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ABSTRACT Dangerous driving behaviors are diverse and complex. Determining how to analyze the driving
behavior of public drivers objectively and accurately has always been a research challenge. This research
proposes a macroscopic and dynamic method for evaluating drivers’ dangerous driving degree based on
a fuzzy inference system. It also designs fuzzy-macro long short-term memory (LSTM), a variant of
LSTM recurrent neural networks, which can predict drivers’ dangerous driving behaviors and risk degree.
We elucidate how a macroscopic fuzzy inference dangerous driving behavior system is designed based on
various driving behavior factors and the neuron architecture of the fuzzy-macro LSTM network. We collect
real driving behavior data of drivers on the road and conduct a series of experimental analyses. Compared
with five other commonly used time-series forecasting neural network models, our fuzzy-macro LSTM
model performs best in terms of prediction error. Experimental results verify the effectiveness of the proposed
method for macroanalysis and prediction of dangerous driving behavior.

INDEX TERMS Data analysis, time series, fuzzy rules, driving behavior, prediction, fuzzy neural network.

I. INTRODUCTION

The Internet of Vehicles (IoV) is an innovative networking
service of the Internet of Things for the motor vehicle indus-
try. People install devices on vehicles to collect and send
data to a cloud computing platform for further data anal-
ysis and processing. Various car networking services, such
as usage-based insurance (UBI), intelligent transportation
system, and smart navigation, have been created to provide
people with a highly comfortable driving environment and
a rich and diverse driving experience [1]. The analysis of
driving behavior has always been an important research topic
in the field of IoV [2], [3]. Accident prevention, driving
style assessment, UBI, fleet management, and driver intent
prediction are typical IoV applications based on big data
analysis of driving behavior. Such applications collect a
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massive amount of data from drivers’ smartphones, car driv-
ing recorders, in-vehicle infotainment devices, and on-board
diagnostics (OBD)-II adapters in vehicles through wireless
networking. IoV application users then analyze the collected
data on a cloud computing platform by using big data analy-
sis, machine learning, and deep learning models [4], [5].
Machine learning is one of the important research methods
for driving behavior analysis and prediction. People train
various machine learning or deep learning models to learn and
label dangerous driving features to classify or predict driv-
ing behaviors [6]-[8]. Machine learning-based methods must
collect and analyze various data to train the models. However,
many of the motor vehicles currently running on the road
are ordinary vehicles. These aftermarket nonluxury vehicles
do not have data collection devices, such as advanced driver
assistance systems (ADAS), driving recorders, or cameras
preinstalled. The installation of various driving recorders,
ADAS, and cameras on vehicles is not only expensive but
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also complicated [9]. Installing excessive external electrical
equipment on a vehicle will also cause a heavy electrical
load and fire hazards [10]. With these aforementioned factors,
various driving behavior detection technologies designed
based on sensing devices, such as ADAS, cameras, and video
recorders, cannot be used widely.

Studies on how to analyze and predict driving behaviors
by using various physiological sensing devices attached to
a driver’s body have also been conducted. These studies
used intrusive data collection methods that collect and ana-
lyze the driver’s physical physiological data to determine
whether the driver has distracted driving and fatigued driving
behavior [11]-[13]. However, drivers may be reluctant to
install these devices in practice because of concerns that
the physiological sensing devices will affect their driving.
At present, most ordinary vehicles in the aftermarket still lack
easy-to-use and cost-effective technologies and methods to
detect and prevent dangerous driving behaviors. Thus, more
advanced technologies should be explored to protect drivers’
safety.

To tackle the aforementioned challenges, this study aims
to integrate big data analysis, fuzzy theory, and deep learning
to address the critical problems in driving behavior analysis
and prediction. The major contributions of this work can be

summarized as follows:
1) We review the main methods for identification and

analysis of driving behavior on IoV, discuss the charac-
teristics of these methods, and propose important issues
to be solved.

2) We propose a novel method for macro data analysis to
assess drivers’ degree of dangerous driving. We also
design a fuzzy inference system, which can flexibly
incorporate various driving behaviors of drivers into
factors, for evaluating dangerous driving behavior and
the degree of macro driving risk.

3) We propose a fuzzy-macro long short-term mem-
ory (LSTM) model, which is a variant of the recur-
rent neural network (RNN) model and can predict
the degree of macro dangerous driving behavior.
We describe the architectural design of the neural unit
of the neural network model.

4) We perform a series of multifaceted experimental
analyses. The experimental results prove the effec-
tiveness of the macroscopic dangerous driving behav-
ior analysis and prediction model proposed in this
research.

The remainder of this paper is organized as follows.
Section II presents our research methods, describes the prob-
lem to be solved, and presents a novel fuzzy interference
system and a fuzzy-macro LSTM model. Section III eval-
uates our models and discusses the experimental methods
and results. Section IV discusses the research background
and related work, and further reviews various major
approaches that analyze driving behaviors. Section V con-
cludes the study and presents suggestions for future
work.
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FIGURE 1. lllustration of problem definition.

Il. RESEARCH METHOD

In this section, we first describe the definition of the problem
to be solved. Then, we propose a fuzzy logic system that
assesses the risk of driving behavior from a macro level and a
deep learning model that can predict the level of macro risk.

A. PROBLEM STATEMENT

Drivers’ driving habits and behaviors are diverse and com-
plex. Drivers’ degree of dangerous driving is difficult to
assess based on certain driving behaviors. As shown in
Figure 1, suppose a certain auto insurance company has mil-
lions of customers. Determining how to analyze the various
driving behaviors of each driver from a macro perspective
comprehensively and assess the risk of traffic accidents for
all drivers accurately and objectively are problems that have
an important commercial value and are worthy of in-depth
study.

The problem of macroscopic analysis of driving behavior
on IoV could be represented as (1). y; is the driver’s macro
risky driving degree, and f* is a target function for calculating
this macro risky driving degree. The input parameters of f*
function are a set of driving behaviors, including the driver’s
number of sudden accelerations per 100 km, denoted as X 4;
the number of sudden braking per 100 km, denoted as X3; and
the average speed per 100 km, denoted as Xs. f* is calculated
by the fuzzy inference system of macro driving behavior
designed in this work. In practical applications, users can
flexibly add or replace various other driving behavior features
in the set in accordance with their needs. This study currently
uses only three important driving behaviors.

[ (Xy, X, Xs) = ),
yi=f" (xA,-,xB,«,xs,-), i=1,....,n. (1)

The definition of predicting the degree of macroscopic risk
is described in (2). ypreq(t) is the predicted macroscopic com-
prehensive dangerous driving degree of the driver at a certain
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time t, and ypeq(f) is a multivariate time-series forecasting
function to predict the macro risk level of vehicle drivers.
The input parameter of yprq(¢) is a 3D matrix of driving
behavior data. The matrix consists of the number of sudden
accelerations per 100 km, denoted as A; the number of sudden
braking per 100 km, denoted as B; and the average speed per
100 km, denoted as S. «;, Bi, i, and u; are the coefficients
of the lag operation of the time-series model, and ¢ is the
residual of the lag operation. ypq(t) will be derived from
the fuzzy-macro LSTM model that will be described in the
following section.

Ypred(t)
= argmaXP((As Bv S)l | (As Bv S)[_T, R (A7 Ba S)l—l)

p k k
=D Oiyprealt — i)+ Y ixalt — i) + Y Big(t — i)

i=1 i=0 i=0
k q
+ ) st — i+ Y it — i) )
i=0 i=0

B. FUZZY SET MODEL DESCRIPTION

We assume that the driving behavior data set R is a set
of rational numbers. We define the macroscopic dangerous
driving behavior fuzzy set A in R as a set of ordered pairs, and
A is expressed as (3). Given that the driving behavior data are
discrete and limited, the fuzzy set of macro dangerous driving
behavior can be expressed as (4). n;(y) is the membership
degree of y in the fuzzy set. y; is the performance degree of
sudden acceleration per 100 km, y; is the performance degree
of sudden braking per 100 km, and y3 is the performance
degree of average speed per 100 km.

A= {0, nz0ly € R} 3)
i {ng(yl) N n7(»2) N ni(v3) +}
i 2 3
_ {Z nA(Yi)} @
i1 Vi

The calculation of y; is presented in (5), where p is the

percentage and A is the exponential distribution of y;.
yip. 1y = 0P )
A

C. FUZZY INTERFERENCE LOGIC RULES
The fuzzy rule library for macro driving behavior evalua-
tion is composed of the following fuzzy IF-THEN rule set,
as shown in (6). Ail and 6’ are input and output fuzzy sets,
respectively. x € {x1,x2,...,x,} and y are the input and
output of the fuzzy derivation system, respectively [14].

" rule : IF x, isAﬁ, ...,and x, isAfl, THEN y = 6' (6)

The fuzzy evaluation system of macro driving behavior
in this study contains 3 input parameters, 1 output result,
and 27 fuzzy rules. Table 1 shows the designed fuzzy rule
library for macro driving behavior evaluation. It comprises
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three input parameters and one output value. The three
input parameters are the number of sudden accelerations per
100 km (low, medium, high), the number of sudden braking
per 100 km (low, medium, high), and the average speed per
100 km (low, medium, high). The output is the macroscopic
dangerous driving degree (low, medium, high).

Let the fuzzy set of the degree of sudden acceleration per
100 km be E, the fuzzy set of the degree of sudden braking
per 100 km be Z, and the fuzzy set of the average speed
per 100 km be H. Then the macroscopic dangerous driving
degree is given by (7).

0 = Wipnzng () = Al ig, 1z, 1yl
= min[ ug, Lz, Lyl @)

The calculation of fuzzy rule inference to evaluate the
macro dangerous driving degree is shown in (8).

Ry IF xyis EU and xp is le and x3 is 1:113,
THEN 6) = a; X x1 +by xx2+c1 X x3+d;
Ry 1 IF x1 is Ez] and x» is 222 and x3 is ﬁzg,
THEN 6, =ay x x1 +by X xo + ¢y x x3+da
R; . IF xy is E,-l and xp is Ziz and x3 is I:I,-g,
THEN 6; = a; x x1 +b; x xp +¢; X x3 + d; ®)
The fuzzy evaluation system will synthesize all the rules
and defuzzify them by using the weighted average method

to calculate a fuzzy system output value 8, as shown in (9),
where w; is the suitability of each rule.

" ow; X 6;
5 _ (Zg—) where
i=1 Wi
Wi = Kg, (x?) NHZ, (x?) A P, (x?) ©)

Figure 2 shows the distribution diagram of the membership
function of the designed fuzzy evaluation system for macro
analysis of dangerous driving behavior. In a fuzzy member-
ship function graph, the vertical axis is a number between
0 and 1, and is called the membership value. The horizontal
axis is a set of real numbers that map to membership values.
In Figure 2, the horizontal axis is a set of normalized real driv-
ing behavior values (such as the number of sudden braking
per 100 km, the number of sudden acceleration per 100 km,
and the average speed per 100 km), and the vertical axes are
the membership values of performance level that are mapped
to each dangerous driving behavior when the set of driving
behaviors is applied with fuzzy set rules.

Figure 3 presents a 3D surface plot of the macroscopic
fuzzy evaluation system. The plane coordinate axes in the 3D
graph in Figure 3 represent the normalized driver’s number
of sudden accelerations and sudden brakings per 100 km,
respectively. The vertical axis in the 3D graph represents
the derived membership value of the degree of macroscopic
dangerous driving behavior, which refers to the change of the
area in the 3D graph. In Figure 3, we use the grid values
of the degree of sudden acceleration and sudden braking of
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TABLE 1. Macro driving behavior fuzzy interference system rules.

Number of Number of Macro
Rule Average
Number Sudden . Sudd;n Speed Da_n gerous
Acceleration | Braking Driving Degree
1 High High High High
2 High High Medium | High
3 High High Low High
4 High Medium High High
5 High Medium Medium | Medium
6 High Medium Low Medium
7 High Low High High
8 High Low Medium | Medium
9 High Low Low Low
10 Medium High High High
11 Medium High Medium | Medium
12 Medium High Low Medium
13 Medium Medium High Medium
14 Medium Medium Medium | Medium
15 Medium Medium Low Medium
16 Medium Low High Medium
17 Medium Low Medium | Medium
18 Medium Low Low Low
19 Low High High High
20 Low High Medium | Medium
21 Low High Low Low
22 Low Medium High Medium
23 Low Medium Medium | Medium
24 Low Medium Low Low
25 Low Low High Low
26 Low Low Medium | Low
27 Low Low Low Low

1000 drivers per 100 km as the system input, and the esti-
mated macroscopic dangerous driving degree of the drivers
is the surface output value. We illustrate the use case of the
designed fuzzy evaluation system in Figure 4. The horizontal
axis in Figure 4 is the fuzzy inference system’s support for
the derived macroscopic dangerous driving behavior degree,
which refers to the red-filled area characterized by full mem-
bership in the fuzzy set. The vertical axis is the membership
value of the macroscopic dangerous driving degree, which
is between 0 and 1. We analyze the driving behavior of a
38-year-old man. His sudden acceleration degree per 100 km
is 87%, the sudden braking degree per 100 km is 93.6%, and
the average speed degree per 100 km is 95.7%. The system
estimates that his macro dangerous driving behavior is 92%,
which implies high-risk dangerous driving. Accordingly, our
fuzzy evaluation system can achieve a macroscopic analysis
of the degree of dangerous driving behavior of all drivers in
different age groups, genders, and periods.

D. FUZZY-MACRO LSTM

We assume that the driving behavior and vehicle condi-
tion data are time-series data. We can use RNNs to track
time-series data up to the time we observed the data. An RNN
has a ““state’ for storing information related to the informa-
tion observed and processed so far, and it can process sequen-
tial data through multiple iterations [15]. An LSTM network
enhances the short-term memory in RNNs [16]. It is currently
widely used in natural language processing, image recogni-
tion, and other applications due to its strong reconnaissance
capability [17]-[20]. We propose fuzzy-macro LSTM, a deep
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learning model based on LSTM RNNS, in this work. We rep-
resent daily driving behavior with a time-series data structure
of a 3D matrix, as shown in Figure 5, and design a variant
of LSTM models to learn driving behavior patterns and pre-
dict the macro risk level of dangerous driving. In Figure 5,
NOST/100 km represents the number of sharp turns the driver
makes per 100 km. FC/100 km refers to the fuel consumption
of the driver per 100 km. AS/100 km refers to the average
speed of the driver per 100 km. NOSB/100 km represents
the number of sudden braking per 100 km by the driver.
NOSA/100 km refers to the number of sudden acceleration
per 100km by the driver.

The LSTM network can effectively solve the problem of
the vanishing gradient of the traditional RNN network, and it
can learn to remember a single event that occurs in a long
time series and adjust the oscillation of the signal in non-
stationary data. However, training LSTM network models
requires complex data preparation. For example, to ensure
that the LSTM network focuses on underlying signals in
time series, machine learning practitioners need to remove
periodic and trending signals in the data for training LSTM
network models. This step can lead to decreased performance
of LSTMs in predicting trend problems. Furthermore, LSTM
networks require a large amount of training resources and
time to learn nonlinear predictive relationships in big data
sensed by IoV. This study aims to address the question of how
various risky driving behaviors and trends in macroscopic risk
levels can be predicted in a cost-effective manner. To maintain
high predictive power with less computational resources and
training time, the internal architecture of the LSTM unit is
fine-tuned to make the LSTM network more suitable for
addressing the problem to be solved in this work. Figure 6
shows the neural unit structure of the fuzzy-macro LSTM
model. The model unit contains a forget gate layer, an input
gate layer, and an output gate layer. c¢;_ is the output of the
previous model neural unit, ¢; is the output of the current
model neural unit, and %, is the final state. Given the input
Nseq » the previous state 4,1, and the previous unit output
ct—1, the fuzzy-macro LSTM unit records historical driv-
ing behavior characteristic information, and the unit update
interval is t. When a new driving behavior feature vector is
input, the forget gate layer decides which information will be
deleted. Among them, N4 is the vector of various dangerous
driving behaviors, and Ry, is the level of dangerous driving
evaluated using the macro-fuzzy logic analysis subsystem.
Given that the degree of macro dangerous driving reflects
the driver’s long-term dangerous driving behavior, the degree
of dangerous driving is separately introduced into the input,
output, and forget gates in the fuzzy-macro LSTM network
unit to deepen the memory of the driver’s historical degree of
dangerous driving behavior and avoid being forgotten by the
forget gate. When the new time-series driving behaviors are
input into the model, outdated information will be eliminated
by the forget gate. The output f; of the forget gate is expressed
in (10), where ¢ is the sigmoid function, Wy is the weight
matrix of the forget gate layer, and by is the deviation value
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FIGURE 4. Use case of the macro driving behavior fuzzy inference system.
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FIGURE 3. 3D surface plot of the macroscopic fuzzy evaluation system.

of the forget gate layer.

fi=¢ (Wf X Rievel % [Nseq ) ht—l] + bf) (10)

The input gate layer determines which driving behav-
ior information is retained and uses the hyperbolic tangent
activation function to calculate a vector to determine how
much information is needed to update the current neural unit
of the fuzzy-macro LSTM model. The input gate layer is
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Timeline

FIGURE 5. 3D matrix structure of driving behavior time-series data.

implemented with (11) and (12), where W; is the weight
matrix of the input gate layer, and b; is the deviation value
of the input gate layer.

i =g (Wi X Riever X [Nseq ) ht—l] + bi) (11)

¢ =fr X ¢—1
+ it x tanh (Wt X Rievel X [Nseq ) ht—l] + bc) (12)
47885
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FIGURE 6. Neural unit structure of the fuzzy-macro LSTM model.

The output gate layer combines the calculation results of
the forget and input gate layers to output the driving behavior
information predicted by the current neural unit. The output
gate performs data processing with (13) and (14). W, is the
weight matrix of the output gate layer, and b, is the deviation
value of the output gate layer.

0 = ¢ (Wo X Riever X [Nseq ) ht—l] + ba) (13)
h; = o; x tanh (¢;) 14)

In our proposed fuzzy-macro LSTM, the dimension of the
driving behavior input vector Ngeq is [29 x 1]. The output
dimensionality is [3 x 1] and is the number of macro-risk
classes. The dimensions of 4, h;_1, ¢;, ¢1—1, iy, 0;, and f; are
each [3 x 1], while the dimensions of the weight matrices W;,
W; and W, are each [3 x 29]. The deviations by, b;, b., and
b, each have dimensions of [3 x 1].

IIl. EXPERIMENTS AND RESULTS DISCUSSIONS

To evaluate the performance of our proposed fuzzy-macro
LSTM model, we conduct a series of experiments and com-
pare it with five other benchmark models. Our experiments
are conducted on a Windows workstation with one NVIDIA
Quadro P2200 GPU and 64 GB RAM. We implement the pro-
posed fuzzy-macro LSTM approach in Python 3.8.2, Numpy
1.19.5 and Keras 2.4.3. We discuss the experimental envi-
ronment, data set, and experimental result in the following
sections.

A. DATA SETS

In this study, a nonintrusive data collection method is used to
collect the data of vehicles. We use an OBD-II adapter as the
main data collection device because of its easy installation,
strong data collection stability, low price, and high flexibility.
Users can modify or add the driving behavior data fields they
want to collect at any time in accordance with their needs.
As shown in Figure 7, we install an OBD-II adapter on the
experimenters’ vehicles and continuously collect 9-month
driving behavior data of 10 experimenters of different ages
and genders. We install an app on the experimental drivers’
smartphones to record the OBD-II adapter data via Bluetooth
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FIGURE 7. Data collection device and software. (a) OBD-II adapter
mounted on the cars, (b) screenshot of the data-recording app.

and retransmit the data to a back-end cloud computing sys-
tem via a 4G/5G telecommunication network. The collected
driving behavior data consist of time, vehicle speed, average
vehicle speed, travel distance, accumulated travel distance,
engine coolant temperature, engine speed, and vehicle speed
acceleration. Figure 8 shows a snippet of the sample dataset.

Before training the deep learning model, we use Python
scikit-learn MinMaxScaler to rescale the data feature values
to the range between 0 and 1. In addition, we use Python
scikit-learn StandardScaler to standardize the data, which
transforms the feature values to a Gaussian distribution,
where the mean is 0 and the standard deviation is 1. We also
use data engineering technology to generate more detailed
driving behavior data, such as maximum vehicle speed, mini-
mum vehicle speed, maximum engine revolutions per minute
(RPM), and minimum RPM.

B. EVALUATION METRICS

We compare the designed fuzzy-macro LSTM model with
five other neural network models for time-series fore-
casts, namely, convolutional neural network (CNN), mul-
tilayer perceptron (MLP), Vanilla LSTM, CNN-LSTM,
and ConvLSTM. The architectures of the five models are
described as follows:

e CNN [21]: Itis a 1D CNN that contains a convolutional
hidden layer, a pooling layer, a flatten layer, and a dense
layer.

e MLP [22]: It is an MLP neural network that has one
neural hidden layer and one output layer.

e Vanilla LSTM: It is a variant of the LSTM neural net-
work [16] and has a hidden layer of LSTM neural units
and an output layer.

o CNN-LSTM [23]: It is a neural network that combines
the CNN model with the LSTM model. The front end
of the model is a 1D CNN that contains two convolu-
tional hidden layers, a pooling layer, and a flatten layer.
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SECONDS _ [PID VALUE UNITS
58433,40538|OBD Module Voltage 13,5|V.
58434,59638| Calculated engine load value 22,74509804|%
58434,97438|Engine coolant temperature 88
58435,35138Short term fuel % trim - Bank | -0,78125|%
58435,73138|Long term fuel % trim - Bank 1 -11,71875(%
58436,11738|Engine RPM 899[rpm
58436,48538| Vehicle speed 88|km/h
58436,86438|Timing advance 14]
58437,24238|Intake air temperature 58
58437,61838|Calculated boost -0,642772102 | bar
58437,61838| MAF air flow rate 3,68|g/sec
58438,00238|Fuel izer (based on fuel system status and throttle position) 1
58438,00238| Throttle position 12,54901961(%

58438,38538|Oxygen sensor 1 Bank 1 Short term fuel trim 2,34375|%
58438,38538|Oxygen sensor 1 Bank 1 Voltage 0,325[V.
58442,70238] Average speed 16.19231323[km/h
58443, 11538 Distance travelled 2,305309863[km
58443,37538| Distance travelled (total) 2,305309863[km

FIGURE 8. Snippet of the sample data set.

The output of the CNN model is used as the input of the
back-end LSTM model. The LSTM model contains an
LSTM hidden layer and an output layer.

e ConvLSTM [24]: It is an RNN that has a 2D convolu-
tional LSTM input layer, a flatten layer, a dense layer,
and an output layer.

We use three major performance metrics to evaluate and
compare model prediction performance, namely, mean abso-
lute error (MAE), mean squared error (MSE), and root MSE
(RMSE). The calculation of MAE is shown in (15), where
y; is the true value and y; is the predicted value. MAE shows
the average error between the actual macro dangerous driving
degree and the predicted value. MSE is the mean of the
sum of squared errors of the predicted macro dangerous
driving degree and the corresponding points of the actual
value, which is defined in (16). RMSE is calculated by (17).
It is used to measure the deviation between the predicted
value and the true value. In the above three model evaluation
metrics, when the prediction error is large, the values of MAE,
MSE, and RMSE are also large.

N
1 -
MAE = - _lem — il (15)
=
1 N
MSE = 2@; —)? (16)
=
RMSE = (17)

C. EXPERIMENT RESULTS

We compare the prediction performance of the fuzzy-macro
LSTM model and the benchmark models in different training
sample sizes and epochs. We evaluate the performance of all
models when the training sample size is 1000 to 10000 and
the number of training epochs is 50 to 500. Table 2 presents
the comparison result for the impact of the number of training
samples on performance. Table 3 shows the comparison result
for the impact of the number of training epochs on perfor-
mance. We also present the data analysis results of drivers’
macro dangerous driving behaviors and verify the concept of
macroscopic data analysis of driving behaviors proposed in
this study.
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1) MACROSCOPIC RISK LEVEL ANALYSIS

Before training the model, we analyze the importance of
various features of driving behaviors and vehicle conditions
on the predicted macroscopic dangerous driving behaviors.
Figure 9 presents the SHapley Additive exPlanations (SHAP)
summary plot showing the contribution of each feature to the
predicted degree of macro dangerous driving behavior. SHAP
values are based on game theory to evaluate the degree of
influence of all features on the predicted features in a fair
manner [25]. Figure 9 presents the importance of 10 features
to the predicted degree of macro dangerous driving from high
to low. Among the 10 features, 6 are related to vehicle condi-
tion data, and 4 are related to driving behavior data. The top
three driving behavior features that have the greatest impact
on the predicted degree of macroscopic dangerous driving
behavior are the numbers of sudden braking per 100 km,
the numbers of sudden accelerations per 100 km, and the
average speed per 100 km. This analysis result is consistent
with the three driving behavior factors in the macroscopic
dangerous driving behavior fuzzy inference system designed
in Section II.

We further analyze the changes in the degree of macro-
scopic dangerous driving of experimental drivers. As shown
in Figure 10, the macroscopic risky driving degree of three
drivers varies in different periods. Among them, Driver 3 had
the highest degree of dangerous driving from October to
December 2020. Driver 1 had the lowest risk degree of dan-
gerous driving in October and November 2020 and the high-
est risk of dangerous driving in December 2020. Driver 2 had
the highest risk of dangerous driving in November 2020.
In December 2020, his dangerous driving behavior improved,
and the risk level was reduced. The analysis results in Fig-
ure 10 verify the effectiveness of our proposed concepts
of macroscopically, dynamically, and adaptively evaluating
drivers’ dangerous driving behaviors.

2) PERFORMANCE ANALYSIS OF MAE

Figures 11 and 12 compare the performance of the
fuzzy-macro LSTM model and the five other time-series
forecasting models in MAE. The box-and-whisker plot in
Figure 11 presents the analysis results of the impact of the
number of training samples on the MAE performance of
various models. Fuzzy-macro LSTM has the smallest aver-
age value of MAE and the best overall performance. The
average MAE of the ConvLSTM model is 0.845, and that of
the fuzzy-macro LSTM model is 0.612. Compared with the
ConvLSTM model, the fuzzy-macro LSTM model reduces
the MAE of the prediction error by nearly 27.62%. Figure 12
shows the results of the analysis of the impact of the number
of training epochs on the performance of various models in
MAE. The fuzzy-macro LSTM has stable MAE changes in
different epochs and achieves the lowest value. The CNN
and MLP models can maintain relatively low MAE values
when the number of training epochs is less than 200. When
the number of training epochs exceeds 200, the MAE values
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TABLE 2. Comparison of the impact of training sample size on performance for predicting macro risk level.

. Samples
Metrics Method T000 [ 2000 [ 3000 | 4000 ] 5000 [ 6000 [ 7000 | 8000 [ 9000 [ T0000
CNN 0.700 | 0.728 | 0.713 | 0.723 | 0.715 | 0.722{ 0.709 | 0.716 | 0.699 | 0.702
MLP 0.690 | 0.716 | 0.693 | 0.712 | 0.716 | 0.714 | 0.707 | 0.716 | 0.703 | 0.701
MAE Vanilla LSTM 0.667 | 0.677 | 0.682 | 0.685 | 0.689 | 0.687 | 0.687 | 0.691 | 0.688 | 0.688
CNN-LSTM 0.803 | 0.810 | 0.795 | 0.801 | 0.784 | 0.777 | 0.757 | 0.743 | 0.733 | 0.726
ConvLSTM 0.893 | 0.847 | 0.867 | 0.857 | 0.838 | 0.841 | 0.836 | 0.833 | 0.827 | 0.810
fuzzy-macro LSTM | 0.593 | 0.601 | 0.611 | 0.613 | 0.616 | 0.614 | 0.615 | 0.619 | 0.617 | 0.616
CNN 0.698 | 0.747 | 0.751 | 0.758 | 0.725 | 0.737 | 0.719 | 0.718 | 0.688 | 0.686
MLP 0.686 | 0.720 | 0.687 | 0.712 [ 0.730 | 0.712 | 0.701 | 0.725 | 0.695 | 0.670
MSE Vanilla LSTM 0.554 1 0.573 | 0.584 | 0.587 | 0.594 | 0.590 | 0.589 | 0.596 | 0.590 | 0.587
CNN-LSTM 1.014 | 1.000 | 0.985 | 0.957 | 0.925 | 0.900 | 0.859 | 0.838 | 0.829 | 0.829
ConvLSTM 1.197 | 1.109 | 1.169 | 1.096 | 1.071 | 1.061 | 1.041 | 1.035 | 1.031 | 0.974
fuzzy-macro LSTM | 0.493 | 0.499 | 0.502 | 0.506 | 0.511 | 0.509 | 0.507 | 0.510 | 0.509 | 0.506
CNN 0.841 ] 0.871 | 0.870 | 0.866 | 0.855 | 0.859 | 0.848 | 0.846 | 0.828 | 0.828
MLP 0.816 | 0.847 | 0.830 | 0.843 | 0.854 | 0.844 | 0.838 | 0.847 | 0.835 | 0.822
RMSE Vanilla LSTM 0.74510.757 ] 0.764 | 0.768 | 0.770 | 0.769 | 0.769 | 0.772 | 0.768 | 0.766
CNN-LSTM 0.966 | 1.002 | 0.982 | 0.981 | 0.956 | 0.949 | 0.938 | 0.922 | 0.912 | 0.905
ConvLSTM 1.093 [ 1.048 | 1.072 | 1.046 | 1.025 [ 1.032 | 1.025 | 1.012 | 1.017 | 0.998
fuzzy-macro LSTM | 0.691 | 0.696 | 0.699 | 0.707 | 0.708 | 0.706 | 0.704 | 0.707 | 0.707 | 0.706
TABLE 3. Comparison of the impact of training epochs on performance for predicting macro risk level.
. Epochs
Metrics Method 50 [ 100 [ 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
CNN 0.694 | 0.715( 0.743 | 0.770 | 0.799 | 0.824 | 0.849 | 0.866 | 0.889 | 0.895
MLP 0.701]0.719]0.741 | 0.776 | 0.803 | 0.824 | 0.839 | 0.856 | 0.861 | 0.879
MAE Vanilla LSTM 0.689 | 0.687 | 0.687 | 0.687 | 0.688 | 0.688 | 0.689 | 0.688 | 0.689 | 0.693
CNN-LSTM 0.787 | 0.846 [ 0.806 | 0.785 | 0.773 | 0.757 | 0.750 | 0.737 | 0.734 | 0.732
ConvLSTM 0.77510.838 | 0.822 | 0.811 | 0.800 | 0.796 | 0.790 | 0.784 | 0.777 | 0.776
fuzzy-macro LSTM | 0.613 | 0.612 | 0.611 | 0.612 | 0.615 | 0.619 | 0.620 | 0.620 | 0.624 | 0.630
CNN 0.660 | 0.731 | 0.810 | 0.889 | 0.963 | 1.018 | 1.080 | 1.142 | 1.183 | 1.252
MLP 0.656 | 0.740 | 0.819 | 0.906 | 0.976 | 1.039 | 1.088 | 1.130 | 1.163 | 1.187
MSE Vanilla LSTM 0.593 ] 0.593 ] 0.592 | 0.593 | 0.594 | 0.596 | 0.600 | 0.607 | 0.613 | 0.629
CNN-LSTM 0.945 ] 1.063 | 0.961 | 0.919 | 0.888 | 0.862 | 0.842 | 0.826 | 0.819 | 0.815
ConvLSTM 0.911 | 1.085 | 1.023 | 0.987 | 0.952 | 0.939 | 0.924 | 0.915 | 0.904 | 0.889
fuzzy-macro LSTM | 0.521 | 0.520 | 0.521 | 0.521 | 0.523 | 0.525 | 0.531 | 0.533 | 0.535 | 0.540
CNN 0.805 | 0.858 | 0.902 | 0.938 | 0.984 | 1.015 | 1.046 | 1.066 | 1.086 | 1.118
MLP 0.808 | 0.855 ] 0.908 | 0.951 [ 0.991 | 1.021 | 1.048 | 1.064 | 1.075 | 1.090
RMSE Vanilla LSTM 0.770]0.770 [ 0.769 | 0.770 | 0.770 | 0.772 | 0.774 | 0.778 | 0.781 | 0.792
CNN-LSTM 0.976 | 1.026 | 0.981 | 0.961 | 0.946 | 0.923 | 0.919 | 0.909 | 0.903 | 0.897
ConvLSTM 0.944 1 1.028 | 1.013 | 0.995 | 0.980 | 0.969 | 0.959 | 0.956 | 0.951 | 0.949
fuzzy-macro LSTM | 0.733 | 0.731 | 0.730 | 0.731 [ 0.732] 0.734 | 0.736 | 0.737 | 0.740 | 0.744
predicted by the CNN and MLP models gradually increase.
When the number of training epochs is 500, the MAE of v tempersure -
the fuzzy-macro LSTM model is 0.630 and that of the e s "’"";"'"
CNN model is 0.895, indicating that the fuzzy-macro LSTM o T —bme
model achieved a 29.61% improvement in MAE compared R sl
with the CNN model. Figure 13 compares the overall MAE e . ceele
performance of all models in different numbers of training e coan temperatre -+
samples and epochs. The experimental results show that Avospced : S
compared with the five other time-series forecasting models, I
the fuzzy-macro LSTM model has the smallest forecasted prosnanesn 1

MAE error when the number of training samples and epochs
change, and its overall performance is the best.

3) PERFORMANCE ANALYSIS OF MSE

Figures 14 and 15 depict the comparison results for the
fuzzy-macro LSTM model and the five other time-series
forecasting models in MSE performance. Figure 14 presents
the analysis results of the impact of the number of training
samples on the performance of various models in MSE. The
fuzzy-macro LSTM has the lowest average MSE value of
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FIGURE 9. Feature importance analysis with SHAP values.

0.505 and the smallest average prediction error. By contrast,
the ConvLSTM model has the highest average MSE value
of 1.078 and the largest average prediction error. Compared
with the ConvLSTM model, the fuzzy-macro LSTM model
reduces the MSE of the prediction error by nearly 53.16%.
Figure 15 presents the analysis results of the impact of the
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FIGURE 12. Comparison of the impact of training epoch size on MAE.

number of training epochs on the performance of various
models in MSE. As the number of epochs changes, the MSE
change of fuzzy-macro LSTM is relatively stable and has
the lowest value. The MSE performance of CNN and MLP
models is similar to that of their MAE. CNN and MLP models
can maintain a low MSE when the number of training epochs
is less than 200. However, when the number of training
epochs exceeds 200, the value of MSE predicted by CNN
and MLP models increases significantly. When the number
of training epochs is 500, the MSE of the fuzzy-macro LSTM
model is 0.540, the MAE of the CNN model is 1.252, and
the fuzzy-macro LSTM model improves MSE by 56.87%
compared with the CNN model.
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FIGURE 15. Comparison of the impact of training epoch size on MSE.

Figure 16 compares the overall impact of the number of
training samples and epochs on the MSE of all models.
The experimental results show that compared with the five
other time-series forecasting models, the fuzzy-macro LSTM
model predicts the smallest MSE error and has the best overall
performance is the best. For CNN and MLP models, when the
number of training epochs changes, their average MSE errors
are higher than those of the other models. The ConvLSTM
model has the largest average MSE and the highest predic-
tion error when the number of training samples changes.
These phenomena also verify the experimental results in
Figures 14 and 15.
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FIGURE 17. Comparison of the impact of training sample size on RMSE.

4) PERFORMANCE ANALYSIS OF RMSE

Figures 17 and 18 show the RMSE performance comparison
results for the fuzzy-macro LSTM model and the five other
time-series forecasting models. Figure 17 shows the analysis
results of the impact of the number of training samples on
the RMSE of various models. Given that the calculation of
RMSE is the root of MSE, similar to the experimental results
in Figure 14, fuzzy-macro LSTM has an average RMSE value
of 0.703 and the smallest prediction error. The average RMSE
of the ConvLSTM model is 1.041, and its prediction error is
the largest.

Figure 18 presents the analysis results of the impact of
the number of training epochs on the RMSE performance
of various models. As the number of epochs changes, the
RMSE of fuzzy-macro LSTM is relatively stable and has the
lowest value. The RMSE changes of CNN and MLP models
are similar to the changes in their MAE and MSE. When
the number of training epochs reaches 500, the RMSE of the
CNN model has the largest value, which is 1.118, whereas
the RMSE of the fuzzy-macro LSTM model is only 0.744.
Compared with the CNN model, the fuzzy-macro LSTM
model reduces the prediction error of RMSE by 33.45%.

Figure 19 compares the overall impact of the number of
training samples and epochs on the RMSE of all models.
The experimental results show that compared with the five
other time-series forecasting models, the fuzzy-macro LSTM
model can maintain the smallest prediction error when the
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FIGURE 20. Comparison of training loss on predicting macro risk level.

numbers of training samples and epochs change, and its
overall performance is the best. When the number of training
epochs changes for CNN and MLP models, their average
prediction errors increase. The ConvLSTM model has the
largest average RMSE and the highest prediction error with
the change in training samples. These observations verify the
experimental results in Figures 17 and 18.

To show a more complete analysis result, this research
refers to the experimental analysis method of [26] and ana-
lyzes the predicted performance in depth from the perspec-
tive of overall performance analysis. Table 4 presents the
overall performance comparison of predicting various driving
behaviors with different methods. The experimental results
in Table 4 indicate that the fuzzy-macro LSTM model has
the best prediction accuracy when predicting various driving
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TABLE 4. Overall comparison of performance for predicting various driving behaviors.

Fast Acceleration Hard Braking Average Speed Macro Risk Level
Method Training Time Training Time Training Time Training Time
MAE |RMSE| MSE . MAE |RMSE| MSE . MAE|RMSE| MSE . MAE|RMSE|MSE .

(hrs:mins:sec) (hrs:mins:sec) (hrs:mins:sec) (hrs:mins:sec)
MLP 5.397(6.655 |44.225 0:57:37  |4.583[5.735 [32.876] 0:54:11 5.762[10.597|114.159]  0:55:01 0.701]0.808 [0.656]  0:48:10
CNN 5.468(6.670 |44.629|  3:08:29  |4.506(5.565 |31.061 3:08:42 5.891(10.752(114.979 3:05:48 0.694(0.805 |0.660[  3:11:27
Vanilla LSTM|4.796(5.780 [33.219|  2:22:01 3.888(4.781 |22.919 2:26:31 5.376(10.477(107.981 2:23:06  |0.689(0.770 [0.593 2:01:19
CNN-LSTM |[5.649(6.944 [48.631 3:43:39  [4.522[5.769 [33.026] 3:44:45 6.275[11.385(132.756 3:43:31 0.787(0.976 0.945 3:42:24
ConvLSTM |5.756(7.140 [51.200| 5:26:42  |4.669(5.929 |35.091 5:31:19  |7.032{11.936|140.916 5:27:26  |0.775]0.944 [0.911 5:22:05
f“zfys';“ﬁc"’ 42355451 [31.326| 1:47:07 |3.5154.595 [22.025| 1:51:28  |4.726|9.959 [102.647| 1:45:19 [0.613(0.733 |0.521] 1:23:16
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FIGURE 21. Comparison of validation loss on predicting macro risk level.

behaviors of drivers, including the number of sudden accel-
eration, the number of sudden braking, and the average vehi-
cle speed, compared with other methods. When predicting
the number of sudden accelerations, the fuzzy-macro LSTM
model achieved MAE, RMSE, and MSE of 4.235, 5.451,
and 31.326, respectively. Compared with the ConvLSTM
model, the fuzzy-macro LSTM model improved the perfor-
mance of predicting sudden acceleration by an average of
29.68%. When predicting the number of sudden braking, the
fuzzy-macro LSTM model achieved MAE, RMSE, and MSE
of 3.515, 4.595, and 22.025, respectively. Compared with
the ConvLSTM model, the fuzzy model improved the pre-
dicted sudden braking performance by up to 37.23% (MSE).
When the average speed of the driver was predicted, the
MAE, RMSE, and MSE of the fuzzy-macro LSTM model
were 7.032, 11.936, and 140.916, respectively. Compared
with the ConvLSTM model, the fuzzy model improved the
performance of predicting the average speed by up to 32.79%
(MAE). The fuzzy-macro LSTM model performed best in
predicting various specific driving behaviors. Therefore, it is
also expected to perform best in predicting the overall macro
risk level. The MAE, RMSE, and MSE of the fuzzy-macro
LSTM model were 0.613, 0.733, and 0.521, respectively.
Compared with the CNN-LSTM model, the fuzzy model
improved the performance of predicting the macroscopic risk
level of drivers’ dangerous driving by up to 44.87% (MSE).
With regard to the training time of the model, because the
structure of the neural network of MLP is not as complicated
as that of the other models, the MLP has the shortest training
time, but its prediction accuracy is not good. ConvLSTM has
the longest training time due to its complex network archi-
tecture and learning mechanism. The proposed fuzzy-macro

VOLUME 10, 2022

LSTM model has a shorter training time, saving an average of
68.91% of the training time compared with the ConvLSTM
network, and it can improve the overall prediction accuracy
by an average of 30.1%.

Training learning curve gives an idea of how well the
model is learning, and validation learning curve gives an idea
of how well the model is generalizing. Figures 20 and 21
show the training and validation loss curves, respectively, for
all models when they are trained to predict the macroscopic
risk levels of drivers. The x-axis of Figures 20 and 21 is the
number of epochs during the training. The vertical axis of
Figure 20 is the training loss value, and that of Figure 21 is the
validation loss value. From Figures 20 and 21, we observe that
the fuzzy-macro LSTM model and other models, except for
the CNN-LSTM and ConvLSTM models, can show a conver-
gence trend as the number of training epochs increases. The
CNN-LSTM model and the ConvLSTM model suffer from
overfitting as the number of epochs increases. Compared
with other models, the training loss curve and validation loss
curve of the fuzzy-macro LSTM model have the most stable
changes. The fuzzy-macro LSTM model is identified as a
well-fitting predictive model by the training and validation
losses as the gap between the stable points of the training and
validation loss values is kept to a minimum.

5) PERFORMANCE ANALYSIS OF MULTISTEP PREDICTIONS
To verify the functional effectiveness of the fuzzy-macro
LSTM model we designed for predicting drivers’ future dan-
gerous driving behaviors, we conduct experiments to predict
three driving behaviors and compare the predicted results
with actual driving behaviors. Figures 22 to 24 present the
experimental results. Figure 22 shows a comparison of our
predicted average vehicle speed of test driver no. 2 for the
next 10 days and the average vehicle speed while driving.
Figure 23 depicts a comparison of the number of sudden brak-
ing that we predicted for test driver no. 2 in the next 20 days
and the actual values while driving. Figure 24 demonstrates
a comparison between the number of sudden accelerations
that we predicted for test driver no. 2 in the next 30 days
and the real sudden accelerations during driving. The results
of the three experiments show that the driving behavior pre-
dicted by the fuzzy-macro LSTM model is considerably close
to the real driving behavior. Therefore, fuzzy-macro LSTM
can accurately predict a driver’s future dangerous driving
behavior.
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IV. BACKGROUND AND RELATED WORKS

Detecting and analyzing driving behavior have long
been an important research topic and an active research
field [27]-[29]. The methodology for driving behavior anal-
ysis and detection in the existing literature is mainly divided
into two types: real-time and non-real-time driving behavior
analysis and detection. The analyzed and detected driving
behavior mainly includes fatigued driving, distracted driving,
dangerous driving, and drunk driving [30]. Table 5 presents
an overview of driving behavior detection and analysis
approaches.

Many studies [8], [31]-[33] required the use of special
devices, such as cameras, and biological signal sensing. Cer-
tain dangerous driving behaviors (such as distracted driving
and fatigued driving) can be detected by special algorithms.
Some studies [8], [33] used drivers’ smartphones as sensing
devices. Various algorithms and models have been designed
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TABLE 5. Overview of driving behavior detection and analysis

approaches.
Driving Data Collection
Approaches Behaviors Types Devices
Computer fatigued
Visiog and driving [%:1], [32], real-time dashboard-
. mounted camera,
Image dangerous non-real-time h
Processing driving [8], [33] smartphone
Kalman fatlgugd dnvmg 1341, real-time, camera,
Filter driviilngg;(]),u[; 5] non-real-time OBD-II adaptor
dangerous lane
Hidden change [36], real-time data simulator,
Markov fatigued driving [11], non-real- tir’ne wearable sensor,
Model dangerous GPS tracker
corner driving [37]
GPS tracker,
speed sensor,
eye camera,
lane camera,
accelerometer
sensor,
alcohol sensor,
video camera,
drunk driving [12], 3D acceleration
Statistical reckless driving [12], sensor,
Probability | fatigued driving [12], | non-real-time speech and
Model dangerous noise sensor,
driving [13] heart rate sensor,
laser scanner,
pedal pressure
senor,
steering angle
sensor,
skin
conductance
sensor
dangerous
Fuzzy driving [38], real-time,
Logics distracted non-real-time smartphone
driving [39]
Neuro-Fuzzy fatiguec.l driving [40], ) srnartphone,
Network d}s'tracted non-real-time steering
driving [41] angle sensor
Deep fatigued driving [6], digital video
Learning distracted non-real-time recording camera,
Model driving [8], [42] dash camera,
’ OBD-II adaptor

to analyze data sensed by the built-in camera and sensor on a
driver’s smartphone. Dangerous behaviors, such as distracted
driving and drowsy driving, may be detected and identified.
However, the placement of drivers’ smartphones in vehicles
has a dramatic impact on the accuracy of collected data,
which can severely affect the accuracy of detecting and ana-
lyzing driving behavior.

Research [7], [34], [35] detected driving behavior on the
basis of the Kalman filter. Ktusek et al. [7] trained an LSTM
network model to predict driving-related signals, such as
vehicle speed or acceleration. Before training the model,
they used the Kalman filter to preprocess collected data to
eliminate uncertain noise and achieve a well-trained linear
evaluation model. Hwang et al. [35] designed an analysis
method based on driving behavior data collected using OBD.
They applied the Kalman filter to organize and clean the
data to reduce the abnormal data of the samples. The authors
trained a random forest machine learning model to classify
drivers for dangerous driving, which can distinguish three
kinds of dangerous driving behaviors.
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A hidden Markov model (HMM) is a well-known sta-
tistical model that describes unknown hidden parameters.
It is widely used in speech recognition, bioinformatics, time-
series analysis, and driving behavior analysis. In [11], various
wearable sensors were affixed to a driver to collect signals,
such as electroencephalogram, electromyography, and respi-
ratory signal data, and an HMM was designed to monitor
the fatigued driving degree of drivers dynamically. In [36],
an HMM-based method was proposed to detect three driv-
ing behaviors: emergency lane change, normal lane change,
and lane maintenance. This article used simulation to verify
whether the designed method can effectively identify the
three driving behaviors during changing lanes. Yao et al. [37]
installed GPS trackers on some experimenters’ vehicles to
collect driving behavior data and chose vehicle speed, accel-
eration, yaw rate, and sideslip angle in the experimental data
as clustering indicators. The clustering results were sent to an
HMM to detect the behavioral characteristics of drivers when
they were turning the vehicles.

Some studies analyzed various collected sensor data on the
basis of probability statistical models. Al-Sultan et al. [12]
designed a five-layer perception system architecture to collect
and analyze data, such as vehicle speed, alcohol sensor data,
lane sensor data, gravity acceleration sensor data, and GPS
sensor data. They also designed a probabilistic model based
on dynamic Bayesian networks. The model can infer four
driving behaviors by combining contextual data related to
the driver, vehicle, and driving environment; these behav-
iors are normal driving, drunk driving, reckless driving, and
fatigued driving. Miyajima and Takeda [13] installed up to
10 sensing devices on a vehicle, including heartbeat sensors,
skin conductance sensors, pedal sensors, and video recorders,
to collect various sensing data and designed a Gaussian mix-
ture model that detects the driver’s driving behaviors. Their
model can infer drivers’ dangerous driving behavior through
analyzing various driving behaviors, such as pedal operation,
car-following, and lane changing.

Driving behavior detection based on fuzzy theory is also
one of the main research methods. The SenseFleet plat-
form was designed in [38] to collect and analyze a driver’s
smartphone data. The core of the platform is a fuzzy logic
calculation system that can calculate the safe driving scores
of different drivers. Nonetheless, the SenseFleet platform is
mainly used to analyze a driver’s past dangerous driving
behavior. It cannot assess the driver’s comprehensive dan-
gerous behavior level nor can it predict the driver’s possible
future dangerous driving behavior and degree of danger.
Aksjonov et al. [39] designed system architecture and meth-
ods to analyze and evaluate drivers’ driving attention. A fuzzy
logic algorithm was designed to evaluate the performance
of a driver in remaining in their lane and the vehicle speed
when driving the car in specific road sections to analyze the
driver’s degree of distracted driving. Some research also used
neuro-fuzzy systems to judge driving behavior. Eftekhari
and Ghatee [40] proposed a neuro-fuzzy system that col-
lects the acceleration sensor data from a driver’s smartphone
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to analyze the driver’s driving behavior of changing lanes,
turning, and turning around. They designed fuzzy calcu-
lation logic to evaluate whether the driver is performing
safe driving or reckless driving. However, the placement
of the mobile phone may affect the accuracy of inference.
Arefnezhad et al. [41] designed a driver’s drowsiness detec-
tion system based on the driver’s steering wheel data. The
system is a self-adjusting neuro-fuzzy inference system that
contains a feature data selector to select the features that are
most relevant to the level of drowsiness and to detect whether
the driver is sleepy or awake.

With the rise of big data and machine learning technology,
some studies [6], [8], [42] have utilized deep learning to solve
the problem of how to detect and analyze driving behavior.
In [6], Shahverdy et al. designed a method to detect and clas-
sify driving behavior by using a CNN. They collected driving
behavior data, including vehicle speed, acceleration, gravita-
tional acceleration, vehicle speed, and rotational speed. The
data were then processed as the input of the CNN to train
the CNN model, such that the model can automatically judge
the driving behavior of drivers. The authors stated that their
method can effectively distinguish five driving behaviors,
namely, normal, aggressive, distracted, drowsy, and drunk
driving. However, this study did not discuss how the future
driving behavior of drivers can be predicted. Huang et al.
designed a hybrid CNN framework to analyze and clas-
sify photos of various driving behaviors [8]. This research
integrated ResNet50, Inception V3, and Xception models to
design a cooperative pretrained model and then reconnected
and sent the output of the pretrained model to a full-link CNN
for training. The trained model can classify driving behavior
photos and distinguish nine types of distracted driving behav-
iors. This study mainly aimed to train a complex variant of
CNN to identify various driving behavior images.

Existing research methods mainly use various sensing
devices and algorithms to classify driving behavior. Research
has focused on analyzing single or multiple driving behaviors
that have occurred. Few studies have assessed the overall risk
of driving behavior and predicted future driving behavior.
The difference between this research and related work is that
we use fuzzy theory to analyze dangerous driving behavior
comprehensively and evaluate the degree of danger of all
drivers from a macro perspective. In addition, we propose a
novel time-series forecasting deep learning model to predict
dangerous driving behaviors. The proposed method can be
provided to industries, such as fleet management and car
insurance companies, as a reference for risk reduction and
accident prevention.

V. CONCLUSION AND FUTURE WORKS

This paper proposes a method to analyze and predict dan-
gerous driving behavior on IoV from a macro perspective.
We summarize important research methods in the field of
driving behavior detection and analysis, and we discuss the
main characteristics of various methods. Although many
driving behavior analysis systems and methods have been
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designed with the development of technology, objective and
cost-effective driving behavior analysis and prediction solu-
tions for the public drivers of ordinary vehicles are still
lacking. This research aims to address this issue.

We adopt three important macro driving behaviors,
namely, the number of sudden braking per 100 km, the
number of sudden acceleration per 100 km, and the average
speed per 100 km, as the reference factors for designing
a fuzzy inference macroscopic dangerous driving behavior
degree system. System users can flexibly adjust the refer-
ence factors and choose their preferred dangerous driving
behaviors, such as the number of instances of speeding,
the number of instances of drunk driving, the number of
sharp turns, and the length of driving time. With the var-
ied and complicated driving behavior patterns of drivers in
different regions and age—gender groups, users can select
the most appropriate macro risk driving behavior factors
in accordance with a specific gender or age group. They
can then use the fuzzy inference system of this research to
evaluate the risk level of dangerous driving behavior for all
drivers.

We also design a fuzzy-macro LSTM model, which is
based on an RNN to strengthen the memory on drivers’
driving habits and the degree of dangerous driving behavior,
learn driving behavior patterns, and predict dangerous driving
behaviors. The experimental results verify that the proposed
method can achieve a macroscopic analysis of the degree of
dangerous driving of all drivers. In addition, compared with
five other neural network models for time-series prediction,
the fuzzy-macro LSTM model has the smallest prediction
error.

Auto property insurance companies or fleet management
users could analyze high-risk drivers promptly by using the
systems and models designed in this research. The data anal-
ysis and prediction results could be used as a reference for
improving other applications, such as driving behavior moni-
toring and alert, accident prevention, and damage prevention.
Given the diverse and complex driving behaviors, determin-
ing how to apply our proposed method to detect more com-
plex driving behaviors is one of our future works. Recently,
attention and transformer-based models have shown great
power in unified modeling, with the transformer model
achieving excellent results on many prediction tasks in nat-
ural language processing. The application of transformer to
time-series forecasting problems has also attracted the inter-
est of many researchers [43]. In the future, we will also study
how the attention and transformer-based model can be used
to predict various dangerous driving behaviors on the IoV
from the level of adding position encoding and optimizing
the attention module. Another future subject for in-depth
research is how our designed fuzzy inference macroscopic
dangerous driving degree system can be optimized. The con-
cepts of macro analysis and prediction of driving behavior
proposed in this research will also be implemented on IoV
service providers and IoV platforms to complete proof of
service.
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