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ABSTRACT This paper proposes a novel unsupervised clustering framework to identify driving style not
in terms of the discrete features of driving behavior data, but rather the time-varying patterns of driving
maneuver intensity. This framework can describe the dynamic decision-making process of driving behavior
and the continuity of driving data, and driving maneuver intensity is the basic of this paper. Therefore,
detection, feature analysis and clustered on intensity of driving maneuvers are carried out using a threshold-
based approach, hierarchical feature extraction, and k-means clustering. Then, to analyze fine-grained
driving style, dynamic time windows are determined according to road alignment. In dynamic time windows,
this paper constructs time-varying patterns based on driving maneuver intensity, which consider the intensity
and frequency of driving behavior and preserve the time-varying characteristics of time-series data. However,
not all dynamic time windows are equal in maneuvers’ duration and number, which means the time-varying
patterns of driving maneuver intensity are curves with various lengths. So that, for clustering time-varying
patterns, this paper proposes a novel curve clustering algorithm named Similarity-Based Clustering with
Dynamic Time Warping (SBC-DTW) that can cluster curves with various lengths. The empirical results
based on real driving data demonstrate that the proposed framework can classify driving stylemore accurately
than the classical method. Moreover, according to this framework, we can have an in-depth understanding
of dynamic driving behavior and the composition of drivers’ long-term driving styles.

INDEX TERMS Driving behavior, unsupervised driving style analysis, dynamic decision-making process,
driving maneuver, curve clustering.

I. INTRODUCTION
Driving style analysis has become the focus of public atten-
tionwith the development of technology, which plays a vitally
important role in road safety [1]–[3] eco-driving [4], [5], vehi-
cle insurance [6], [7] and intelligent vehicle design [8], [9].
Driving style is usually defined as a habitual way of driving,
which is characteristic of a driver or group of drivers [1].
Generally, it describes a series of dynamic actions taken when
drivers are driving, according to their own conditions [10].
So far, both subjective and objective methods have been
used in previous researches. Generally, subjective methods
have mostly adopted the questionnaire [11], [12]. The former
researchers designed questionnaires according to their
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experience and asked drivers to fill them out so that they could
identify different drivers.

In recent years, objective methods have become more
and more popular, as they’re more objective and easier to
implement than subjective analysis. Manymethods have been
used in objective driving style analysis. No matter which
method is used, high-quality driving behavior characteristics
are important prerequisites for the effective identification of
driving style. High-risk drivers tend to have shorter time
headways (THWs), harder braking and more frequent lane
changes [1], [13]. Thus, scholars have utilized the statisti-
cal features of velocity, acceleration, and THW as driving
behavior features. For example, Chen et al. [14] calculated
the mean and standard deviation of the steering wheel angle.
Shi et al. [15] considered more than 1,000 driving behavior
features using a variety of functions. In addition to the basic
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statistical features, scholars have also used driving behav-
ior characteristics such as the zero-crossing rate [16] and
P-feature [17]to express the differences in driving behaviors.
Using these features, researchers have applied well-trained
classifiers such as XGBoost [15], the Markov model [18],
the Semi-Supervised Tri-CatBoost [16], structural equation
models [19], the semi-supervised support vector [20], and
neural networks [21], [22] to identify driving styles. The
above methods have achieved ideal results, whereas they
require labeled data.

Considering that the acquisition of data labels in real life
consumes a lot of manpower and financial resources [23],
unsupervised driving style analysis has attracted attention.
We can effectively avoid the limitation of manually labeling
data, and effectively analyze a large volume of driving data in
the context of big data to identify driving behavioral seman-
tics and driving style utilizing the unsupervised method.

Recently, some researchers [24] have used clustering algo-
rithms to achieve the analysis of driving styles. Scholars have
also used various methods to construct features using driv-
ing parameters. Based on these features, K-means [25], the
Gaussian mixture model [14], [26], the Hierarchical cluster
analysis [27], and the K-means clustering-based Support Vec-
tor Machine [28] have been used to directly identify driving
characteristics.

As mentioned above, both supervised and unsupervised
classification can only give one profile of driver’s driving
style. However, it is generally accepted that driving style
is constantly changing with the external environment [29].
To describe dynamic driving style changing with surrounding
environments, De Zepeda et al. [29] proposed a position-
dependent dynamic clustering framework, and achieved
dynamic clustering of driving style. Also,Murphey et al. [30],
E Suzdaleva et al. [31] and other scholars [32] have achieved
online recognition of driving behavior characteristics using
supervised methods.

To date, all methods usually construct discrete features
of continuous driving data, and use clustering algorithms
or classifiers for those features to identify driving style.
Considering the continuity of driving data and dynamic
decision-making process of driving behavior, continuous
fine-grained features should be proposed to estimate driving
behavior characteristics as well as corresponding algorithms.

Given the gaps in the literature, this paper proposes a
novel unsupervised driving style clustering framework to
identify driving style. In our paper, we carry out driving
style analysis using unsupervised methods. Sample groups
with similar characteristics can be found using clustering
methods, which overcomes the disadvantages of manually
labeling data. Decomposing complex driving behaviors into
basic driving maneuvers can facilitate driving style analysis
and identification [33], so this paper takes driving maneuvers
as the basic unit. And fine-grained driving styles in dynamic
time windows are characterized by the time-varying patterns
of driving maneuver intensity, which consider the intensity
and frequency of driving maneuvers.

FIGURE 1. Testing device.

We also propose a new curve clustering algorithm for
clustering curves with various lengths named Similarity-
Based Clustering with Dynamic TimeWarping (SBC-DTW).
So that, clustering analysis of driving style in dynamic time
windows is achieved according to time-varying patterns.

Based on this algorithm, this method can capture drivers’
changing driving behaviors, achieve dynamic analysis of it,
improve the result’s interpretability and expand its range of
applications. The main contributions of this paper can be
summarized as follows:
(1) In this paper, dynamic time windows are determined

according to road alignment. We achieve a clustering
analysis of driving style based on dynamic time win-
dows, which can effectively analyze drivers’ changing
fine-grained driving styles, and explain the composi-
tion of long-term driving style based on fine-grained
driving style.

(2) We take driving maneuvers as the basic units. Con-
sidering both the intensity and frequency of driving
maneuvers, we take the time-varying pattens of driving
maneuver intensity as the feature to describe driving
style. In this way, the dynamic decision-making process
of driving behavior can be described, and the conti-
nuity of driving behavior data can be preserved. This
improves the interpretability and range of applications
of driving style. To the best of our knowledge, this is
the first paper to use continuous features to solve the
driving style analysis problem.

(3) Time-varying patterns are curves with various lengths
due to dynamic time windows. Aiming at the problem
of clustering curves with different lengths, we pro-
pose SBC-DTW to solve it, which avoids local opti-
mization of hierarchical clustering of the classical
algorithm.

The paper is organized as follows: In Section II, the data
sources and tests are discussed in detail. In Section III, the
four-part framework for unsupervised driving style analysis
based on driving maneuvers is proposed. The results for each
part are presented and discussed in Section IV. Finally, the
paper is concluded in Section V.
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FIGURE 2. Statistical results for processed variables.

II. DATA DESCRIPTION
A. PARTICIPANTS
16 drivers (10 males, 6 females; age range 28∼50 years old,
average age = 29.8, standard deviation (SD) = 2.7; driving
experience 0∼12 years, average = 7.6 years, SD = 3.3)
were paid for their participation in this study. We carried
out naturalistic driving experiments using the same equip-
ment throughout to avoid systematic errors. All drivers were
required to drive the vehicle in similar conditions to minimize
potential disturbance caused by external factors. These tests
were conducted with the consent of all participants.

B. EXPERIMENT DESIGN
The experiments were carried out in the RADS 8 DOF
Panoramic Driving Simulation (shown in Fig. 1). The test
route contained 11 curves and the total round trip was about
10.35 km.

C. DATA PROCESSING
The data recorded by the RADS 8 DOF Panoramic Driving
Simulation are recorded at a sampling rate of 60 Hz. Because
raw data are volatile, we used a moving-average algorithm
to smooth the data. The statistical results from the processed
data are shown in Fig. 2. We can see that the velocity falls
in the 0-34 m/s range, longitudinal acceleration falls in the
−7 m/s2-6 m/s2 range, and lateral acceleration ranges from
−7 m/s2 to 9 m/s2.

III. METHOD
Generally, the differences between drivers are analyzed using
discrete features extracted from driving data in previous stud-
ies. However, we all know that different drivers will take
kinds of driving maneuvers over time when they execute
driving-tasks, and the driving data are long-term continuous
time-series data. It’s evident that these discrete features in the
classical method cannot describe dynamic decision-making
process of driving behavior over time and the continuity of
driving data. So, it’s necessary to find a continuous feature
which can extract more information from driving data.

Driving data contain a large number of driving maneuvers,
and previous studies have been proved decomposing complex

driving behaviors into basic driving maneuvers can facilitate
driving style analysis and identification [33]. So, we take
the driving maneuvers as the basic unit to construct the
continuous feature. To better understand the characteristics
of driving behavior from maneuver level, we cluster driving
maneuvers on intensity based on maneuver-level intensity
features. Specifically, these intensity features are compre-
hensive features coupling multiple variables. Since driving
behavior is embodied by intensity and frequency, we take the
time-varying patterns of driving maneuver intensity as our
continuous feature after obtaining driving maneuver inten-
sity, which can compensate for the shortcomings of previous
studies.

Also, in order to obtain fine-grained driving style, the data
should be a period of time rather than the whole period of
travel. Based on that, this paper analyzes time window data,
namely driving data from a period of time containing a lot
of maneuvers. Further, data from different road alignments
would have different characteristics. We determine the time
windows according to the road alignment so as to keep the
data characteristics consistent within each time window.

We finally identify fine-grained driving style in dynamic
time windows according to time-varying patterns of driving
maneuver intensity. The time-vary patterns are curves with
various lengths as a result of dynamic time windows. There-
fore, we are supposed to cluster driving style through a clus-
tering algorithm for curves with various lengths. Although
this kind of clustering has been used successfully in other
fields, the application for driving style analysis is still lacking.
Given the gaps in the researches, we propose a novel curve
clustering algorithm to cluster curves with various lengths.

The novel unsupervised driving-style clustering frame-
work based on driving maneuver intensity is shown in Fig. 3.
This framework is divided into four parts: driving maneu-
vers detection, feature analysis of driving maneuvers, driving
maneuvers clustered on intensity, and driving style analysis.
The first three parts are all used to get the driving maneu-
ver intensity, which is prepared for the acquisition of time-
varying patterns. Based on driving maneuver intensity, we get
the time-varying patterns of driving maneuver intensity for
dynamic time windows. Then, we identify driving style using
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FIGURE 3. Flow diagram of the proposed framework.

our novel curve clustering algorithm for curves with various
lengths.

This framework firstly avoids the limitation of manual
labeling because it achieves the analysis of driving styles
through the unsupervised method. Secondly, the fine-grained
driving style analysis based on dynamic time windows can
effectively capture dynamically changing driving styles. Last
but not the least, this framework constructs the time-varying
patterns of driving maneuver intensity that describes the
dynamic decision-making process involved in driving behav-
ior and the continuity of the data and uses a novel curve
clustering algorithm to analyze driving style.

A. DRIVING MANEUVER DETECTION
We choose the driving maneuver as the basic unit to con-
struct time-varying patterns. Driving maneuvers, in this
paper, is defined as the basic building units of com-
plex driving behavior. Longitudinal and lateral maneuvers
are involved when drivers control vehicles. Longitudinal
maneuvers include acceleration, deceleration, and driving
at a constant speed. Lateral maneuvers include turning and
driving-straight. Thus, we couple the longitudinal and lateral

maneuvers to identify the driving maneuvers. We use a
threshold-based approach to extract the driving maneuvers
according to velocity, longitudinal acceleration, and lateral
acceleration.

After processing the data, we calculate the driving tra-
jectory radius (R) based on the velocity (vel) and lateral
acceleration (latacc), as shown in(1).

R =
vel2

latacc
(1)

If R > 1000m, the vehicle is considered to be driving-
straight, and if R < 1000m, it is considered to be turning.
Further, we extract the complete wave of longitudinal accel-
eration, and then acceleration, deceleration, and driving at a
constant speed are detected according to the peak (or trough)
threshold. Finally, the driving maneuvers are detected
by considering both longitudinal and lateral maneuvers.
Specifically, the complete wave of longitudinal acceleration
is the process of longitudinal acceleration increasing
(decreasing) from zero to a certain value and then decreas-
ing (increasing) to zero again. We determine the threshold as
follows:
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TABLE 1. Variables, operations, and descriptions used for feature construction.

• acceleration: longacc > 1.0m/s2

• driving at a constant speed: −1.0m/s2 < longacc <
1.0m/s2

• deceleration: longacc < −1.0m/s2

B. FEATURE ANALYSIS OF DRIVING MANEUVERS
1) FEATURE CONSTRUCTION
Features usually refer to data attributes that are beneficial
to machine-learning algorithms. Therefore, before analyz-
ing the maneuver intensity, we need to construct features,
so as to comprehensively represent the data and improve the
accuracy of the subsequent algorithms. In this paper, there-
fore, we select velocity, longitudinal acceleration, and lateral
acceleration as the feature parameters to represent driving
behavior. Firstly, statistical features are the most common
ones and represent the data distribution. Secondly, entropy
reflects the amount of information in complex time series.
Therefore, 48 features are constructed to represent the data,
considering statistics and entropy. The variables, operations,
and descriptions used for the feature construction are shown
in Table 1.

2) FEATURE EXTRACTION
In order to reduce the number of features so as to obtain
more representative features and reduce the computational
complexity, feature extraction is necessary. Feature extraction
can be used to identify patterns and underlying structures in
data sets and to combine original features to create new ones
that better describe the data.

Because different variables have different weights when
describing driving behavior, and due to different data distribu-
tions, we need to extract the variable-level intensity features
and the maneuver-level intensity features successively.

Based on the above consideration, we use the hierarchi-
cal feature extraction to extract the maneuver-level inten-
sity features. We calculate the feature weights twice, and
use polynomials to combine the complex multi-dimensional
features into comprehensive single-dimensional features. The
maneuver-level intensity features comprehensively represent
both the coupling effect of variables and different variables’
different distributions. As shown in Fig. 4, the hierarchical

FIGURE 4. Hierarchical feature extraction system.

feature extraction system consists of three layers: the bottom
layer is constructed features, the middle layer is variable-
level intensity features, and the top layer is maneuver-level
intensity features.

Specifically, we firstly calculate the weights of the con-
structed features using the entropy weight method [34], and
obtain the variable-level features var_ fi (i.e., the variable of
the ith maneuver) using a polynomial. Then, we use principal
component analysis (PCA) to calculate the weight of var_
fi, and extract the maneuver-level intensity features man_ fi
(i.e., the ith maneuver) using a polynomial.
After obtaining the weights of the constructed features

c_ fvar,ik (i.e., the k th constructed feature of the variable for
the ith maneuver), we calculate the variable-level intensity
features var_ fi, using (2).

var_fi =
K∑
k=1

c_fvar,ik · wvar,ik (2)

where var = [vel longacc, latacc]T , and i = 1, 2, . . . , I . i is
the number of maneuvers and k is the number of constructed
features of the variable. Then, we use PCA [35] to calculate
the weights of variable-level intensity features. PCA firstly
converts correlation variables into linear unrelated variables
by orthogonal transformation, and calls them principal com-
ponents (PCs). Then, the number of PCs is selected according
to the explained variance ratio. The explained variance ratio,
which is the variance contribution percentage of the original
feature parameters represented by the PC, is the proportion
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of the original information content represented by each PC
in the total original information content represented by all
the PCs.

The weight of each PC w_ pim (the mth PC weight of the
ith event) is obtained by normalizing the explained variance
ratio of the selected PCs. The weight of the PC containing
more original information is larger. The PC must represent at
least 90% of the variance of the original features, and then
the maneuver-level intensity features man_ fi are extracted
using (3) according to weight w_ pim, var_ fi, and αvar,im
(the variable loading of the variable-level intensity features
variable under the mth PC for the ith maneuver).

man_fi =
M∑
m=1

w_pim

(∑
var

avar,im · var_fi

)
(3)

where m is the number of PCs. In this paper, we use a
multi-layer weight calculation system considering the data
distribution differences of the variables and the differences
in the weights of the variables in terms of how they affect
driving behavior at the same time. We finally obtain the one-
dimensional maneuver-level intensity features —the larger
value is along with the greater maneuver intensity.

C. DRIVING MANEUVERS CLUSTERED ON INTENSITY
Driving behavior is embodied by intensity and frequency.
Therefore, we need to use both intensity and frequency to
represent driving behavior characteristics. However, the driv-
ing maneuvers extracted above only have a semantic def-
inition and cannot quantitatively describe the intensity of
maneuvers. Therefore, we labeled the intensity of the driving
maneuvers.

More than 3,000 driving maneuvers were extracted from
driving data. Although there were many maneuvers, the
essential intensity clusters of the maneuvers were limited due
to their similarity. For intuitive recognition of the operational
characteristics of maneuvers and to understand the driving
behavior characteristics from a maneuver level, maneuver
intensity labels were extracted by clustering the various
maneuvers into a smaller number of clusters according to
maneuver-level intensity features.

The K-means algorithm is a classical clustering algorithm.
Previous works have proved that K-means clustering is supe-
rior to other traditional algorithms [29], [36], [46]. This
algorithm firstly randomly selects k cluster centers, then
iteratively assigns each sample to the nearest cluster accord-
ing to Euclidean distance until cluster membership stabi-
lizes. Although there have been many variants of k-means,
the k-means is still popular as its efficiency and empirical
success [47], [48].

We use it to cluster the driving maneuvers. After obtain-
ing the maneuver-level intensity features, we cluster the
driving-straight and turning maneuvers separately because of
the difference in their data distributions. Further, the inten-
sity label of each maneuver is obtained according to the

statistical features of the maneuver-level intensity features,
and we use numerical values to represent the maneuvers of
different clusters. Driving maneuver intensity clusters with
larger values have greater intensity.

D. DRIVING STYLE ANALYSIS
1) DYNAMIC TIME WINDOW DETERMINATION
Asmentioned above, we determine the time windows accord-
ing to the road alignment, not only to ensure each time
window contains enough maneuvers to reflect the dynamic
driving behavior decisions, but also to avoid mixing data with
different distributions, so that we can effectively analyze the
fine-grained driving styles.

2) DRIVING STYLE CLUSTERING BASED ON THE
TIME-VARYING PATTERNS OF DRIVING
MANEUVER INTENSITY
After determining the dynamic time windows, we study
driving style in the time windows. Considering both the
intensity and frequency of the maneuvers, we use the time-
varying patterns of driving maneuver intensity as the feature
to describe driving styles. Specifically, the time-varying pat-
terns of driving maneuver intensity are curves of the driv-
ing maneuvers changing over time. This feature preserves
the continuity of the driving data and reflects the dynamic
decision-making process of driving behavior. However, the
time-varying patterns are curves with different lengths due to
duration between dynamic time window is different.

For clustering curves with various lengths, Hierarchical
Clustering based on DTW (HC-DTW) has been applied suc-
cessfully in manufacturing [37], geology [38], transporta-
tion [39], and biology [40]. HC-DTW firstly calculates the
distance matrix between any two curves in the curve set,
then clusters curves of different lengths using a hierarchical
clustering strategy based on the distance matrix. Hierarchical
Clustering has many advantages, such as a visual clustering
process, simple clustering strategy, and others. It also has
some disadvantages, for example, that the greedy principle
could easily lead to local optimization and that the clustering
results depend on the selection of merging points.

To overcome the shortcomings of previous studies,
we propose a novel curve clustering algorithm named
Similarity-Based Clustering with Dynamic Time Warping.
(SBC-DTW), which compensates for the possibility of local
optimization. We use this algorithm to carry out the driv-
ing style analysis based on time-varying patterns of driving
maneuver intensity, and thereby improve the accuracy of
driving style analysis.

In this paper, we use the DTW to calculate the distance
matrix between any two curves in the curve set, and cluster
curves with various lengths by using a Similarity-Based Clus-
tering [41].
Definition 1: Defining the curve set. C (L1,L2, . . . ,Ln)

The distance matrixDC of curve setC is the distance between
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all pairs of curves in curve set C .

DC =

 d11 · · · d1n
...

. . .
...

dn1 · · · dnn


dij = DTW

i=1,2,...,n
j=1,2,...,n

(
Li,Lj

)
(4)

Definition 2: The intra-cluster similarity of C . is the max-
imum distance between any two curves in the curve set.

S (C) = max (DC ) (5)

Definition 3: the distance between curve Li and curve set
C is the average distance between curve Li and any curve in
curve set C .

dCi =
1
n

n∑
j=1

DTW
(
Lj,Li

)
(6)

According to the clustering strategy of the Similarity-
Based Clustering, this paper proposes SBC-DTW. The
pseudo-code of SBC-DTW is shown in Algorithm.

Algorithm 1 Similarity-Based Clustering with Dynamic
Time Warping (SBC-DTW)
Input: curve set C = {L1,L2, ..,Ln}, threshold T
Output: curve clusters {C1,C2,C3, . . . ,Cm}
1: Initialize m = 0
2: while C is not empty
3: m = m+1
4: calculate distance matrix DC according to (4)
5: find La and Lb, which dab = maxDC ; initialize C1 =
La, and update C = C − C1

6: for L1,L2, ..,Le ∈ C , calculate D2 =

{dC11, dC12, . . . , dC1e} according to (6)
7: find Lz which dC1z = min (D2), and initialize C1′ =
C1+ Lz

8: if S
(
C1′

)
< T

9: update C1 = C1+ Lz and C = C − C1, then go to
6

10: else
11: Cm = C1, then go to 2
12: end if
13: return: curve clusters {C1,C2,C3, . . . ,Cm}

14: end while

This algorithm avoids the local optimization caused by
hierarchical clustering, and calculates the intra-cluster sim-
ilarity and the distance between a curve and a curve clus-
ter based on the DTW. By clustering curves with different
lengths, we efficiently cluster the driving styles in dynamic
time windows based on the time-varying patterns of driving
maneuver intensity. The result of the clustering maintains
the continuity and temporal information of the driving data.
In this way, we analyze driving styles more accurately and
improve the interpretability and range of applications of the
results of the driving style clustering.

3) DRIVING STYLE LABELING CONSIDERING DRIVING
MANEUVER INTENSITY AND ITS TRANSITION
CHARACTERISTICS
Curve clustering is an unsupervised data mining method,
so the clusters obtained do not have semantic labels. In order
to intuitively understand driving styles, we label the driving
style of each cluster considering both the intensity and the
transition characteristics of the maneuvers.

Driving maneuvers transfer into each other, and maneuvers
can transfer into other maneuvers or achieve self-transfer. The
transition probability of a maneuver represents the possibility
of transition between maneuvers.
θt is the driving maneuver at time t . man_ i and man_ j are

maneuver intensity clusters. The transition probability from
man_ i to man_ j is defined as follows.

Pij = P (qt+1 = man_j|qt = man_i)

=
n (qt = man_i, qt+1 = man_j)

n (qt+1 = man_j)
(7)

where n is the number of maneuver intensity transitions from
man_ i to man_ j.

After obtaining the transition probability of each driving
style cluster, we label the driving style of each cluster based
on the transition characteristics and intensity of maneuvers.
Specifically, we label the driving style based on the following
aspects:
• Diversity of maneuver intensity transition forms
Themore diverse the transition forms are, themore random

the driving behavior is, which means there is more informa-
tion. Some drivers tend to transfer repeatedly between various
maneuvers so as to reduce the time they take to reach their
destination as much as possible or to obtain more driving
pleasure. Such driving behavior is often considered to be
highly aggressive. However, other drivers prefer to operate
vehicles in a fixed mode where the transition forms are
simpler. Such driving behavior is more conservative and less
aggressive.

The amount of information in data can be quantified by
information entropy. When data are more uncertain, they
contain more information, so their information entropy are
consequently higher. We calculate the information entropy of
driving style cluster Z (H (z)) using the transition probability,
and use the entropy to quantify the diversity of forms of
transition intensity between maneuvers.

H (z) = −
K∑

i=1|j=1

pzi j log
[
pzij
]

(8)

where K is the number of maneuver intensity clusters, and
pzij is the transition probability of transition from man_ i to
man_j in driving cluster Z .
• Maneuver intensity transition tendency
The transition tendency specifically describes the decision

preferences in different driving behaviors. Because high-
intensity maneuvers require more advanced driving skills,
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FIGURE 5. Detection of driving maneuvers from time-series driving variables.

when a driver transfers from the current maneuver to a higher-
intensity maneuver, the driver will feel more excitement.
However, the driver will feel less excited when transferring to
a lower-intensity maneuver. From the above, we can describe
driving style differences based on changes in the maneu-
ver intensity clusters before and after maneuver transition.
Further, existing research [42] has proved that differences
in driving styles are mainly reflected in the intensity and
difficulty of maneuvers. Thus, we assign different weights to
different transition forms according to the maneuver intensity
clusters after the transition. The greater is the intensity of the
maneuver after the transition, the larger is the weight of the
transition form.

As shown in (8), we take each event cluster as the current
event in turn, and find the corresponding transition form
with the maximum transition probability. Then, we use the
weighted sum of difference between the maneuver intensity
clusters after transition and the current maneuver intensity
clusters for this transition form to obtain the transition ten-
dency of this driving style cluster.

T (z) =
P∑
p=1

(
wzp · tranzp

)
(9)

whereP is the number of transition forms,wzp is the weight of
maneuver intensity transition form pin cluster Z , and tranzp
is the range of maneuver intensity transition form p in cluster
z. wzp =

man_j
K∑
k=1

man_k
, andtranzp = man_j − man_i where K

is the number of maneuver intensity clusters, man_ j is the
next maneuver intensity cluster, and man_ i is the current
maneuver intensity cluster.

• Maneuver intensity
We calculate the mean of each maneuver intensity clus-

ter to represent this driving style cluster’s general intensity,
as shown in (10).

Q (z) =
1
M

(
M∑
m=1

man_im

)
(10)

where M is the number of maneuvers in each driving style
cluster, and man_ im is the numerical values of the maneuver
intensity cluster for the mth maneuver.

Finally, we label each driving style cluster based on the
above three indicators. The three indicators are all positive,
with a smaller value indicating a more cautious driving style
and a larger value a more aggressive driving style.

IV. RESULTS AND DISCUSSION
A. DRIVING MANEUVERS
We used a threshold-based approach to detect the driving
maneuvers according to their velocity, longitudinal acceler-
ation, and lateral acceleration. Fig. 5 shows the result.

Obviously, the lateral acceleration in turning is signifi-
cantly greater than that in driving-straight. The acceleration
profiles of the acceleration and deceleration maneuvers are
distributed around the x axis respectively, while the acceler-
ation in the maneuvers involving driving at a constant speed
fluctuates around 0. In addition, for the longitudinal accelera-
tion, the velocities of the different types of maneuver present
trends of rising, horizontal change, and falling respectively.
It can be seen from the variable profiles that the complete
driving maneuvers are effectively and accurately detected in
this paper.
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TABLE 2. Constructed features.

FIGURE 6. Weights of constructed features.

FIGURE 7. Statistical comparison between variable-level intensity
features.

B. MANEUVER-LEVEL INTENSITY FEATURES
The constructed features are listed in Table 2. Because of
the differences in the data distributions between turning and
driving-straight, we analyze them separately.

First, we calculate the weights of each variable’s con-
structed features based on the entropy weight method, for
the driving-straight and turning, respectively. The results are
shown in Fig. 6. Then, we calculate the variable-level inten-
sity features using (2) for the driving-straight and turning.
Fig. 7 shows the statistical comparison between the three
variables-level intensity features.

In addition, Fig. 8 shows the distributions of the three
variable-level intensity features, and Fig. 9 shows the sta-
tistical results. For the driving-straight, the velocity-level
intensity features range from 0 to 28, the longitudinal
acceleration-level intensity features range from −1.5 to 2.5,

TABLE 3. Explained variance ratio of each PC.

TABLE 4. Variable loadings on PC 1.

and the lateral acceleration-level intensity features range
from 0 to 0.3. For the turning maneuvers, the velocity-
level intensity features range from 0 to 23, the longitudinal
acceleration-level intensity features range from −1.2 to 2.5,
and the lateral acceleration-level intensity features range from
0 to 2.7.

Generally, velocity-level intensity features and longitudi-
nal acceleration-level intensity features vary roughly in the
same range. The velocity-level intensity features are nor-
mally distributed. However, the longitudinal acceleration-
level intensity features have a bimodal distribution because
they contain both positive and negative acceleration. Due
to the influence of road alignment, the range of the lateral
acceleration-level intensity features in driving-straight are
greatly different from that in turning.

Based on the variable-level intensity features, the
maneuver-level intensity features were obtained using the
abovementioned PCA method. We also analyzed driving-
straight and the turning respectively. Table 3 shows the
explained variance ratios of the PCs. Since the explained
variance ratios of the first PC of driving-straight and turning
are both over 90%, we choose the first PC.

The variable loadings of the variable-level intensity fea-
tures are shown in Table 4. They are consistent with the above
results, being larger for the feature with the larger degree
of dispersion. We calculated the maneuver-level intensity
features for driving-straight and turning by (3). The results
are shown in Fig. 10 and Fig. 11.

C. DRIVING MANEUVER INTENSITY
We clustered the driving maneuvers based on intensity after
obtaining their intensity features, and labeled them. In this
way, we amplified the similarity of similar data and the
differences among different types of data to make the driving
style analysis based on driving maneuvers easier.

The driving-straight and turning were still analyzed sepa-
rately. We clustered the maneuvers using K-means based on
their features. We selected the number of clusters to be 1, 2,
3, . . . 10 in turn, and used the Silhouette Coefficient (SC) [43]
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FIGURE 8. Spatial distributions of variable-level intensity features.

FIGURE 9. Statistical results of variable-level intensity features.

FIGURE 10. Spatial distributions of maneuver-level intensity features.

and Davies–Bouldin Index (DBI) [44] to measure the per-
formance. The SC and DBI are common internal indicators
used to measure clustering performance, which they evaluate
by calculating the intra-cluster similarity and inter-cluster
dissimilarity. The SC ranges from−1 to 1, with a larger value
indicating a better result. On the contrary, with DBI, a smaller
value indicates a better result.

The trends in the SC and DBI as we change the number of
clusters are shown in Fig. 12. For driving-straight maneuvers,
the clustering result is best when k = 3. Here, the SC is
0.75 and the DBI is 0.51. For turning maneuvers, the clus-
tering result is best when k = 2, and the SC is 0.83 and DBI

FIGURE 11. Statistical results for maneuver-level intensity features.

is 0.45. The above results also prove that the data distributions
differ between driving-straight and turning. Fig. 13 shows the
best results in detail.

As mentioned above, the maneuver-level intensity features
describe the intensity of the maneuvers, so we used the
statistics of maneuver-level intensity features to represent the
intensity of themaneuver clusters. In addition, we used values
with physical significance to represent different maneuver
clusters, giving clusters with greater intensity larger values.

As shown in Table 5, for driving-straight, the overall trend
is that the mean value is highest in Cluster 1, followed
by Cluster 3, and lowest in Cluster 2. The maximum and
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FIGURE 12. Relationship between clusters and evaluation metrics.

minimum values of the three clusters are also highest in
Cluster 1, followed by Cluster 3, and lowest in Cluster 2,
and the clusters all have small standard deviations. Therefore,
Cluster 1 has the greatest intensity. Further, Cluster 1 has a
value of 3, Cluster 2 has a value of 1, and Cluster 3 has a value
of 2. For turning, the overall trend is that the mean value is
highest in Cluster 2, and lowest in Cluster 1. The maximum
and minimum values of the two clusters are arranged succes-
sively, and the clusters both have small standard deviations.
Therefore, the intensity of Cluster 1 is weaker than that of
Cluster 2. We set the value of Cluster 1 to 1 and the value of
Cluster 2 to 2.

D. DRIVING STYLE
1) DYNAMIC TIME WINDOWS
We obtained 1,635 dynamic time windows based on the
road alignment. The statistical results for the dynamic time
window durations are shown in Fig. 14.

An example of dynamic time window determination is
shown in Fig.15. The dot lines are change points of driving
maneuvers, and the change of colors means different time
windows. it’s clear that not all the number of driving maneu-
vers in timewindows are same and not all windows have same
durations.

Two specific examples of dynamic time windows are
shown in Fig. 16. The different colors represent different
types of driving maneuvers. In Fig. 16(a), the longitudi-
nal acceleration falls in the range of −2.5 m/s2-1.1 m/s2,
which means the longitudinal maneuvers in this time window
contain acceleration, deceleration, and driving at a constant
speed. The radius is larger than 1,000 m, which means the
lateral maneuver in this window is that of straight driving.
To sum up, this window contains five maneuvers belonging
to three types, namely, accelerating when driving- straight,
driving at a constant speed when driving-straight, and decel-
erating when driving-straight. In Fig. 16(b), the longitudinal
acceleration falls in the range of -3 m/s2 - 0.6 m/s2, and
the radius is smaller than 1,000 m. Thus, this time window

contains two driving maneuvers belonging to two types,
namely, decelerating when turning and driving at a constant
speed when turning.

2) DRIVING STYLE CLUSTERS
For each dynamic time window, we can obtain the time-
varying pattens of driving maneuver intensity. Specifically,
the time-varying patterns of driving maneuver intensity are
represented by the curves of the driving maneuvers changing
over time. Some examples for different time-varying patterns
are shown in Fig. 17. The vertical dot lines are the change
points of detected driving maneuvers, and the red lines are
time-varying patterns of driving maneuver.

We then clustering driving styles in terms of time-varying
patterns of driving maneuver intensity. Most studies classify
driving styles into three clusters: aggressive, normal, and
cautious [25], [42], [45]. We also set the number of driving
clusters to three. Since the dynamic time windows were
determined according to the road alignment, the differences
in the data distributions between different dynamic time win-
dows were also considered when analyzing the driving styles
based on these time windows. We clustered the driving styles
based on the dynamic time windows containing driving-
straight maneuvers and those containing turning maneuvers
separately.

We obtained the distance matrix of the distances between
pairs of curves using the DTW, and needed to choose a
distance as the end threshold of SBC-DTW. However, it was
difficult to determine this end threshold directly as the dis-
tances between curves are continuous.

In statistics, percentiles perfectly represent a data set, and
can quantitatively reflect its distribution. Therefore, we chose
a percentile of the distance matrix as the end value. A thresh-
old selected in this way reflects the similarities and dif-
ferences between the samples in a specific data set, so it
had certain reliability. Further, to ensure the interpretability
and acceptability of the clustering results, we selected the
number of clusters to be three based on previous researches
when we clustered the driving styles based on dynamic time
windows. On this basis, and combined with experience, the
87th percentile was selected as the end threshold for the
dynamic time windows containing driving-straight maneu-
vers, and the 50th percentile was selected for those containing
turning maneuvers.

We also used the internal indicators to evaluate the results
of the driving clustering. For the DBI, one needs to calculate
the cluster centers. However, it is difficult to calculate the
cluster centers of curves that have unequal lengths. As a
result, we used the SC to evaluate the curve clustering algo-
rithm, with the distances between curves obtained using the
DTW. Table 6 implies that we have a good clustering result.
Fig. 18 and Fig. 19 imply that we have good clustering results
and statistical significances are found between the different
clusters based on velocity (p<0.01), longitudinal acceleration
(p<0.01), and lateral acceleration (p<0.01).

48170 VOLUME 10, 2022



X.-S. Li et al.: Unsupervised Driving Style Analysis Based on Driving Maneuver Intensity

FIGURE 13. Results of driving maneuver clustered on maneuver intensity.

TABLE 5. Statistical features of driving maneuver clusters on intensity.

FIGURE 14. Statistical results for dynamic time window durations.

3) DESCRIPTIVENESS OF THE DRIVING STYLE CLUSTERS
We labeled the driving styles based on the diversity of maneu-
ver intensity transition forms, maneuver intensity transition
tendency, and maneuver intensity after clustering. The tran-
sition probabilities of the driving style clusters are shown in
Fig. 20 and Fig. 21. Based on those, we used (8), (9), and (10)
to obtain the diversity of maneuver intensity transition forms,
maneuver intensity transition tendency, and maneuver inten-
sity, the results of which are shown in Table 7.

For the dynamic time windows containing driving-straight
maneuvers, Cluster 3 has the highest intensity and the
minimum diversity of transition forms, which implies that

TABLE 6. Results of driving style clustering.

Cluster 3 consists of more intense and more aggressive
maneuvers. Although the maneuver intensity transition forms
of Clusters 1 and 2 are more diverse, the intensity of these
two clusters is lower. In other words, in Clusters 1 and 2,
there is a preference for transferring between less intense
maneuvers. Therefore, we label Cluster 3 as aggressive. Since
the diversity of transition forms of Cluster 1 is higher than that
of Cluster 2 and they have similar intensity, we label Cluster 1
as normal and Cluster 2 as cautious.

Similarly, for the dynamic time windows containing turn-
ing maneuvers, Cluster 1 is obviously aggressive, with rela-
tive high values for the three indicators. Cluster 2 is normal
because it has greater intensity than Cluster 3. Cluster 3 is
cautious due to the transferring between low-intensitymaneu-
vers. To further verify the reliability of the results, we chose
samples of different driving styles and compared their vari-
able profiles. The results are shown in Fig. 22 and Fig. 23.

For dynamic time windows containing driving-straight,
there is no significant difference in lateral acceleration, but
the velocities of the samples with different driving styles
do differ. Further, the longitudinal acceleration in this cau-
tious sample remains almost unchanged. The normal sample
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FIGURE 15. An example of dynamic time window determination: the dot lines are change points of driving maneuvers and the change of colors
means different time windows.

FIGURE 16. Examples of dynamic time windows.

FIGURE 17. Examples of time-varying patterns of driving maneuver intensity.

changes longitudinal acceleration clearly. The aggressive
sample changes longitudinal acceleration significantly at
high speeds.

For the dynamic time windows containing turning, there
are differences between variables as well. We chose sam-
ples with similar lateral acceleration to keep the road
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FIGURE 18. Probabilistic density of three driving style clusters under the three variables for driving-straight.

FIGURE 19. Probabilistic density of three driving style clusters under the three variables for turning.

FIGURE 20. Transition probabilities of driving maneuver intensity under the three driving style clusters for driving-straight.

FIGURE 21. Transition probabilities of driving maneuver intensity under the three driving style clusters for turning.

alignment consistent. The velocities of the cautious samples
were the lowest. The cautious samples decelerated when
entering curved roads, and accelerated over time until the

turning maneuver was complete. The curve of the cautious
sample conforms to the truth that cautious samples firstly turn
at the low velocity to reduce driving risk and slowly accelerate
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TABLE 7. The three indicators for driving style labeling.

FIGURE 22. Comparison of three variable profiles under the three driving styles for driving-straight.

FIGURE 23. Comparison of three variable profiles under the three driving styles for turning.

FIGURE 24. Percentages of fine-grained-driving styles for different
drivers.

over time to complete the turning. However, the aggressive
samples preferred to turn at a high velocity, with significant
acceleration and deceleration, implying that they pursue a
feeling of excitement when driving and that their driving

FIGURE 25. Changes in fine-grained driving styles over time for different
drivers.

behaviors are greatly influenced by the external environment.
The normal samples passed through curves in roads using
relatively modest and efficient driving behaviors.
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FIGURE 26. Comparison of the three variable profiles for driving-straight, obtained using different methods: (a)-(d): examples using the
framework proposed in this paper; (e)-(h): examples using the classical method (K-means clustering based on discrete statistical features).

The above analysis further proves the accuracy of our
method. In this paper, driving style analysis based on dynamic
time windows has been carried out to describe fine-grained
driving styles. For each driver, we can describe the compo-
sition of long-term driving styles they exhibit using the fine-
grained driving styles, as shown in Table 8. Fig. 24 shows
this too, with warmer colors implying higher proportions.
We can see that, for most drivers, the normal driving style
makes up the largest proportion. Several drivers (such as
drivers 14 and 15) also have high proportions of the aggres-
sive driving style, which implies that these drivers are more
aggressive than most. However, the driving styles of some
other drivers (such as drivers 4 and 7) are, while mostly
normal, also cautious to a significantly higher degree than
the other drivers, indicating that they are cautious drivers.
Fig. 25 depicts the time-varying patterns of the fine-grained-
driving styles of the different drivers. It can be seen that,
even if their driving style proportions are similar (such as
those of drivers 4 and 7), the changes over time are different.
Therefore, fine-grained driving styles can be used to represent
the differences in drivers’ long-term driving styles, and the
time-varying patterns of fine-grained driving styles can also
be obtained.

E. COMPARISON WITH DRIVING STYLE ANALYSIS
USING PREVIOUS METHODS
1) COMPARISON WITH DRIVING STYLE ANALYSIS
USING HC-DTW
Here, we compared the results from using our curve cluster-
ing algorithm with the results from using HC-DTW. We also
evaluated the clustering results using the SC. Using the con-
trol variable method, we set the number of clusters to be three
for HC-DTW. The results are shown in Table 9. Compared to
the results of using HC-DTW, the results of using our method
have a larger SC and more balanced sizes of clusters.

TABLE 8. Composition of drivers’ long-term driving styles.

TABLE 9. Comparison of driving style analysis using different curve
clustering algorithms.

2) COMPARISON WITH DRIVING STYLE ANALYSIS
USING THE CLASSICAL METHOD
Here, we compared the results of using our proposed frame-
work to the results obtained using the classical method to
verify our framework’s superiority. In the classical method,
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TABLE 10. Cluster centers of three driving styles using the classical method.

FIGURE 27. Comparison of three variable profiles for turning, obtained using different methods: (a)-(d): examples using the framework
proposed in this paper; (e)-(h): examples using the classical method (K-means clustering based on discrete statistical features).

discrete statistical features were chosen to represent the driv-
ing behavior. Themost used statistical features are maximum,
minimum, mean value and standard deviation of variables,
and the most popular and effective clustering algorithm
is K-means clustering [25], [29], [32], [45]. So, we con-
structed the discrete statistical features, and used K-means
to cluster driving styles with setting the number of clusters
to three. The SC of the dynamic time windows contain-
ing driving-straight maneuvers was 0.67, and the SC of the
dynamic time windows containing turning maneuvers was
0.63. The statistical features of the cluster centers are shown
in Table 10.

The results of our method are better than those of
the classical method (driving-straight: 0.67<0.72; turning:
0.63<0.97), although the advantage for the driving-straight
maneuvers was not obvious. Further, we compared the results
according to the variable curves of samples in the same clus-
ter. The results are shown in Fig. 26 and Fig. 27. In Fig. 26(a),
(b), (c) and (d) and Fig. 27(a), (b), (c), and (d), the profiles
of the variables are similar. However, the variable profiles of
Fig. 26(e), (f), (g) and (h) and Fig. 27(e), (f), (g) and (h) have
significant differences and the samples in the same cluster

have individual maneuvers. From above we can see that our
framework proposed in this paper is superior to the classical
method in terms of both clustering indicators and raw data.

V. CONCLUSION
This paper proposed a novel unsupervised driving style clus-
tering framework based on driving maneuvers. To analyze
driving style, we first presented a framework of using con-
tinuous curve features considering both the intensity and
frequency of driving maneuvers. This framework is mainly
consisted of driving maneuver extraction, driving maneu-
ver feature analysis, driving maneuver clustering, and driv-
ing style analysis. The analysis results suggested that our
framework could reflect the dynamic decisions of different
drivers’ behaviors more effectively and retain the continuity
of driving data. In addition, we considered a new clustering
algorithm for curves with various lengths, and compared it
to the classical curve clustering algorithm. In short, the new
framework we proposed is able to identify driving behavior
characteristics in different environments and capture dynamic
behavior decisions. The accuracy of this framework was also
verified on a real data set.
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This framework is particularly important in the newmixed-
traffic environment in which human drivers interact with
intelligent vehicles. Specifically, for intelligent vehicles, this
framework can capture driving behavior’s dynamic decision-
making process, and help improve the effectiveness and
acceptability of intelligent vehicles’ decision systems. For
manual vehicles, this framework can be used to analyze
driving styles more accurately, which can help traffic man-
agement and insurance companies to formulate strategies.

However, some limitations still exist in this paper. There
are certain subjective limitations in extracting driving maneu-
vers using the threshold-based algorithm. One idea for the
future will be to carry out extraction maneuvers using unsu-
pervised methods in terms of data attributes. This paper
focuses on unsupervised driving style analysis but, in reality,
driving style recognition is required. We will design a classi-
fier that can recognize driving style based on the data already
having driving style labels, which will provide an in-depth
understanding of the potential relationship between driving
style and driving behavior.Wewill also consider addingmore
environmental factors (such as traffic flow and road type) to
the classifier to improve its accuracy. In this paper, we only
collected driving data for 16 drivers, which means that our
data are not fully representative in terms of age, gender, and
experience. We plan to recruit more participants in future
work.
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