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ABSTRACT Advanced control techniques for modern distribution grids are becoming fundamental for
the reduction of grid reinforcements while maintaining network performances. In particular, as shown in
literature, distributed algorithms for voltage control have gained much interests in comparison with the
typical centralized formulation for its feasibility. Distributed model predictive control (MPC) is shown
to optimally manage the Distributed Generators (DGs) over time and it can be implemented locally at
the controllable sources. For this purpose, this paper adopts a distributed algorithm recently presented in
the literature for solving a constraint-coupled optimization problem for model predictive voltage control.
A detailed reformulation of the original MPC problem for the specific application is presented. Besides, this
paper provides a calculation of the convergence limit for the value of the iteration step size of the algorithm,
supported by numerical results. The proposed distributed solution of model predictive voltage control is
compared with a centralized formulation via numerical simulation in terms of the percentage of error with
the centralized solution and number of iteration for the convergence.

INDEX TERMS Voltage control, distributed optimization, smart grids, networked control systems.

I. INTRODUCTION
Due to an increasing penetration of Distributed Generators
(DGs), distribution grids are turning into active distribution
networks that require new solutions to satisfy the limits
on the voltage defined by grid standards [1], [2]. To mit-
igate voltage violations occurring in the distribution grid
during normal operating condition, different actions can be
adopted: grid reinforcements, local control, meaning con-
trollers that operates using local voltage measurement and
do not exchange data with neighbors or a central controller
(e.g. droop-based control [3], [4]), or smart control tech-
niques. Grid reinforcements consist in the physical update
of the assets installed in the network and it represents one
of the possible solution adopted by the Distributions System
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Operators (DSOs). Distribution grid can also present some
DGs installed with the capability of locally providing reac-
tive power to compensate for voltage deviations via local
control techniques, however this approach does not result in
an optimal solution for the grid and it does not coordinate
the resources [5]. Smart control techniques that coordinate
the installed DGs to reach a system-level solution, do not
represent at the moment the common approach followed by
DSOs, however some new regulations are attempting to shift
the focus to alternative, digitalized control techniques for
distribution networks [6]. These solutions make use of the
on-site communication network, monitoring system and con-
trollable DGs to prevent overvoltage or undervoltage events
by providing control set-points to the controllable assets,
so as to reduce the need for grid reinforcements [7]–[9]. The
control structures developed for the voltage control of distri-
bution grids have been originally expressed in a centralized
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formulation, meaning that optimal control problem is solved
entirely by a single controller [10]–[12]. More recently the
research has shifted towards distributed voltage control solu-
tions in which the optimal control problem is solved sepa-
rately by the agents of a network, which compute only their
portion of the optimal solution and communicate with a lim-
ited number of neighboring agents [13]–[15]. In comparison
with the centralized solution, each agent only shares limited
amount of information with the agents located in the neigh-
bourhood, improving therefore security [15]. Distributed
algorithms are also more robust with respect to sudden dis-
connection of individual agents or to reconfiguration of the
grid [16].

A possible voltage control strategy that can be applied
in both centralized and distributed architecture is the Model
Predictive Control (MPC), where the optimization problem
is solved by minimizing the objective function over a finite
prediction horizon. As described in [17], since the MPC
performs an optimization using measurements and predic-
tions, it is able to track reference values provided with larger
timescale while correcting voltage deviations with online
measurements. Purpose of the MPC described in this paper
is to track the reference value for the State of Charge (SoC)
over a finite time horizon while maintaining the voltage in the
operational limits. To track the reference, the dynamic of the
State of Charge (SoC) of the Energy Storage Systems (ESSs)
is thus included in the control formulation.

The proposed distribution of the MPC for voltage control
problems is based on a cooperative scheme, where the local
controller of each autonomous agent collaborates with the
other controllers in a network to achieve a global objec-
tive [18], [19]. Moreover, the proposed approach relies on the
fact that some optimization problems can be formulated as a
constraint-coupled set-up, meaning that the global cost func-
tion is defined as the sum of local functions, where each single
variable only depends on local constraints with additional
global coupling constraints to be met [20], [21]. In [20] the
authors present a distributed solution for constraint-coupled
set-up without a central update step involving communica-
tion among all the agent. However this solution requires the
exchange of the result of the local dual optimization among
the agents. This requirement is removed in [21] where a dis-
tributed solution based on dual decomposition and proximal
minimization has been presented.With this approach only the
dual variables are exchanged among the neighbors, enhanc-
ing the security, but an averaging mechanism is required to
recover primal optimality (Step 7 of the algorithm). An inno-
vative solution to solve constraint-coupled optimization prob-
lem in a distributed manner is introduced in [22], in which the
relaxation on the local variables is combined with the succes-
sive duality to achieve a distributed optimization algorithm.
The algorithm, named by the authors Relaxation and Suc-
cessive Distributed Decomposition (RSDD), has the advan-
tage that primal optimization solution is obtained without
averaging, thus increasing convergence speed, it does not

require particular initialization and the local variables are
not exchanged. Moreover this approach adds a relaxation to
the original problem, allowing local violations of the con-
straints without assuming a priori feasibility of the local
problem.

The Distributed MPC formulated in this paper is meant
to operate online [23]–[25], which in comparison with the
offline solution, the calculation of the control output and
the transmission of the set-points to the controllable devices
need to be performed in fixed time steps. This means that
it requires fairly fast algorithm with possibly the ability to
obtain a high convergence speed. Based on these require-
ments the RSDD has been chosen for the implementation
of the proposed Distributed MPC for voltage control, given
that, as proposed in [22], it features local computation of only
local variables with no averaging mechanism, the possibility
of having a scaled relaxation and the absence of initialization
requirement

This paper presents the application of the RSDD to the
model predictive voltage control problem. Firstly the model
predictive voltage control problem is reformulated into a
constraint-coupled set-up to apply the algorithm, then the
algorithm is applied to the new formulation by following the
approach presented in [22]. Moreover this paper provides,
based on the graph configuration and on the constraint func-
tions of the optimization problem, a calculation for the limit
value of the coefficient that control the step length of the
algorithm.

The rest of the paper is structured as follows: Section II
formalizes the voltage control problem and describes the
general MPC problem for voltage control. Section III briefly
introduce the theory behind the RSDD algorithm. Section IV
describes the general MPC problem for voltage control
and the application of the RSDD to it. Section V presents
the calculation of the convergence limit for the parame-
ter that control the stepsize of the algorithm. Section VI
presents the simulation setup used for the tests and shows
the results obtained in different simulation scenarios. Finally,
Section VII summarizes the main highlights of this work and
concludes the paper.

II. VOLTAGE CONTROL PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
Based on the linearized branch-flow model for radial dis-
tribution networks [26], the voltage phasors of the nodes
can be expressed in terms of real and imaginary current
injections. However, using per unit quantities and neglect-
ing the high order real and reactive power loss terms, the
current phasors can be replaced with the corresponding real
and imaginary components of the complex power. More-
over, since distribution grids are usually operated with large
power factors, the real component of the voltage phasor
can be approximated with its magnitude and the imaginary
part can be neglected [27]. Therefore the vector of the bus
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voltage magnitudes with the above approximation can be
described as:

V = 1V0 + R(pg − pc)+ X(qg − qc) (1)

where:
• V is the vector of the voltage magnitudes
• 1V0 is the vector of voltage magnitude of the slack bus
• R andX are the real and imaginary part of the impedance
matrix of the grid.

• pg and qg are the vectors of the generated active and
reactive power, whereas pc and qc are the vectors of the
absorbed active and reactive power.

Equation (1) shows that a positive unbalance between gen-
eration and load causes an increase of the voltage along the
feeders of the grid, whereas a negative unbalance produces
the opposite effect. Therefore voltage can be decreased along
the nodes by reducing the amount of generated active power
or by absorbing reactive power. Conversely, the increase of
the voltage can be obtained by an increment of the generated
active power or by generating positive reactive power.

As shown in equation (8) of [28], defining Vn as the
voltage that the system would have without the application
of any control on the active power curtailment (PcurtDG ) and the
reactive power (QDG) of the DGs and without the application
of any control on the active power of the ESSs (PESS ), the
voltage V is obtained by superimposing the effects of the
different power injections to the uncontrolled voltage value
Vn as follow:

V = Vn
+ RPcurtDG + XQDG + RPESS (2)

Purpose of the MPC for voltage control is to optimize the
use of PcurtDG , QDG and PESS to maintain the voltage between
the operational limits over a predicted horizon, while eventu-
ally tracking some reference values.

B. CENTRALIZED MPC FORMULATION
The definition of the centralized MPC formulation presented
in this section is used to derive the distributed formulation
in the following sections. Moreover the results obtained by
solving the centralizedMPCwill be use to validate the results
of the distributed MPC. The MPC formulation used in our
work is based on [17], where the MPC problem has been
formulated for a radial distribution grid described using the
linearized branch-flow equations defined in [15], [26], [28],
with voltage phase angles considered equal to zero. When
applying MPC, at every time step k we solve a finite-time
optimal control problem over a prediction horizon of Np =
[k + 1 | k, . . . , k +Np | k] time steps. After the optimization
only the first step of the control output calculated for the
whole prediction horizon is applied to the system and the
optimization is executed again over a shifted horizon at time
k + 1. In the remainder, the expression xk+s|k (where x is
a generic variable of the optimization problem) refers to the
prediction of the variable at the future time step k + s given
information at the time k , with s the internal index of the
prediction.

In a centralized formulation the objective function of the
MPC is tominimize the quadratic expression of the difference
between the optimization variables and their reference values,
as follows:

Np∑
s=1

(PcurtDG,k+s|k − PrefDG,k+s)
TWP(PcurtDG,k+s|k − PrefDG,k+s)

+(QDG,k+s|k −Qref
DG,k+s)

TWQ(QDG,k+s|k −Qref
DG,k+s)

+(SoCk+s|k − SoCref
k+s)

TWSoC (SoCk+s|k − SoCref
k+s)

(3)

where:
• SoCk+s|k ∈ RNtot is the vector of SoC values of all
available storage units, with Ntot the total number of the
grid nodes,

• PcurtDG,k+s|k ∈ RNtot is the vector of active power curtail-
ments of DG units,

• QDG,k+s|k ∈ RNtot is the vector of reactive power
set-points assigned to the DGs,

• PrefDG,k+s ∈ RNtot ,Qref
DG,k+s ∈ RNtot ,SoCref

k+s ∈ RNtot are
the corresponding reference values while,

• WP ∈ RNtot×Ntot ,WQ ∈ RNtot×Ntot ,WSoC ∈ RNtot×Ntot

are the positive definite weighting matrices.
Adding the constraints, the MPC problem for the objective

function (3) is defined as follows:

minimize
PcurtDG,·|k ,QDG,·|k ,PESS,·|k

C(PcurtDG,·|k ,QDG,·|k ,PESS,·|k ) (4)

subject to a) 1Vmin ≤ Vk+s|k ≤ 1Vmax ,

b) Vk+s = Vk+s−1

+ R(PcurtDG,k+s−1 + PESS,k+s−1)

+ X(QDG,k+s−1)

c) − PmaxDG,k+s ≤ PcurtDG,k+s|k ≤ 0,

d) Qmin
DG,k+s ≤ QDG,k+s|k ≤ Qmax

DG,k+s,

e) PminESS,k+s ≤ PESS,k+s|k ≤ PmaxESS,k+s,

f ) SoCk+s=SoCk+s−1 −
PESS,k+s−1

CESS
ηESS

g) SoCmin
≤ SoCk+s|k ≤ SoCmax , (5)

where:
• 1Vmin, 1Vmax are the vectors of the minimum and maxi-
mum limits for the voltage values.

• PmaxDG,k+s is the vector of maximum available active
power of the DGs at prediction timestep k + s

• Qmin
DG,k+s,Q

max
DG,k+s are the vectors of minimum andmax-

imum available reactive power of the DGs at prediction
timestep k + s

• PminESS,k+s,P
max
ESS,k+s are the vectors of minimum andmax-

imum constraints for power injection of the ESSs at
prediction timestep k + s.

• SoCmin,SoCmax are the vectors of minimum and max-
imum constraints SoC for the ESSs, which should be
implemented as soft constraints.
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• CESS and ηESS are coefficients representing the capacity
and the efficiency of the ESSs.

• Vk+s is the vector of voltage magnitudes calculated at
timestep k + s of the prediction horizon as function of
the vector of voltage magnitudes calculated at previous
timestep and of the active power of the DGs and ESSs
and of the reactive power of the DGs.

When the MPC problem (3) is applied online, the values
PcurtDG,k+s−1,QDG,k+s−1,PESS,k+s−1,SoCk+s−1 and Vk+s−1
with s = 0 represents the measurements that are collected
from the sensors and DGs installed in the field, whereas the
values for s 6= 0 are obtained from the previous time step of
the predicition horizon. To simplify the notation, in the rest
of the paper the term k + s | k is substituted with · | k .

III. RELAXATION AND SUCCESSIVE DISTRIBUTED
DECOMPOSITION
As extensively described in [22], the RSDD algorithm is
based on the relaxation and on the consecutive application
of two duality steps employed on a constraint-coupled opti-
mization setup. The relaxation avoids the need to ensure a
priori the feasibility of local problems by allowing (scalar)
violations of local constraints and permitting the algorithm
to be distributed. The successive application of the duality
principle allows the application of the dual decomposition
to the relaxed optimization problem, while then subgradient
method is used to solve it.

In the general formulation, the RSDD is applied to a
constraint-coupled optimization problem with separable cost
function as follows:

minimize
x1,...,xN

N∑
i=1

fi(xi)

subject to xi ∈ Xi, i ∈ 1, . . . ,N
N∑
i=1

gi(xi) ≤ 0 (6)

where, for all i ∈ {1, . . . ,N }, the set Xi ⊆ Rni is a nonempty
compact convex set with ni ∈ N, the convex functions fi(xi) :
Rni → R and gi(xi) : Rni → RS with S ∈ N.
Considering that a connected and undirected graph G =

({1, . . . ,N }, E) with E ⊆ {1, . . . ,N } × {1, . . . ,N } the set
of edges of the graph exists, the resulting RSDD algorithm
applied to (6) is based on the following steps:

1) calculation of ((xi(t+1), ρi(t+1),µi(t+1)) as solution
of:

minimize
xi,ρi

fi(xi)+Mρi

subject to ρi ≥ 0, xi ∈ Xi

gi(xi)+
∑
j∈Pi

(λij(t)− λji(t)) ≤ ρi1 (7)

2) update of the neighboring variables λij for all j ∈ Pi:

λij(t + 1) = λij(t)+ γ (µi(t + 1)− µj(t + 1)) (8)

where µi ∈ RS is the vector of multipliers linked to the
inequality constraints in (7) and obtained by the solution of
the local problem (7), whereas neighboring variables λij ∈
RS , j ∈ Pi are lagrangian multipliers associated with the
node i and its set of neighborsPi. The updated values of λij are
exchanged at each iteration of the algorithm among the neigh-
bors, which are defined by the configuration of the graph. The
variables λij can also be grouped in a vector 3 ∈ R(S×|E |),
with |E | being the number of elements of E . The coefficient γ
represents the step-size of the iterative calculation ofλij(t+1),
which consequently control the convergence speed of the
algorithm with t the iteration time of the algorithm. Its value,
however cannot be arbitrarily selected given that a too large
value of γ could lead to the non-convergence of the algorithm.
Therefore in Section V, a method to calculate the converge
limit of γ is presented. The variable ρi allows the violation
ρi1 of the local constraints and it is minimized in the local cost
function scaled by a factorM . The value ofM , whose impact
has been analyzed (also numerically) in [29], has to satisfy
the condition of Theorem II.6 defined in [22], meaning that
M > ‖µ∗‖1 with µ∗ being an optimal solution of the dual of
problem (6). The RSDD has been demonstrated to converge
to an optimal cost with the limit point x̄ = (x̄1, . . . , x̄N ), with
x̄ being a feasible solution for the original problem (6). In this
paper the RSDD is iterated for a fixed number of iterations
t = tFIN defined a priori.

IV. APPLICATION OF THE RSDD TO THE MPC MODEL
A. OBTAIN A CONSTRAINT-COUPLED SETUP
To obtain a constraint-coupled set-up, the MPC prob-
lem (4) has to be reformulated as function of the only vari-
ables PcurtDG,k ,QDG,k ,PESS,k . Moreover the problem must be
reshaped in order to consider only the nodes of the grids that
are part of the graph G. In the proposed approach we consider
that DGs and ESSs are both installed in each node i ∈ N ,
where N can be less or equal to the total number of the grid
nodes Ntot .
Using the constraint (f) of (4), the objective function (3)

can be separated into three different contribution as follows.

F yTP,DG,·|kWPyP,DG,·|k
F yTQ,DG,·|kWQyQ,DG,·|k

F yTP,ESS,·|kH
2WSoCyP,ESS,·|k

+2 · eTSoC,k−1WSoCyP,ESS,·|k (9)

where the resulting new variables are described in the
Appendix A.
Considering the equation (2), the matrixes RDG,XDG and

RESS can be obtained by resizing the full matrixes R and X
taking into account only the nodes N where DGs and ESSs
are installed. The same resizing procedure is applied to the
vectors PcurtDG,·|k ,QDG,·|k and PESS,·|k and the voltage vectors
V·|k and Vn

·|k are also resized accordingly. Consequently,
substituting the resized voltage expression (2), the constraints
of (4) can be reformulated as follows:
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—Coupling constraints:

a.1)

{
RDGyP,DG,·|k ≤ 1Vmax − Vn

·|k

1Vmin − Vn
·|k ≤ RDGyP,DG,·|k

a.2)

{
XDGyQ,DG·|k ≤ 1Vmax − Vn

·|k

1Vmin − Vn
·|k ≤ XDGyQ,DG,·|k

a.3)

{
RESSyP,ESS,·|k ≤ 1Vmax − Vn

·|k

1Vmin − Vn
·|k ≤ RESSyP,ESS,·|k

(10)

— Box constraints:

b) − PmaxDG,k − PrefDG,·|k ≤ yP,DG,·|k ≤ 0− PrefDG,·|k ,

c) Qmin
DG,k −Qref

DG,·|k ≤ yQ,DG,·|k ≤ Qmax
DG,k −Qref

DG,·|k ,

d) PminESS,k − PrefESS,k ≤ yP,ESS,·|k ≤ PmaxESS,k − PrefESS,·|k ,

e)

{
SoCmin

− SoCk−1 ≤ HyP,ESS,·|k
HyP,ESS,·|k ≤ SoCmax

− SoCk−1
(11)

B. SEPARATION OF THE PROBLEM
In this subsection, the separability of (9), (10) and (11) is
analyzed, since the implementation of theMPC problemwith
the RSDD algorithm requires the objective function to be
separable and the constraints to be formulated as function of
a single node.

1) SEPARATION OF THE OBJECTIVE FUNCTION
Considering that the matrixes WP,WQ and WSoC are diag-
onals, the objective function can be written in a separable
formulation for a single node i ∈ N as follows:

YT
·|k [i] ·Wtot [i, i] · Y·|k [i]+ qtot [i] · Y·|k [i] (12)

where Y·|k and Wtot [i, i] are the vector and diagonal matrix
defined as:

Y·|k [i] =
[
yP,DG,·|k [i] yQ,DG,·|k [i] yP,ESS,·|k [i]

]T
Wtot [i] =

WP[i, i] 0 0
0 WQ[i, i], 0
0 0 H2WSoC [i, i]

 (13)

where:
• [i] and [i, i] describe the single element of the vector and
of the diagonal respectively.

The vector qtot [i] is defined as:

qtot [i] = 2

 0
0

eTSoC,k−1WSoC [i]

T (14)

2) SEPARATION OF THE COUPLING CONSTRAINTS
The coupling constraints defined in (10) are not directly
separable, given that RDG,XDG and RESS are full matrixes.
However they can be separated considering each i-th column
of the matrixes, as described in Appendix B-A. The resulting

separated constraints for node i ∈ N results in:

−gj(xj)|∀j6=i ≤ AC [i] · Y·|k [i]− b−C,k [i]

AC [i] · Y·|k [i]− b+C,k [i] ≤ −gj(xj)|∀j6=i (15)

where the resulting matrixes AC [i] and b+C,k [i],b
−

C,k [i] are
defined in Appendix B-B, whereas the vector gj(xj) describes
the remaining part of the coupling constraints linked to the
elements j 6= i as described in Appendix B-A.
The box constraints in (11) are already separable, therefore

they can be simply written in a compact form as follows:

b−B,k [i] ≤ AB[i] · Y·|k [i] ≤ b+B,k [i] (16)

where the resulting matrixes AB[i] and b+B,k [i],b
−

B,k [i] are
defined in Appendix B-C. With this formulation, the right
side and left side constraints are marked with the signs +
and − respectively.

C. APPLICATION OF THE RSDD–MPC
The new formulation of the MPC composed of (12), (15)
and (16) represents a constraint-coupled setup with convex
optimization cost and convex constraints functions, given that
the objective function and the constraints can expressed as a
function of a single node i ∈ N . In fact, as demonstrated
in [22], in the RSDD algorithm each agent i substitutes the
term gj(xj) of the coupling constraints with

∑
j∈Pi (λ

ij
− λji)

and by means of relaxation the algorithm converges to a limit
point feasible for the (not relaxed) coupling constraints (10)
of the original problem. Therefore each node reconstructs
the coupling constraints of the original optimization problem
only based on the local measurements and predictions and on
the exchange of the auxiliary variables

{
λij,λji

}
j∈Pi

.
The resulting application of the RSDD algorithm to the

MPC problem, named RSDD–MPC, can be described for a
node i ∈ N with a set of neighbors j ∈ Pi as follows:

1) OBJECTIVE FUNCTION

Np∑
s=1

YT
·|k [i] ·Wtot [i, i] · Y·|k [i]

+qtot [i] · Y·|k [i]+Mρtot,·|k [i] (17)

where: ρtot,k [i] = [ρP,DG,k [i], ρQ,DG,k [i], ρP,ESS,k [i]]

2) COUPLING CONSTRAINTS

(+) AC [i] · Y·|k [i]− ρtot,·|k [i] ≤ −
∑
j∈Pi

(λij,+
·|k (t + 1)

−λ
ji,+
·|k (t + 1))+ b+B,k [i]

(−) −
∑
j∈Pi

(λij,−
·|k (t + 1)− λji,−

·|k (t + 1))+ b−B,k [i]

≤ AC [i] · Y·|k [i]− ρtot,·|k [i] (18)
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where:
• t is the iteration time of the algorithm
• The superscripts + or − specifies if the constraints
functions are linked to the right or left side coupling
constraints defined in (15).

• λ
ij,+/−
·|k = [λij,+/−P,DG,·|k ,λ

ij,+/−
Q,DG,·|k ,λ

ij,+/−
P,ESS,·|k ] are the neigh-

boring variables linked to +/− coupling constraints.

• λ
ij,+/−
·|k (t + 1) = λij,+/−

·|k (t)+ γ (µi,+/−
·|k (t + 1)−µj,+/−

·|k
(t + 1))

• µ
i,+/−
·|k and µj,+/−

·|k are the lagrangian multipliers linked
to +/− coupling constraints and related to node i ∈ N
and j ∈ Pi respectively

3) BOX CONSTRAINTS
Since the box constraints defined in (16) are independent
from the other neighbors, their formulation are identical to the
one previously defined. Based on (7), an additional constraint
for the variable ρtot,k [i] has to be defined as follows:

ρtot,·|k [i] ≥ 0 (19)

The variable t ∈ 1, . . . , tFIN , which appears also in
Section III, represents the internal iteration of the algorithm,
and differs from the time scale of the MPC problem s since it
iterates during a single step of the MPC.

V. CALCULATION OF γ

This section presents a method to calculate the limits for the
value of the parameter γ that guarantees the convergence
of the RSDD algorithm. The calculation of the convergence
condition is based on the Preposition 1.2.3 of [30] which
states that given a function f (x) and given a positive constant
L that fulfils the Lipschitz continuity condition for ∇f (x):

‖∇f (x)−∇f (x ′)‖ ≤ L‖x − x ′‖ (20)

the convergence of the gradient method is satisfied under the
condition:

0 ≤ γ ≤
2
L

(21)

Following the demonstration of Preposition 6 of [5], the value
of the constant L can be calculated based on the mean-value
theorem, meaning that:

‖∇f (x)−∇f (x ′)‖ ≤ ‖∇2f (x)‖‖x − x ′‖ (22)

Given a generic separable problem defined as in Section III
in (6), the RSDD algorithm is obtained by applying two
successive duality steps from fi(xi) to its dual qi(µi) and then
from qi(µi) to ηi({λij, λji}j∈Pi ) [22]. Based on the duality
theory, the partial Lagrangian for the second dual problem
is defined as:

L(µ1, . . . ,µN ,3) =
N∑
i=1

(qi(µi)+
∑
j∈Pi

λij(µi − µj)) (23)

Given that the calculation of λij follows a gradient method
(equation (14) in [22]), the convergence condition can be

defined based on (21) and the value of the constant L can
be calculated based on the mean-value theorem.

As described in [5], the Lipschitz continuity condition can
be applied to the dual function (23), resulting in:

‖∇L(M∗,3)−∇L(M∗,3′)‖ ≤ L‖3−3′‖ (24)

with M∗
= (µ∗,1, . . . ,µ∗,N ) an optimal solution of the first

dual step. Applying the mean-value theorem (22) results in:

‖∇L(M∗,3)−∇L(M∗,3′)‖ ≤ ‖∇2L(µ,3)‖‖3−3′‖
(25)

Given that the laplacian is a separable function [22], the
calculation of the hessian can be performed using the formula
presented in the Example 6.1.1 in [30]:

∇
2L(µ1, . . . ,µN ,3)

= ∇
2
∑
i

(qi(µi)+
∑
j

λijni(µi,µj))

= −

N∑
i=1

NT
i Ni

∇2qi(µi)+
∑

j λ
ij∇2nij(µi,µj)

(26)

where the vector Ni = [ ∂ni1
µi
, . . . , ∂nir

µi
]T = ∇µi [(µ

i
−

µ1), . . . , (µi −µr )]T with 1, . . . , r ∈ Pi. Therefore Ni = 1T

with size 1, . . . , r ∈ Pi and the product NT
i Ni = D[i, i],

which is the diagonal element of the degree matrix D of the
graph G.
The denominator of (26) can be divided into the calculation

of the two elements ∇2qi(µi) and ∇2nij(µi,µj). From the
calculation of Ni it is clear that the term ∇2nij(µi,µj) is null,
whereas for the first element same approach used in (26) is
applied.

Based on [22] the dual function qi(µi) is defined as fi(xi)+∑
s µ

sgis(xi), meaning that the calculation of the hessian
results in:

∇
2q(x,µ)[i] = −

GTi Gi
∇2fi(xi)+

∑
s µ

s∇2gis(xi)
(27)

where Gi = [ ∂g1ixi
, . . . ,

∂gmi
xi

].
In case the constraints are expressed as:

A · x≤b;

a11, . . . a1n
...

...
...

am1, . . . amn

 ·
x1...
xn

−
b1...
bn

 ≤ [0]n×1
(28)

each term Gi = [a1i, . . . , ami]T and the product GTi Gi =
ATA[i, i], that is the element i of the diagonal of ATA.
As for (26), the calculation of the denominator of (27) can
be divided into te calculation of ∇2fi(xi) and ∇2gis(xi), where
in case the constraints are formulated as in (28), the term
∇

2gis(xi) is null. If the function fi is a quadratic separable
function described as 1

2x
TWx where W is a diagonal matrix

of elements [w1, . . . ,wn], then the term ∇2fi(xi) = wi.
Based on [30], the hessian of the lagrangian of a separable

problem is a diagonal matrix, therefore the resulting hessian
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FIGURE 1. Scheme of the RSDD–MPC.

of the lagrangian L(µ1, . . . ,µN ,3) is a diagonal matrix H
whose elements [i, i] on the diagonal are defined as:

H[i, i] =
D[i, i]

∇2q(x,µ1, . . . ,µN )[i]
=
D[i, i] · wi
ATA[i, i]

(29)

Given that norm-2 of a symmetric matrix is equal to its
spectral radius, the mean-value theorem can be reformulated
as follows:

‖∇L(M∗,3)−∇L(M∗,3′)‖ ≤ ρ(H)‖3−3′‖ (30)

meaning that for (21), the convergence condition for γ can be
defined as:

0 ≤ γ ≤
2

ρ(H)
(31)

Equation (31) shows that the upper limits of the control
parameter γ depends on matrix A, which, in the proposed
control application, represents the resistance and reactance
matrix of the grid, described in Section II-B. Therefore, using
the grid information, equation (31) guarantees the conver-
gence of the RSDD algorithm.

VI. SIMULATION AND RESULTS
A. SIMULATION SCENARIO
The grid model used for the simulation is composed ofNtot =
26 nodes, described in Figure 2. Table 1 shows the data used
for the lines, in terms of per unit (p.u.) values of resistance and
reactance, where the nominal voltage is set as Vnom = 380 V
and nominal power as Pnom = 4 kW.

FIGURE 2. 26-nodes distribution grid used for the simulation.

The tests performed in this section can be divided in three
groups as follows:
• Test of the convergence condition : The first set of
tests have been implemented to validate the calculation
of γlimit = 2

ρ(H) defined in (31). In the tests, load
and generation profiles are considered fixed while both
PVs (which substitute the generic DGs) and ESSs are
assigned to a set of nodes. To validate γlimit , first a
series of simulations is run with different values of γ to
show that the algorithm does not convergewhen the limit
value is exceeded, then a set of simulations is run with
a fixed value of γ but with different number of PVs and
ESSs installed to show that the (31) is valid for different
problem size.

• Test of the RSDD–MPC: The third set of tests have
been performed to test the ability of the RSDD–MPC,
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TABLE 1. Distribution grid data.

configured with a fixed number of iterations, to control
the voltage and to track the power and SoC references
in terms of the percentage of error with the centralized
solution. In all the tests, load and generation profiles are
considered fixed while both PVs and ESSs are assigned
to a set of nodes. First a set of simulations have been
run in an overvoltage scenario with eventually active
or reactive power references to track, then, in a normal
voltage condition, a reference for the SoC has been
provided to the RSDD–MPC.

• Test with realistic load and generation profiles: The final
set of tests have been performed considering realistic
load and generation profiles during 24 hours with ESSs
and PVs assigned to the same set of nodes as in Test of
the RSDD–MPC.

Both in Test of the convergence condition and Test of
the RSDD–MPC the nominal power of the PVs have been
considered equal to 1 p.u. each whereas loads and ESSs have
a nominal power of 0.875 p.u., which have been calculated
based on Pnom. In Test with realistic load and generation
profiles the PV profiles have been calculated considering
1 p.u. as nominal power. As mentioned in Section IV, each
customer i ∈ N with N less or equal to the total number of
nodes Ntot is equipped with both PV and ESS.

B. NUMERICAL RESULTS
In this section, simulation results are used to demonstrate the
condition for γlimit described in Section V and the conver-
gence of the RSDD–MPC described in Section IV. In both
cases, the results obtained with the RSDD are compared
with the simulations obtained with the OSQP solver ( [31])
applied in a centralized manner that performs the MPC
problem described in Section II-B. The power flow simula-
tion of the electrical grid has been conducted by means of
PYPOWER [32]. In all the tests and for both the centralized
and the RSDD–MPC formulations, the values used for the
weighting matrixes are the following:

WP =WQ =WSoC = I (32)

For each simulation, the graph G is determined based on the
nodes where PVs and ESSs have been assigned, considering
that each node is linked only to its two nearest neighbors.

1) TEST OF THE CONVERGENCE CONDITION
The first numerical simulation is performed to demon-
strate the calculation of the limit for the value of γ in (31).
The test considers the grid model defined in Section VI-A
where both PVs and ESSs have been assigned to nodes
[3, 5, 8, 9, 12, 15, 16, 18, 19, 20, 21, 24, 26]. For the sake of
simplicity, in this first test only the reactive power control
is considered, given that the focus of the test is to prove the
convergence condition for γ .

The generation of all the PVs have been set to
PmaxDG,k = 1 p.u, whereas the load value of each node is equal
to 0.33 p.u. so as to produce a voltage rise in some of the
nodes of the grid. Based on the aforementioned configuration,
the gamma limit for the voltage control is calculated based
on (31) resulting in:

γlim = 4.9815× 10−6 (33)

The value of M has been selected M = 100, high enough to
satisfy condition on Theorem II.6 defined in [22].

Based on the calculated value of γlimit the first test has
been accomplished by performing the RSDD algorithm with
values of γ = k · γlim where k = [0.0125, 0.025, 0.05, 0.125,
0.25, 0.375, 0.5, 0.625, 0.75, 1.0, 1.5, 2.5]. For each value
of γ , tFIN = 300 RSDD iterations are performed and at the
end of the simulation the error with the previous calculated
centralized version is evaluated by dividing the average value
of the difference between the distributed and the centralized
solution and the average value of the centralized solution as
follows:

RSDDerror =
Yk,RSDD(tFIN )− Yk,Cent

Yk,Cent
· 100 (34)

The structure of the test is described in Figure 3, which shows
that the result of a single iteration of the power flow is used
to calculate both the centralized and the RSDD solution.

The result of the test is described in Figure 4, where the
RSDD error is compared for each value of γ .
From the figure it appears clear that for values higher than

γlim (blue dashed line in the figure), the RSDD error tends
to rapidly increase, eventually reaching the point where the
algorithm is not able to converge. The figure also shows
that for very small values of γ the error is relatively large,
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FIGURE 3. Test of the convergence condition.

FIGURE 4. Result of the first test for the convergence condition.

which demonstrates that with small values of the step-size
the convergence speed is so slow that 300 iterations are not
sufficient to reach an acceptable result.

The second test for the convergence condition is performed
using a fixed value of γ = 0.5 · γlim, given that, based on
Figure 4, the minimum values of the error are obtained with
0.5 ≤ γlim < 1. In the test, both active and reactive power
control set-points are considered and the number of nodes in
the grid with installed PVs and ESSs are increased from the
list of nodes defined previously, starting with only 4 nodes
and reaching at the end the full list. Therefore, in this case
γlim is a vector calculated using matrix RDG and XDG for
active and reactive power respectively. In the structure of the
test described in Figure 3b the RSDD continues internally
iterating until the RSDD error is less than 10%.

The result of this test is described in Figure 5, which shows
that the number of iterations increases almost linearly with
the number of nodes. In particular, the figure shows that the
control of the active power, given the same number of nodes,
requires more time to converge to an error less than 10% in
comparison with the reactive power control.

Both tests have demonstrated that the choice of the value
for γ has a considerable impact on the convergence of the
algorithm, which also is confirmed by (8), given that γ
defines the step-size for the update of the neighboring vari-
ables. Besides, the number of controllable nodes influences
the number of iterations required to reach an acceptable
error with the centralized formulation. Although the size

FIGURE 5. Result of the second test for the convergence condition.

of the problem is taken into account in the calculation of
γ (matrix A), once the value of k is fixed, the speed of
convergence of the algorithm is only affected by the number
of nodes.

Figure 5 highlights a limitation of the proposed
RSDD–MPC approach, since the linear increase of the num-
ber of iterations represents a potential challenge in terms of
scalability. Some distributed algorithms have tried to over-
come this problem, e.g., in [5], where values of lagrangian
multipliers related to power limits are used to reduce the num-
ber of nodes actively involved in solving the overvoltage. The
solution presented in [5] might be tested with the proposed
RSDD–MPC to reduce the number of iterations, since both
controllers are based on dual theory and exchange auxiliary
variables among the control nodes.

2) TEST OF THE RSDD–MPC
The results of the simulations performed in this subsection
are used to compare the control output of the RSDD–MPC
with the solution obtained with the centralized formulation
in terms of the ability to generate a control output closer to
the centralized solution and to track a reference with theMPC
predictions. For the simulations, the values tFIN = 200 and
γ = 0.5 · γlim have been selected based on the outcome of
the tests in Section VI-B1. The value M = 100 has been
selected to satisfy Theorem II.6 defined in [22]. The structure
of the first test is described in Figure 6a where, similarly to
Figure 3b, one iteration of the power flow is used to calculate
both the centralized and the RSDD solutions, therefore only
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FIGURE 6. Test of the RSDD–MPC.

FIGURE 7. Simulation results for the test with only voltage reference.

the first prediction of theMPC is taken into account. The test
has been performed with the same group of selected nodes
and the generation and load conditions of Subsection VI-B1.
The load value has been set equal to Ploadk = 0.33 (p.u.) and
the generation equal to PmaxDG,k = 1.0. This load and genera-
tion conditions produce an overvoltage in the simulated grid,
exceeding therefore the coupling constraints for the voltage.
The RSDD–MPC has been applied to the simulated grid with
three different configurations:
• a) With a active power reference PrefDG,k = −0.05 (p.u.)

• b) With a reactive power reference Qref
DG,k =

−0.05 (p.u.)
• c) Without active or reactive power references

In all the three cases, the control of the active power of the
ESSs has been disabled given that the focus will be given on
second test of this subsection.

The results of the first prediction of the MPC, meaning for
s = 1, are depicted in Figure 7a, 7b, 7c where the active and
reactive power outputs of the PVs obtained by the Centralized
and RSDD formulations are compared for the case a), b)
and c) respectively. To differentiate the results for the reactive
power and the active power injections, the symbol + and ∗
are used accordingly. The resulting voltage profile, identical
for the three cases, is described in Figure 7d, which shows
that the calculated control outputs shift the voltage of the
nodes below the upper limit value. Figures 7a, 7b, 7c high-
lights how the results of the RSDD–MPC using a limited
number of iteration tFIN achieve a solution that is close to
the centralized one. The error among the centralized and the
distributed solutions can be reduced by increasing of the num-
ber of iterations. Moreover, the test also shows in Figure 7a
and 7b that the RSDD–MPC is able to track the references
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FIGURE 8. Simulation results for the test with SoC reference.

FIGURE 9. 24 hours load and generation profiles.

and to use the remaining available resources to satisfy the
constraints.

The second test has been performed to prove the ability
of the RSDD–MPC to track the SoC reference value, which
in the RSDD formulation is part of qtot and it is described in
eSoC,k−1 of Appendix A, whereas for the centralized formu-
lation the SoC reference is part of (3). In the test the other

reference values PrefDG,k ,Q
ref
DG,k ,P

ref
ESS,k are null and the load

value has been set to Ploadk = 0.4 (p.u.), so that the voltage
does not exceed the limit. By doing so, the results only prove
the tracking capability of the SoC, excluding the activation
of the control of the voltage or the tracking of the other
variables. The simulation setup is described in Figure 6b,
which shows that the result of the RSDD–MPC is used as
input for a new iteration k+1 of the power flow. To calculate
the predicted values, the reference values SoCref

·|k are provided
to theMPCwithNp = 4 the number of predictions. The result
of the numerical simulation described in Figure 8a highlights
the ability the RSDD–MPC to track the SoC reference, which
from the value of 51% at iteration 5 goes to value of 51.05%
at iteration 9 and then to value of 51.20% at iteration 17 with
a difference charging rate. The Figure also shows that the
resulting predictions calculated by the algorithm are able to
predict the output of the successive iterations. The result-
ing active power control outputs for the ESSs required to
track the SoC are described in Figure 8b. The figure shows
that the control output for the ESSs until iteration 5 is zero

because there is no change in the SoC reference. Starting from
iteration 5 the ESSs starts absorbing active power in order to
increase their SoC and thus being able to track the reference.
After iteration 10, the active power changes value required to
maintain a different charging slope. The Figure also shows
that the RSDD–MPC is able to predict the resulting active
power output.

3) TEST WITH REALISTIC LOAD AND GENERATION PROFILES
An additional series of tests have been performed considering
24 hours load and generation profiles, to show the perfor-
mance of the proposed control strategy with realistic sce-
narios. The profiles used for the simulation are described in
Figure 9, where the ones assigned to Node 26 are highlighted
in blue. The control parameters have been selected identical
to the ones used in Test of the RSDD–MPC.

Figure 9a shows the load profiles obtained with the tool
developed in the Flexmeter project [33] and used for the sim-
ulation test. The profiles exhibit high fluctuations, which are
typical in realistic Low Voltage (LV) distribution grids [28].
The generation profiles in Figure 9b represent a typical
clean sky condition, which in terms of overvoltage scenar-
ios is the most critical. The profiles were calculated using
the tool described in [34] considering a day in August and
assuming the position of the distribution grid in the coordi-
nates N50◦77′ E6◦9′ (corresponding to the city of Aachen,
Germany). The profiles consider different level of power
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FIGURE 10. Simulation results with 24 hours profiles.

installation which could be lower or higher than the nominal
power.

The results of the simulation tests are described in
Figure 10, where the application of the RSDD–MPC, on the
left side, is compared with the application of the centralized
control on the right side. Both control strategies are able to
solve the overvoltage problem (highlighted with light green
curve) by calculating the active and reactive power set-points
of the DGs for the 24 hours simulation. However, although
the voltage profile obtained with the RSDD–MPC is equal to
the voltage profile resulting from the centralized control, the
active and reactive set-points profiles show different behav-
iors. This difference is nevertheless quite limited, given that
the changes in the power absorption show the same dynamics.
Therefore, even if RSDD–MPC, with the selected value of
tFIN , does not reach the same optimal solution as the cen-
tralized approach, the difference remains acceptable for the
voltage control purpose.

VII. CONCLUSION
This paper presents the constraint-coupled MPC problem
for voltage control applied to distribution grid solved with
the RSDD algorithm. The MPC optimization problem has
been first reformulated from its centralized expression in the
constraint-coupled set-up and subsequently the RSDD–MPC
algorithm has been derived. For the algorithm, the conver-
gence condition for the limit value of the step-size is derived.
Numerical simulations have validated the calculation of the
limit value of step-size, which depends only on the size of
the problem and on the grid data. However, the simulations
have also demonstrated a limitation of the RSDD–MPC due
to the linear increase in the number of iterations as the number
of control nodes increases. The comparison with the results
obtained from the solution of the centralized MPC shows that
the RSDD–MPC solves the MPC problem in a distributed
manner andwith a fixed number of iterations, reaching a solu-
tion that is closer to the centralized one. Moreover, additional
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simulations demonstrate that the RSDD–MPC tracks refer-
ence values for the SoC over a finite prediction horizon. The
proposed application of the RSDD represents an interesting
option for implementing a distributed voltage control over a
prediction horizon using an algorithm with a simple structure
and a demonstrated calculation of the limit value of the
step-size. A further improvement to the RSDD–MPC could
involve finding a method for solving the scalability problem.

APPENDIX A
NEW VARIABLE FORMULATION
• yP,DG,·|k = (PcurtDG,·|k − PrefDG,·|k )

• yQ,DG,·|k = (QDG,·|k −Qref
DG,·|k )

• yP,ESS,·|k = (PESS,·|k − PrefESS,·|k )

• eSoC,k−1 = (SoCk−1 − SoCref
k−1)

• H = η
CESS

APPENDIX B
SEPARATION OF THE CONSTRAINTS
A. GENERAL SEPARATION THEORY
Given a set of constraints that can be expressed as follows:

A · x ≤ b (35)

whereA is a full n×nmatrix and x,b two 1×n vectors, they
can be reformulated as follows:

a11x1 + . . .+ a1jxj + . . .+ a1nxn ≤ 1T
b1
n

...

ai1x1 + . . .+ aijxj + . . .+ a1nxn ≤ 1T
b1
n

...

an1x1 + . . .+ anjxj + . . .+ annxn ≤ 1T
bn
n

(36)

Therefore the constraint linked to the r-th element of x can
be defined as:

a1rxr −
b1
n
≤ −a11x1 +

b1
n
− . . .− a1nxn +

b1
n︸ ︷︷ ︸

−g1j(xj)|∀j6=r
...

airxr −
bi
n
≤ −ai1x1 +

bi
n
− . . .− ainxn +

bi
n︸ ︷︷ ︸

−gij(xj)|∀j6=r
...

anrxr −
bn
n
≤ −an1x1 +

bn
n
− . . .− annxn +

bn
n︸ ︷︷ ︸

−gnj(xj)|∀j6=r

(37)

and in its compact form as:

gr (xr )=

a1r...
anr

 · xr −

b1
n
...
bn
n

 ≤
−g1j(xj)...

−gnj(xj)

 = −gj(xj)|∀j6=r
(38)

B. RESULTING I-TH ELEMENT OF AC AND b+C,k ,b−C,k
The separated constraints for the element i-th ∈ N are
described as:

AC [i] =



RDG[1, i] 0 0
...

...
...

RDG[N , i] 0 0
0 XDG[1, i] 0
...

...
...

0 XDG[N , i] 0
0 0 RESS [1, i]
...

...
...

0 0 RESS [N , i]


(39)

b+C,k [i] =



[
1Vmax − Vn

k [i]

N

]
1×N[

1Vmax − Vn
k [i]

N

]
1×N[

1Vmax − Vn
k [i]

N

]
1×N

 (40)

b−C,k [i] =



[
1Vmin − Vn

k [i]

N

]
1×N[

1Vmin − Vn
k [i]

N

]
1×N[

1Vmin − Vn
k [i]

N

]
1×N

 (41)

C. RESULTING I-TH ELEMENT OF AB AND b+B,k ,b−B,k

AB[i] =


1 0 0

0 1 0

0 0 1

0 0 H

 (42)

b+B,k [i] =



0− PrefDG,k

Qmax
DG,k −Qref

DG,k

PmaxESS,k − PrefESS,k

SoCmax
− SoCk−1


(43)

b−B,k [i] =



−PmaxDG,k − PrefDG,k

Qmin
DG,k −Qref

DG,k

PminESS,k − PrefESS,k

SoCmin
− SoCk−1


(44)
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