieved perfor-
mance with an AP50 of 0.699 in the Campo Grande dataset.
We also provided a qualitative analysis with regard to three
land parcels of residential areas, suburbs and green areas,
and the proposed architecture was shown to have better per-
formance. This is especially true for street tree detection,
where our method was shown to have better assertiveness;
in particular, the F1 score reached 0.948 in this case.

Furthermore, the method used in this paper did not need
to label data (or label a small amount of data for testing),
which greatly reduced the burden of manual labeling and can
be applied to other datasets. The final output of this method
was a vector file, not just a target box, of which a spatial target
was geolocated in the spatial dimension. This study provided
valuable information for urban forestry practitioners and can
be used in future works concerning the detection of individual
trees.
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