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ABSTRACT Small polyp region detection in wireless capsule endoscopy (WCE) images is a challenging
task in computer vision owing to twomajor problems: its variation in terms of shape, texture, and size, and the
low illumination in the gastrointestinal tract. This study proposes a multiscale pyramidal fusion single-shot
multibox detector network (MP-FSSD) to detect small polyp regions inWCE or colonoscopy frames, or both,
with respect to the precision-vs-speed trade-off as the base architecture. We investigated deep transfer
learning by transferring knowledge to polyp images, thereby enabling the extraction of highly representative
features and contextual information from the FSSD. First, an edge-pooling layer was embedded in the
shallow part of the network. Subsequently, the featuremaps from different layers and scales were transformed
to match their sizes. A concatenation module was introduced to integrate the feature maps from different
layers, which were delivered to the next layer, followed by downsampling blocks to generate new pyramidal
layers. Finally, the feature maps were fed to the multibox detectors to predict the final detection results.
Experimentally, we maintained the same hyperparameters for both datasets for a fair comparison. The
proposed MP-FSSD network exceeded FSSD by 3.62% in terms of mean average precision (mAP). The
testing speed of 62.5 FPS is superior to that of the competitor detection methods. The proposal demonstrates
that deep learning has much room for development in the field of gastrointestinal image detection.

INDEX TERMS Deep transfer learning, edge pooling, feature maps fusion, image augmentation, polyp,
single-shot multibox detector (SSD), wireless capsule endoscopy images (WCE).

I. INTRODUCTION
Based on recent statistical data, gastrointestinal cancers are
the leading cause of death worldwide [1]. Unfortunately,
it is estimated that the number of patients affected by this
disease has increased considerably in recent years [2], [3].
Adenomatous polyps are one of the most common types of
colorectal cancer that occur due to growth of glandular tissue
in the colonic mucosa. To detect polyp regions in their early
stages and remove them before they become malignant in
advance, doctors need to visualize the GI tract directly [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

Wireless capsule endoscopy (WCE) has become an active
research area as an advanced tool for visualization of the
gastrointestinal tract [5]–[7]. In contrast to traditional endo-
scopes, this non-invasive technique enables physicians to
explore the GI tract with full visualization from the inside,
without pain or sedation. In fact, WCE produces an approx-
imation of 55,000 images per patient [8], [9]. However, only
approximately 5% of the frames contained lesions. The large
amount of data makes the detection process a tedious task
for physicians to manually locate the polyp regions in each
WCE frame. Automating the detection of frames containing
specific lesions in WCE videos would relieve gastroenterolo-
gists of the arduous task of reviewing the entire video before
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making a diagnosis. Accurate detection of polyp regions
is more difficult owing to their complicated characteristics
(shape, texture, size, and morphology). Thus, small polyp
regions could not be detected by the naked eye. To reach a
precise detection process, specialists should meet and com-
monly agree on the ground truth of the polyp frame. The
proposed solution aims to provide an automated computer
detection system that has some knowledge of the specialists
at hand without requiring their physical presence. There-
fore, clinicians can make the right decision by decreasing
human error [9], [10]. In recent years, deep learning (DL)
has received a tremendous amount of attention in the field
of medical image analysis owing to its superior perfor-
mance in image classification when compared to deep neural
networks [11]. A systematic review recently published in
2019 proved that deep-learning-based models match those
of healthcare professionals [12]. Currently, deep learning
applications have focused on polyp abnormality detection
or classification on colonoscopy (not capsule endoscopic
images), or both [13]–[15].

Region-based object detection is one of the primary
focuses of computer vision. Many detectors based on Con-
vNets have been proposed to address the trade-off between
accuracy and speed in object detection [16]–[18]. Scale vari-
ations remain a critical challenge for all the detectors. Sev-
eral attempts have been made to solve the multiscale object
detection problem. Some of these studies have proposed
applying a ConvNet to different image scales to generate new
scale feature maps that are unreliable. Other object detec-
tion methods such as Faster R-CNN [19] and RFCN [20]
used a fixed receptive field size by selecting only one scale
feature map and creating anchors with different scales for
multi-scale object detection, which is an inefficient way to
detect small polyp regions in a fast way. As an intuitive
solution, the FPN [21] and DSSD [22] architectures have
been proposed to fuse features layer by layer. However, this
concatenation procedure sacrifices a significant amount of
speed. Recent methods adopt the single-shot multibox detec-
tor (SSD [23]) as a baseline in their way, owing to its improve-
ment in speed. However, precision vs. speed is still the core
trade-off of small-object detection. Furthermore, the contra-
diction between object recognition and location remains a
challenge for object detectors based on ConvNets. Although
feature maps can represent more semantic information with
translation invariance using deeper ConvNet, the core process
is beneficial to object recognition but detrimental to object
location. In fact, the location information will not be signifi-
cantly lost either in the shallow or deeper layers using the fast
SSD detector for small or large polyp regions, respectively.
However, feature maps of small polyp regions generated by
shallow layers lack sufficient semantic information, which
may result in performance degradation overtime.

This paper proposes a multiscale pyramidal fusion
single-shot multibox detector network (MP-FSSD) to tackle
the problems of scale variations and the lack of contex-
tual information for small polyp detection in WCE frames.

To achieve this, the proposed method embeds edge pool-
ing into the shallow part of the network. Then, it adds
a lightweight feature fusion module to the standard SSD
(VGG16 as the backbone) with respect to the precision-vs-
speed trade-off as the base architecture. Two feature fusion
frameworks, concatenation module and element-sum mod-
ule, are used, in which features from different layers and
scales are projected and concatenated together, followed by
a batch normalization layer [24] to normalize the feature
values. Finally, down-sampling blocks are applied to generate
a new feature pyramid that is fed to the multibox detectors to
produce the final detection results. To prove the efficiency
of the proposed architecture, the MP-FSSD was evaluated
on WCE or colonoscopy polyp datasets, or both. The exper-
imental results indicate that the MP-FSSD model obtains a
higher mAP on WCE and colonoscopy polyp datasets than
the conventional SSD with a gain of 16.2 and 3.62 points,
respectively, especially for small polyp regions with a slight
speed drop. Furthermore, the MP-FSSD achieved encourag-
ing results compared to state-of-the-art object detectors based
on the VGG network in terms of speed and performance.

The remainder of this paper is organized as follows.
Section II describes related studies. Section III describes the
proposed MP-FSSD model in detail. Section IV reports the
experimental results and compares them with those of other
models. The conclusions are presented in Section V.

II. STATE OF THE ART
Many attempts have been made to address polyp detection
tasks. The last few years have seen considerable growth
in the investigation of handcrafted features to characterize
images that capture attributes of color, texture, shape, and
contrast only for WCE polyp classification purposes [5].
Li et al. [25] first used a combination of wavelets and
uniform LBP along with an SVM as a classifier in [25].
They subsequently improved the traditional SIFT by combin-
ing different textural features [26]. In a previous study [5],
the T-CWT-based method combined with gamma parame-
ters was proposed to discriminate polyp regions from aug-
mented WCE datasets. The authors of [27] proposed a
framework-based pyramid histogram of oriented gradient
(PHOG), in which the local polyp shape features are extracted
using PHOG, and the local texture features are extracted
using FWLBP. Subsequently, different performances met-
rics are used to evaluate the proposed approach. Owing to
an unclear understanding of biological mechanisms, hand-
crafted features only encode part of the frames and neglect
the intrinsic information of the WCE images. Therefore,
handcrafted features are unsuitable for polyp WCE images.
To overcome this shortcoming, several attempts have been
made at colonoscopy polyp abnormality classification using
existing deep learning frameworks, such as VGGNet [28],
GoogleNet [29] and ResNet [30]. Retraining architectures
from scratch in the context of colonoscopies leads to rea-
sonable but insufficient results owing to the limited size of
medical datasets. Therefore, the use of pre-trained models
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with proper fine-tuned configurations leads to very good
results in many fields, especially in medical applications [31].
Generally, transfer learning schemes are used to overcome
insufficient training samples. Even if the pre-trained model
categories are quite different compared to the medical imag-
ing, it has been shown that they can be used in the context
of colonoscopy/endoscopy polyp recognition tasks [32], [33].
This is the main motivation for involving transfer learning
techniques for wireless capsule endoscopy polyp detection
tasks.

To be more accurate, polyp classification as normal or
abnormal is beyond the scope of the current systematic report.
Some of the published works only performed polyp detec-
tion without localization, meaning that they reported systems
aimed at predicting whether there are one (or more) polyps
in a given video frame, but without indicating the exact
location of the polyp. Our main interest in this review is
to locate polyps in WCE frames, showing their positions
with a square bounding box, whereas the classification is
performed once the presence of polyp abnormality is con-
firmed. Therefore, state-of-the-art methods for the detection,
localization, and segmentation of WCE polyps based on deep
learning approaches are compared, showing their advantages
and disadvantages in identifying the most auspicious trends.
Pre-existing domain-specific object detection methods based
on deep learning usually can be divided into two categories,
the first one is two-stage algorithms based on region proposal
such as Faster R-CNN [34]. The other is a one-stage algo-
rithm based on regression, such as YOLO [35] and SSD [36].
In two-stage detectors, region proposals are extracted from
the input images using the region-selection algorithm. They
are then classified and position-adjusted to output the target
detection results. Although this type of algorithm has a high
localization and object recognition accuracy, its detection
speed is slow,making it difficult tomeet the real-time require-
ments of polyp detection. In contrast, the one-stage algo-
rithms propose predicted boxes from the input images directly
without the region proposal step. Therefore, it achieved a
high inference speed. Tian et al. [37] proposed a single-stage
detection and classification approach for five classes of polyp
abnormalities. The model is trained in a single process, mak-
ing the training and reasoning process simple and faster.
Tajbakhsh et al. [38] proposed a polyp-detection algorithm
based on three independent methods of image representa-
tion and convolution neural network. Polyp localization is
achieved by incorporating various characteristics at multiple
scales, such as shape, texture, color, and temporal infor-
mation. Wang et al. [39] proposed an algorithm based on a
context enhancement module and cosine ground-truth pro-
jection for an accurate polyp detection process. The authors
of [40] proposed an algorithm for polyp segmentation from
endoscopic images in which they used principal component
tracking (PCP) to remove the specular region in the image.
Thus, they activated the contour (AC) model to locate the
polyp region in each frame. An improved mask R-CNN
framework was presented in [41]. The authors used different

CNN architectures for the feature extraction backbone net-
work. Subsequently, an integrated method is proposed for
polyp detection and segmentation. Zheng et al. [42] utilized
optical flow and online training to propose a two stages CNN
polyp detection algorithm. As a primary step, they used a
U-Net network to detect and locate polyps for single-frame
target detection. Then, a motion regression model and an
effective online training CNN model were established using
temporal information and optical flow to track polyps.
Ruikai et al. [43] presented a regression-based convolutional
neural network (CNN) architecture, in which a fast object
detection algorithm named ResYOLO was pre-trained and
fine-tuned to properly extract the spatial features of intestinal
polyps. Subsequently, they optimized the detection results
of the ResYOLO output based on temporal information
through an efficient convolution operator tracker. The authors
of [34] proposed a self-attention-based faster R-CNN archi-
tecture for detecting polyps from colonoscopy images. They
highlighted polyp saliency regions by performing a con-
trast enhancement. Then, they integrated the self-attention
module over the feature extraction network and adopted a
two-stage detection strategy with the pre-generation of region
proposals and the post-recognition of polyps to improve
the accuracy. Liu et al. [44] investigated a single-shot detec-
tor (SSD) framework for detecting polyps in colonoscopy
videos. ResNet50 and VGG16 models were used as feature
extraction backbone networks to evaluate their performance.
TASHK et al. [45] proposed a polyp detection method in
which an improved version of the CNN algorithm was used
to locate polyps in an image. They then used DRLSE to
automatically segment local polyps. Misawa et al. [46] pre-
sented a polyp detection system based on YOLOv3. It was
trained on 56,668 training images collected from five medi-
cal centers and achieved real-time detection with over 90%
sensitivity and specificity. A polyp segmentation method
for colonoscopy images based on the convolutional neural
network was presented by Bagheri et al. [47], in which they
used the LinkNet network to improve the quality of polyp
segmentation. This method uses R and G channels from the
RGB and b* channels from the CIE-L*a*b* color space as
the input of the network in the design process. Jia et al. [48]
proposed a two-stage framework based on deep learning for
automatic polyp recognition in colonoscopic images.

To address the problems of the SSD algorithm for small
polyp detection, many studies have adopted the improve-
ment indicated by the deconvolutional SSD (DSSD) [22].
Zhang et al. [49] proposed an enhanced SSD architecture
called SSD-GPNet for detecting gastric polyps. Pooling
methods were applied to the feature pyramid network to
reuse the lost useful information caused by the max-pooling
layers. The model takes advantage of the multiresolution
features extracted in the feature pyramid architecture by inte-
grating the feature map with the deconvolution of high-level
feature maps. Although some attempts have been made to
simplify the DSSD architecture and improve the accuracy of
small polyp region detection, the addition of deconvolution
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FIGURE 1. Flowchart of the proposed MP-FSSD method for small polyp detection in WCE images.

layers leads to excessive computational complexity. In gen-
eral, DSSD succeeded in raising the accuracy at the expense
of speed. Within the same scope, Jeong et al. [50] proposed
an enhanced version of the SSD model in which they fused
feature maps with simple concatenation and deconvolution,
making full use of the direction information of the feature
maps. These improvements make the Rainbow SSD suitable
for small-target detection. Sheping et al. [51] proposed an
improved SSD object detection algorithm based on a dense
convolutional network (DenseNet), feature fusion, and resid-
ual prediction module. The original backbone (VGG-16) of
the SSD network was replaced with DenseNet-S-32-1 to
enhance the feature-extraction ability of the model. Then,
a fusion mechanism of multiscale feature layers is per-
formed to enhance the relationships between the levels in
the feature pyramid. Finally, a residual block is established
before object prediction to further improve the model per-
formance. Remarkably, combining low-level visual and high-
level semantic features in the SSD network structure to fully
utilize the synthetic information leads to an improvement in
performance, which is why it is highly desirable for small
polyp detection in WCE images.

III. MATERIALS AND METHODS
Polyp abnormalities possess different sharp edges, percep-
tible patterns, and geometries, making them difficult for
experts to detect. The architecture of the proposed MP-FSSD
system for polyp detection using WCE images is described
in detail in this section. We aim to improve the precision

of the SSD model and develop an optimization method for
the detection results without sacrificing speed. This pro-
posal fully utilizes the relationship between the layers in
the feature pyramid without changing the base network. The
main structure of the proposed approach is shown in Fig. 1.
A data preparation stage is conducted as a pre-processing
step, in which the region of interest (ROI) patches are
extracted to remove the surrounding black regions in WCE
images, providing no useful information. The training phase
includes the following two stages: (1) Applying data aug-
mentation process using commonly known geometric meth-
ods to solve the data insufficiency problem and to handle
over-fitting in deep learning models; (2) The lightweight fea-
ture fusion module based single shot detector is pre-trained
on the PASCAL VOC [52] and COCO datasets [53] and
fine-tuned on the WCE/colonoscopy polyp datasets. The
input WCE/colonoscopy image is then fed into a multi-scale
pyramidal fusion single-shot multibox detector network (MP-
FSSD), which consists of a one-stage feature extraction and
classification sub-network for small polyp detection.

A. SSD ALGORITHM
The Single shot multibox detector (SSD) is based on a
forward propagation CNN network (VGG16) and truncated
with other convolutional layers at the end [23]. The SSD
investigates the pyramidal feature hierarchy inmultiple layers
within a ConvNet to generate a series of fixed-size bounding
boxes and scores. Subsequently, it performs non-maximum
suppression to obtain the final predictions. As depicted in
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FIGURE 2. Framework of the traditional SSD.

Fig.2, the entire SSD network structure is divided into back-
bone and pyramid networks. The first part is represented by
four layers of the VGG-16, and the second part is a simple
convNet that is applied to the Conv4_3 layer of VGG to gen-
erate five additional layers. In fact, shallower layers are used
to predict smaller objects, whereas deeper layers are used to
predict larger objects at different scales. This assumption can
be effective in accelerating the training process and reducing
the prediction burden of the entire model. However, semantic
information is regularlymissed in the shallower layers despite
being more important for small object detection purposes.
Therefore, exploiting the semantic information lacking in
shallow layers will improve the detection performance of
small objects.

B. MULTI-SCALE FEATURE MAPS PREDICTION
Recently, many detectors based on ConvNets have been pre-
sented to deal with the trade-off between accuracy and speed
in object detection tasks [13], [51], [54]–[56]. However, scale
variations remain a fundamental challenge in the field of
computer vision. As depicted in Fig.3, several approaches
have been proposed to solve the multiscale object detection
problem. In Fig. 3(a), a single-scale feature map is used to
create anchors of different scales to detect multiscale objects.
This method has been adopted by some two-stage detectors,
such as Faster R-CNN [34] and R-FCN [17]. However, the
fixed receptive field size has difficulty detecting objects that
are too large or small as well as multi-scale objects. Fig. 3(b)
applies a ConvNet to the input multiscale images to generate
different scale feature maps; however, such a design is incom-
plete in the sense of multiscale object detection. In Fig. 3(c),
bottom-up and top-down architectures have been proven to
work well in FPN [21] and DSSD [22], but fusing features
layer by layer is not suitable for a fast detection process.
Fig. 3(d) presents a popular architecture adopted by the orig-
inal SSD [23], in which the feature pyramid from bottom to
top is used to make predictions. In Fig. 3(e), the features of
different layers and scales are concatenated from bottom to
top, and the resulting feature map is used to generate a series
of pyramid features later. In the same context, we combine

the advantages of the feature fusion module presented in
the FSSD method [18] by adopting the structure shown in
Fig. 3(e) to tackle the problem of scale variations for detecting
small polyp regions more effectively. Detailed information
on the proposed MP-FSSD architecture is presented in the
following sections.

C. EDGE MAP GENERATION
Holistically nested edge detection (HED) [57], [58] has
recently been used by state-of-the-art owing to its excel-
lent performance and computational efficiency. To extract
the polyp edges in WCE/colonoscopy images, we adopted
the HEDmethod, which performs image-to-image prediction
using a deep learning model that deeply supervises nets. The
main process of the edge extraction network is illustrated in
Fig.4. As the backbone, HED is based on the VGG network
which consists of 16 neural network layers. The HED archi-
tecture comprises a single-stream deep network with multiple
side outputs, in which the side responses are generated for
the individual layers. The HED network architecture has five
stages, with strides 1, 2, 4, 8 and 16, respectively, and different
receptive field sizes resulted in five layers that were selected
as the side-outputs and fused by an average pooling layer.
De-convolutional layers are adopted to perform the average
fusion operation by resizing all side outputs to the same size.
It was then fed into the softmax layer to produce the final
label map. The side-output capability in producing multilevel
edge maps from outlines to details makes edges extraction
in a complex background highly feasible. To prove that the
HED network architecture efficiently generates perceptually
multilevel features and captures the inherent scales of the
edge maps. The WCE/colonoscopy images were fed into
the pre-trained HED model and a feed-forward operation
was performed to produce the side-outputs for the polyp
classification network. The training data are denoted as S =
{(Xn,Yn),n = 1,. . . ,N}, where Xn is the raw input image and
Yn ∈ {0, 1} is the corresponding ground truth binary edge
map for image Xn. Suppose there are K side outputs in the
network, where each side output layer is associated with a
classifier, in which the corresponding weights are denoted
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FIGURE 3. (a) The topmost feature map is utilized to make predictions, which is adopted by Faster R-CNN and R-FCN
(two-stage detectors). (b) Feature maps are generated from the input image pyramids and used independently to make
predictions, which is computationally expensive. (c) Features are fused layer by layer from top to bottom, it is adopted by
FPN. (d) Use the feature pyramid generated from a ConvNet. (e) Features from different layers and scales are concatenated
together first and used to generate pyramidal features similar to FSSD.

as w = w(1), . . .w(D), where all parameters of the standard
network layer are donated as W. The objective function of
the side outputs is defined as:

Lside(W ,w) =
K∑
d=1

αd l
(d)
side(W ,w

(d)) (1)

where the d th loss function for the side-output l(d)side is a class-
balanced cross-entropy loss function:

l(d)side(W ,w(d)) = −β
Y+∑

logPr(yi = 1|X;W ,w(d))

−(1− β)
Y−∑

logPr(yj = 0|X;W ,w(d))

(2)

where β = |Y-|/|Y|and 1 - β = |Y + |/|Y|.|Y − | and
|Y+| denote the edge and non-edge ground-truth label sets,
respectively. Pr(yj = 1|X;W,w(d)) = σa(d)j ∈ [0, 1] was
computed using a sigmoid function σ (.). Edge map from
each side output layer is obtained by Ŷ (d)

side = σ (Â
(d)
side), where

Â(d)side = {a
(d)
j , j =, . . . |Y |} are the activations of the side

output of layer d. To directly utilize the side-output predic-
tions, a ‘‘weighted-fusion’’ layer is added to the network
and simultaneously learns the fusion weight during train-
ing, which is minimized by a standard (backpropagation)
stochastic gradient descent. In the testing phase, the edge
map predictions were produced by the side-output layers and

weighted-fusion layer:

(Ŷfusion, Ŷ
(1)
side, Ŷ

(D)
side) = HED(X , (W ,w, h)) (3)

where X donates the testing image and HED refers to the
HED model.

As depicted in Fig.4. The polyp abnormality edge was
marked in the center-right region of the input WCE image.
The detailed edges in the side outputs are not easily discerned
at a high level (e.g., the 3rd and 4th layers), and the polyp
edge is merged with the background. Otherwise, the side
outputs at low levels (e.g., the 1st and 2nd layers) include
more details, in which the edges of polyp regions can be
well detected. In this proposal, the second side-output layer
is selected to emphasize the feature maps of the MP-FSSD
network for polyp abnormality detection from the WCE
images. Most information on WCE polyp regions incorpo-
rated in the shallow part of the network will be lost after
deeply passing through the network layers. Therefore, the
critical challenge is how to integrate polyp regions into a
deep network. Meanwhile, the low-level side outputs contain
rich detailed edges that are suitable for low-level fusion,
whereas the high-level side outputs are less. To integrate the
polyp regions, an edge pooling layer was embedded in the
shallow part of the MP-FSSD network. Bilinear interpolation
is applied to resize the polyp region map to perform the edge
pooling operation so that the feature maps of the detection
network and polyp region maps have the same spatial dimen-
sions for further processing. On top of the network, after the
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FIGURE 4. The edge exaction network is based on holistically-nested edge
detection (HED), which consists of five side outputs and a fused output.

feature fusion model, newly added layers are used to detect
polyps.

D. LOW-LEVEL EDGE POOLING
Edge pooling was investigated [57] to integrate polyp region
information into the shallow part of the MP-FSSD network.
The same VGG16 (backbone network) was used for both
edge extraction and SSD networks to accelerate the train-
ing process and reduce complexity. The polyp region maps
produced by the 2nd side-output induced from the edge
extraction network and feature maps of the Conv4_3 layer
from the VGG16 network are two inputs of the edge pooling
layer. Owing to the sparse characteristics, the 2nd side-output
edge maps are resized to further match the conv4_3 size
using bilinear interpolation. To produce a single output, the
edge-pooling layer takes small rectangular blocks from the
two emphasis layers and subsamples them. A weighting
schemewas adopted to leverage the feature maps correspond-
ing to polyp regions. Themax pooling process takes themaxi-
mum values of the blocks to obtain the strongest response and
passes them to the next layer. Consequently, the top invariant
features are selected, leading to a faster convergence rate and
improved performance. Therefore, the feature maps corre-
sponding to the polyp regions are enhanced. Output of edge
poolingEpi,j,m for position(i,j) of the k th channel is defined as
follows, from which max pooling takes the maximum value,

Epi,j,m = max
Y
{Im ∗ ((1+ β) ∗ Sk )} (4)

where Im is the feature map, Sk is the k th channel of the polyp
region map, Y is the sliding window, and * is the product of
the corresponding positions of the two matrices. A parameter
β was used to control the weight of the polyp region map,
which was set to 0.3 as in [57].

E. FEATURE MAPS FUSION MODULE
ConvNets prove their capabilities in extracting semantic
information of pyramidal feature hierarchies from low to high
levels. A conventional SSD extracts features from different
layers and considers them at the same level. Subsequently,
it builds detectors directly on them. For small objects, SSD
mainly uses the features of shallow layers to make predic-
tions that lack semantic information. Consequently, the local
detailed features and global semantic features are not well
captured by the traditional SSD architecture design, and they
perform poorly on small objects. Thus, slightly restructuring
the feature maps is a promising strategy for improving the
precision of a ConvNet object detector. As stated previously,
the main purpose of the proposed approach is to improve
the precision and speed of the SSD by fully utilizing the
relationship between the layers in the feature pyramidwithout
changing the basic backbone network.

As depicted in Fig. 5, the feature fusion SSD [18] net-
work adds new layers, Conv6_2, Conv7_2, Conv8_2, and
Conv9_2, for object classification and location regression.
According to the analysis in [18], a feature map with a spatial
size smaller than 10 px × 10 px has little information to
merge. We constructed multiscale feature layers based on the
conventional SSD. To ensure precision and detection speed,
the MP-FSSD network uses its feature fusion module lay-
ers Conv1_Fu, Conv2_Fu, Conv3_Fu, Conv4_Fu, Conv5_Fu,
and Conv6_Fu for small polyp detection. The target sizes of
the resulting feature layers are 38 × 38, 19 × 19, 10 × 10,
5 × 5, 3 × 3, and 1 × 1, which are the same as those
of the original SSD. The two parts of the MP-FSSD are
described in detail below. Therefore, to make full use of
semantic information and textural features, a top-down MP-
FSSD is designed to introduce semantic information into
shallow layers. As shown in Fig. 6, the entire process is as
follows: First, to perform the edge pooling layer, bi-linear
interpolation down-sampling is applied to the 2nd side-output
edge map of the HED to match the Conv4_3 size. The feature
fusion block consists of the regenerated edge pooling layer,
1 × 1 convolution to compress the feature map channels of
the FC7 and Conv6_2 layers, and bi-linear interpolation up-
sampling to resize the feature maps of the FC7 and Conv6_2
layers to the same size as conv4_3. Then, simple concatena-
tion is used to integrate deep features with shallow features.
After the above treatments, the channel of the fused fea-
ture remains unchanged, but a single channel contains richer
semantic information. Subsequent experiments demonstrated
that these steps enrich the semantic information of shallow
features and improve model performance in small polyp
regions. To trade off the precision and speed, MP-FSSD
does not use de-convolution for small objects in the deeper
layers to reduce the decrease in speed and uses the same
VGG16 network as the backbone for both the HED and FSSD
networks. It should be noted that before concatenating the
feature maps, a normalization is inevitable. This is because
the feature values in the layers are significantly different in
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FIGURE 5. A framework of the FSSD network.

FIGURE 6. MP-FSSD network with the feature fusion module and an edge pooling layer.

scale. A batch normalization operation was applied to each
filter before concatenation. As depicted in Fig. 6, the network
structure of the MP-FSSD can be divided into two parts: the
backbone network VGG-16 for polyp edge map generation
and feature extraction, and the feature fusion module for
polyp region detection. The structure of the model is shown
in Fig. 7. The input size of the WCE/colonoscopy images
was 300 × 300. The proposed MP-FSSD network selects
Conv4_3 of VGG-16, and the output edge maps side_2 of the
HED to generate new edge pooling, which is properly fused
with FC7 and Conv6_2 of VGG-16.

IV. EXPERIMENTS
A. DATASETS
The first dataset is a WCE dataset from PillCam
COLON
2 polyps, which consists of 120 pedunculated polyps and
181 normalWCE frames within a single patient VCE session,
as shown in Fig. 8. The original images have a resolution of
256× 256 pixels. By pre-processing, we increased the size of
the training dataset while avoiding overfitting, as described in

this section. As a result, the new dataset included 1250 polyp
patches and 1864 normal patches, respectively. As men-
tioned in this section, we pre-processed the training dataset
to increase its size and avoid overfitting. As a result, there
were 1250 polyp patches and 1864 normal patches in the
revised dataset. To provide ground truths, the bounding boxes
of the polyp patches were manually labeled and annotated as
positive and negative samples. After that, they were reviewed
and corrected by a trained expert. The second database is
CVC-ClinicDB [60]. It consists of images containing various
types of polyps that were extracted from colonoscopy videos.
The dataset was selected from the 25 colonoscopy videos.
The researchers selected 29 sequences that contained at least
one polyp in every frame from the 25 videos. Finally, a set of
frames is selected for each sequence. Moreover, it contains
the ground truth of these polyps, which consists of masks
corresponding to the region covered by the polyp in the frame.
The CVC-ClinicDB dataset comprises 612 polyp images of
size 576 × 768. In addition to the frames, a ground truth
was created by experts by manually defining a mask on the
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FIGURE 7. Detailed structure of the MP-FSSD network.

region covered by the polyp. To assess the impact of image
pre-processing on polyp detection results, the ground truth
bounding box of the colonoscopy dataset was labeled based
on the ground truth for specular highlights provided by the
experts.

In this study, we used the annotated ETIS-Larib [61]
dataset for colonoscopy polyp detection. It comprises
196 polyp images of various sizes and appearances, gener-
ated from 34 colonoscopy videos. At least one polyp was
present in all the 196 images. Ground truths of the polyp
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FIGURE 8. Example of WCE polyp images (a, b, c) and normal images
(d, e, f).

FIGURE 9. Example of colonoscopy polyp images (a, b, c) and normal
images (d, e, f).

regions were annotated by skilled video endoscopists from
the corresponding associated clinical institutions. The CVC-
ClinicDB [62] and ETIS-Larib [63] colonoscopy datasets
were used in the automatic polyp detection sub-challenge
at MICCAI 2015. For a fair performance comparison with
the challenge results, 196 images from the ETIS-LARIB
dataset were used for testing purposes. Figures 8 and 9 show
examples of images, including the endoscopy/colonoscopy
datasets used in this study. The split data set proportions were
70% for training, 10% for validation, and 20% for model
testing. The training and testing process was performed using
5 fold cross validation [64], in which each group’s model
obtained the corresponding correct rate. The resulting rates
were then averaged to estimate the precision of the target
detection algorithm. The validation set refers to checking the
state and convergence of the model after each epoch was
completed. It does not contribute to the gradient descent,
but only adjusts the hyperparameters such as the number of
iterations, and learning rate. The validation set determines
which group of hyperparameters has a good performance
and adopts them according to the five group performances
in the models. It can also be used to monitor whether the
model has been fitted to determine the time when the training
stops. Finally, the generalization ability and performance of
model detection and classification were determined during
the testing process. To reach the input size required by the

source-pre-trained SSD network, it is necessary to re-scale
the normal and abnormal images to 300 × 300 pixels.

B. EVALUATION METRICS
The mean average precision (mAP) is the most commonly
employedmetric for evaluating target detection accuracy. The
mAP is adopted as the criterion of detection precision and
it is defined as the average of the average precision (AP) of
all object categories, which is an indicator related to the IoU
threshold. In our experiments, we used the most commonly
used threshold IoU = 0.5. It is formulated by Eq. 5.

mAP =

∑Q
q=1 AveP(q)

Q
(5)

where Q is the number of queries in the set, and q is the query
for average precision.

Precision and recall can be defined as:

Precision =
TP

TP+ FP
Recall =

TP
TP+ FN

(6)

where TP denotes true positives, that is, IoU > 0.5, FP indi-
cates false positives, and FN indicates false negatives.

Indicatively, given a set of ground truth bounding boxes
annotated by the experts in all frames, and a set of predicted
bounding boxes produced by the network with a confidence
score above a specific threshold. The true positive, false
positive and false negative bounding boxes are defined as
follows:

A true positive (TP) is a bounding box of a polyp region
that is predicted by the network with an IoU > 0.5 with
ground truth bounding boxes.

A false positive (FP) is a predicted bounding box that does
not overlap with any ground truth bounding box or overlaps
with ground truth bounding boxes with IoU < 0.5.

A false negative (FN) is a ground-truth bounding box
that does not overlap with any predicted bounding boxes,
or overlaps with predicted bounding boxes with IoU < 0.5.
The IoU is the ratio of the overlapping area divided by

the area of the union of the ground truth and the predicted
bounding boxes.

FPS refers to the detection speed and indicates the number
of frames transmitted per second. With a high FPS value,
more frames per second occur; therefore, the display effect
is smoother and clearer.

C. EXPERIMENTAL SETUP
1) EXPERIMENTAL ENVIRONMENT
We performed the experiments using the Colab Pro Plus
solution provided by Google, which has a maximum RAM
of 52Gb and a disk of 166,83Gb. All experiments were con-
ducted using TensorFlow 1.15, Tensorflow-GPU 1.15, Cuda
8.0.61-1, CuDNN6.0, Keras 2.0.5, Python 3.5, h5py 2.10.0,
NumPy 1.16.3, and OpenCV 3.1. Based on the small polyp
region size, the same aspect ratio falling within a range of
1-2 according to the ground truth bounding boxes, was main-
tained for both datasets. We applied NMS with a confidence
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threshold of 0.05, Jaccard overlap of 0.4 per class and keep
the top 200 detections per image.

2) NETWORK TRAINING
In the context of this study, the model ability is represented
by providing the location of the polyp within a given image.
We employed the commonly known evaluation metrics in
the field of medical imaging and investigated them with
state-of-the-art to further compare MP-FSSD polyp detector
performances to other models based on SSD networks for
polyp detection targets. The outputs of the proposed model
are the four rectangular coordinates (x, y, w, h) of the detected
bounding box. More useful information from the WCE polyp
image is preserved in the square center region. Therefore,
it is necessary to remove the surrounding black regions that
contain no useful information, as this may degrade the perfor-
mance of WCE polyp detection and increase the computation
time. Training involves choosing a set of data augmentation
strategies [65]. However, this proposal chooses to investigate
some popular augmentation methods used in the recent liter-
ature [66], [67]. In particular, we apply geometric methods
that alter the geometry of the resulting RoI image by map-
ping individual pixel values to new destinations. Given their
success in related works, we investigated flipping, rotation
by 270◦, and cropping schemes. All the images were resized
to 300 × 300 × 3. Training a model on a large-scale object
detection dataset such as COCO, and using it directly to
detect small objects, results in a domain-shift problem. There-
fore, we pretrained model on the PASCAL VOC 2007 and
2012 datasets. Then, we fine-tuned the model on WCE or
colonoscopy datasets, or both, separately using the Adam
optimizer with an initial learning rate of 0.01, beta_1 = 0.9,
beta_2 = 0.999, weight decay 0.00, and epsilon 1e-08. The
learning rate schedule using Keras is 0.001 if epoch < 10,
0.0001 if epoch < 50, and 0.00001 otherwise. The learning
rate decay policy is slightly different from the original SSD
with a drop of 0.5 and epochs_drop of 10. The batch size
used was 32, which is beyond the GPU’s memory capacity.
The MP-FSSD model was used for the training process,
with a total of 100 and 500 steps per epoch. The detection
performance was mainly evaluated using the mean average
precision (mAP). Other indicators, such as frame per sec-
ond (FPS) and parameters, will also help us further evaluate
themodel performance. TheMP-FSSD training objectivewas
to minimize the weighted sum of the smooth L1 loss [68],
[69]. We used the same loss function as that used in the
conventional SSD [23]. The hyper-parameter α was set to
1 by cross-validation and neg_pos_ratio to 3. More details
regarding SSD_Loss can be found in [51].

D. RESULTS AND DISCUSSION
1) ABLATION STUDY ON WCE/COLONOSCOPY DATASETS
In this section, we describe an ablation study on the WCE
or colonoscopy datasets, or both, and analyze some impor-
tant design factors that affect the experimental results of

the main structure of the MP-FSSD detector. The exper-
imental results were divided into two parts, as listed in
Table 1. In the first, training and testing were performed
on the WCE images. In the latter, the models were trained
on the WCE and colonoscopy joint training set and tested
on Clinic-DB test set. An edge pooling layer is embedded
into the shallow part of the detection network to integrate
the polyp edge regions into the MP-FSSD network. A crit-
ical issue is which side_output maps of holistically nested
hed networks can be passed as deep as possible to the top
MP-FSSD network without deteriorating detection perfor-
mance. From Table 1, the two-level side_output maps sur-
passed the other side_outputs {1-3-4-5} and side_outputs-Fu
in terms of (mAP) metrics with a gains of 3.62%, 0.73%,
1.38%, 1.9%, and 0.86%, respectively, on the WCE dataset
and a gain 3.24%, 1.19%, 4.27%, 6.27%, and 1.56%, respec-
tively, for the joint training set WCE/colonoscopy datasets.
The experimental results prove that the side_outputs2 fea-
ture maps contain rich detailed edges that are suitable for
low-level fusion within the edge-pooling layer. To reflect the
effect of the series of actions that we added to the conven-
tional FSSD, the models were run on both the WCE and
colonoscopy datasets with different settings, and their eval-
uations are recorded in Table 2. We maintained the VGG16
backbone structure for all the emphasis MP-FSSD model
settings listed in Table 2.

a: FUSION BLOCK
This consists of applying concatenation or element-wise
summation. Using a simple concatenation to fuse fea-
tures, the model can obtain 88.42% mAP (row 1), whereas
element-wise summation can only achieve 86.73% (row 2).
Concatenation is better than element-wise summation with a
margin of 1.69 points. Therefore, we chose concatenation as
the feature fusion method of the MP-FSSD.

b: BN
Normalizing the feature map values of different layers to
perform feature fusion blocks is another critical issue in
many recent approaches. L2 normalization was used in the
traditional SSDmodel to scale the feature map from conv4_3.
To use a simple and efficient way to scale the feature maps,
we add a batch normalization layer after the concatenation
process. The results in Table 2 (rows 4 and row 5) show that
using the batch normalization layer to re-scale the feature
maps can bring us about 0.79% mAP improvement consid-
ering the WCE dataset, and an improvement of 0.67% mAP
(row 12 and row 13) from the joint training set of WCE and
CVC-ClinicDB datasets.

c: FUSION LAYERS
To perform the pyramid feature fusion block, the range of
layers to be fused is listed in (column 9) of Table 2. We con-
ducted different feature fusion layers and compared their
direct impact on MP-FSSD performance in terms of (mAP)
metrics. While we fused the feature maps (conv3_4, FC7,
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TABLE 1. Results of the ablation study of the MP-FSSD using one side output of the holistically nested hed model. BN means that a batch normalization
layer is added after the feature concatenation. The mAP is measured on the WCE and CVC-ClinicDB test sets.

and conv6_2), the mAP on the WCE test set (row 1) was
88.42% and 85.13% for the colonoscopy test dataset (row 9).
It is interesting if we replace the conv4_3 with an edge
pooling layer, the mAP is increased to 93.4% on the WCE
test set (row 8) and 91.56% on the colonoscopy test dataset
(row 16), which means that the embedded edge pooling into
the feature fusion block has more benefit to the final system
performance.

d: PRE-TRAINED VGG OR SSD
For the training procedure, pre-training a model on a
large-scale object detection dataset, such as COCO, may
help detect small objects directly. However, the domain-shift
problem is inevitable. The results in Table 2 indicate that
after removing the COCO datasets for pretraining purposes,
the module performance was further improved. We used the
VGG16 trained on the PASCAL VOC 2007, PASCAL VOC
2012, and COCO datasets as a pre-trained model. Then,
we fine-tuned the model on the WCE and the joint train-
ing set of WCE/colonoscopy datasets before reconstructing
the MP-FSSD detector. As depicted in Table 2, the model
performances increase from 91.16% mAP to 93.4% mAP
and from 89.62% to 91.56%, which is an improvement of
2.24 points and 1.94 points onWCE or Colonoscopy datasets,
or both if the original VGG network is pre-trained on PAS-
CAL VOC 07+12 rather than taking the original SSD model
trained on PASCAL VOC 07+12+COCO datasets as a pre-
trained model and fine-tuning on polyp datasets.

e: OPTIMIZER
Adaptive algorithms such as Adam have good convergence
speed, whereas algorithms such as SGD generalize better.
As can be seen in Table 2, optimizing the training process
of the model using the Adam optimizer improves the perfor-
mance by 0.86%mAP (92.54% (row 7) vs. 93.4% (row 8)) on
the WCE dataset, and by 1.42% mAP (90.14% (row 15) vs.
91.56% (row 16)) on the CVC-ClinicDB dataset compared
with the traditional SGD algorithm. This proves its efficiency

in reducing the loss of information when deeply passing
through several layers and accelerating the convergence of
the model. The traditional SGD algorithm was no longer
used and the relevant training process of the model was
optimized.

2) SSD RESULTS ON WCE AND CVC-ClinicDB DATASETS
The results of some state-of-the-art detector-based SSDmod-
els and the proposed MP-FSSD model on both the WCE and
CVC-ClinicDB test sets are shown in Table 3. To reflect the
effects of different actions added to conventional SSD. The
SSD models were run as indicated in their original studies,
and their evaluations are presented in Table 3. The (mAP)
of the conventional SSD with VGG16 was 77.2% and 75%
for the WCE andWCE+ colonoscopy datasets, respectively.
After changing the backbone structure, which was replaced
with ResNet-101, the (mAP) is improved to 81.65% and
79.63% on both training sets, respectively. The effectiveness
of the feature fusion method is also shown in the results in
Table 3. By adding feature fusion modules using concatena-
tion with VGGNet as the backbone network, FSSD300 and
FSSD500 were increased in terms of (mAP) by 11.58% and
11.5% compared to SSD300 and SSD500 models on WCE
test set, respectively, because fused feature layers contain
rich details and semantic information. By replacing the back-
bone network VGGNet with DenseNet-S-32-1, DF-SSD300
model improves the detection performance by 2.53% and
2.73% compared with FSS300 (91.24% vs. 89.78%) and
(89.11% vs. 86.38%) on WCE or colonoscopy test sets,
or both, respectively. It also exceeded FSSD500 by 2.53%
and 2.11% mAP (89.11% vs. 88.71%) and (89.11% vs. 87%)
on both test sets, respectively the detection speed decreases
by half. The lightweight feature pyramid L_SSD replaces
the original VGG16 with ResNet-101 to perform feature
fusion, which contains rich detail and semantic information.
The mAP of ResNet-101 was further improved to 89.98%
mAP and 86.63% mAP on WCE or colonoscopy test sets,
or both, slightly better than FSSD300 (89.78% mAP and
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TABLE 2. Results of the ablation study on WCE/colonoscopy datasets. BN means that a batch normalization layer is added after the feature concatenation.
pre-trained VGG means that a pre-trained VGG16 is adopted to initialize the model. Pre-trained SSD means that the FSSD is optimized from a well-trained
SSD model. Edge pooling represents the fusion layer of the side_output2 of hed and the conv4_3 of VGG16. The options of fusion blocks represent which
ones we choose to merge, it includes edge_pooling/conv4_3, fc7, and conv6_2. The mAP is measured on the WCE or CVC-ClinicDB datasets, or both.

TABLE 3. SSD results on WCE and CVC-ClinicDB datasets. Pre-train means that a pre-trained backbone is adopted to initialize the model or it is initialized
from scratch. For a fair comparison, the speed (FPS) of the SSDs and FSSDs, and (mAP) performances are tested using google Colab pro+ GPU.

86.38% mAP) for both test sets, respectively. As shown in
Table 3 (rows 9–10 and 19–20), when we combine our pro-
posed improvements and adopt a better network framework,
the proposed MP-FSSD algorithm exceeds FSSD, DF-SSD
and L_SSD models with VGG16 by 3.62 points (93.4% vs.
89.78%), 2.16 points (93.4% vs. 91.24%) and 3.42 points
(93.4% vs. 89.98%) on WCE dataset. The running time was
also evaluated for both the WCE and CVC-ClinicDB test
datasets, as shown in Table 3 (column 5). The detection speed
of the MP-FSSD method based on VGG16 and ResNet-101
is 62.57 FPS and 45.6 FPS respectively, slower than the
FSSD model owing to the pooling layer embedded into the
feature fusionmodule. However,MP-FSSDusing theVGG16
backbone still achieved real-time detection, compared with

DF-SSD300 and L-SSD with 11.6 FPS and 40 FPS, respec-
tively. By replacing the backbone network VGGNet with
ResNet-101, MP-FSSD300 model improved the (mAP) per-
formance by 5.18% compared with FSSD300 (91.13% vs.
89.78%). It can be seen from the obtained results that
MP-FSSD has a strong feature reuse and extraction abil-
ity. In addition, they proved that the integration of an edge
pooling layer into the fusion block of the MP-SSD is more
effective than other SSDs methods.

3) COMPARISON WITH THE STATE-OF-THE-ART METHOD
In fact, WCE dataset acquisition still presents a challenge,
owing to the lack of large and publicly available anno-
tated datasets. To verify and evaluate the performance of
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TABLE 4. WCE or colonoscopy test detection results, or both.

MP-FSSD, the performances of the trained model on the
WCE and colonoscopy datasets were evaluated on the ETIS
LARIB dataset to quantitatively compare MP-FSSD with
other state-of-the-art models. As proven previously, the pro-
posedMP-FSSDmodel provided the best performance for the
WCE and CVC-ClinicDB datasets. Therefore, the model was
evaluated using the publicly available Etis-Larib dataset. This
study aimed to examine the effect of increased training data
on polyp detection and to evaluate its success. It is commonly
known, the one-stage detection SSD algorithm is one of the
most popular target detection algorithms with high accuracy
and speed. For FSSD300 with VGG16 backbone, the mAP
and FPS were 89.78% and 65.9 on the WCE test set, respec-
tively. Comparedwith this,MP-FSSD has a 3.62%mAP gain.
However, owing to the embedded edge pooling layer, the
feature fusion block reduces the speed to 62.57 frames per
second (Table 3 (row 10)). Even if the holistically nested
edge detection network was applied on the same VGG16
backbone, it did not affect the complexity of the model
structure. As reported in Table 4, it can be seen from the
metric values that training and testing the MP-FSSD model
on only the WCE dataset appear to exceed other models in
terms of (mAP) metric. This may be explained by the dif-
ferences in nature, texture, and illumination acquisition con-
ditions for both WCE and colonoscopy images. In addition,
the color of the polyp is not homogeneous across different
polyp frames within a patient and is highly variable across
different examinations from patients. The model trained on
the WCE + CVC-ClinicDB dataset is slightly the same as
some competitor models on the Etis-Larib dataset in terms
of success and exceeds the others. In general, the MP-FSSD
shows higher accuracy and faster speed because the structure
of the feature fusion module is simpler and does not increase
the detection time.

4) VISUALIZATION
Fig. 10 presents some detection examples of the FSSD (row 1)
and their analogs (row 2) of the MP-FSSD model on WCE
polyp datasets. Compared to FSSD, the MP-SSD model
showed relative improvement in small polyp localization
from the normal intestinal mucosa. (Lightweight version of
the SSD algorithm) does not correctly predict the ground truth
of small polyp regions, but MP-FSSD showed an obvious
improvement. In addition, the small polyp regions depend
more on their surroundings. Thus, in contrast to large polyps,

FIGURE 10. Comparison between the FSSD300 and the proposed
MP-FSSD300 on the WCE dataset. True bounding boxes with IoU of 0.5 or
higher with the bounding predicted boxes are drawn in green and red
colors, respectively. (a) Results of the FSSD. (b) Results of the proposed
method.

the position information of small polyp regions is more likely
to be lost during the detection process. We note that the FSSD
model only detects smaller objects from shallow layers, such
as conv4_3, whose receptive field is too small to observe
the object’s context information. The problem is that some
polyp regions are similar in appearance to the surrounding
normal mucosa, which may affect the performance of the
identification of smaller objects. As a solution, MP-FSSD
adds embedded edge pooling into the fusion block, which can
capture scene contexts and differentiate polyp edge regions
from the normal mucosa. From Fig. 10 (image 3 of row 2),
we can observe a concrete case that benefits from the feature
fusion module of the MP-FSSD detector.

Several artifacts can reduce the diagnostic yield. In real-
ity, the actual extent of the lumen visualized by capsule
endoscopy is limited by air bubbles, food, and other debris,
which hinders detection. Fig. 11 shows representative detec-
tion examples of polyp identifications of the FSSD and
MP-FSSD models on WCE images. The upper row in
Figs. 11 (A–B) corresponds to the failure identification of the
FSSD detector. Fig. 11 (C) shows the false-positive identi-
fication in the normal mucosa areas. It can be difficult to
accurately detect polyps owing to their complicated char-
acteristics (color, texture, contrast, and size). This problem
adds to the difficulty in identification. The difference in
appearance between the polyp regions and normal mucosa
was not obvious in the WCE images. In addition, the WCE
frames captured in the case of insufficient light produce poor
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FIGURE 11. Representative examples of polyp identifications on the WCE
test dataset for FSSD and MP-FSSD models. The first row shows failure
cases of the FSSD compared with MP-FSSD: A–B false negative polyp
cases; C false positive identification; D–E–F true positive identifications
of MP-FSSD model.

FIGURE 12. Comparison between the FSSD300 and the proposed
MP-FSSD300 on the colonoscopy test dataset. True bounding boxes with
IoU of 0.5 or higher with the bounding predicted boxes are drawn in
green and red colors, respectively. (a) Results of the FSSD. (b) Results of
the proposed method.

pixels, which will also hinder the processing of the blurred
image. However, the proposed MP-FSSD algorithm can rea-
sonably classify and detect small polyps and accurately dis-
tinguish them from the surrounding normal areas, limited
by different debris. Compared to FSSD, the bottom row
in Fig. 11 (D–E–F) shows some true-positive identification
cases of MP-FSSD in different normal mucosa areas.

To prove the effectiveness of the proposed MP-FSSD
model not only in WCE polyp localization cases, but also
in colonoscopy image detection (CVC-ClinicDB and ETIS-
Larib). Fig. 12 shows a graphical representation of the FSSD
(row 1) and MP-FSSD (row 2) detection examples on the
CVC-ClinicDB and ETIS-Larib test sets. Polyp detection
consists of the identification of polyp regions contained in
colonoscopy video frames and the rejection of regions con-
taining normal, blurry tissues, and others showing feces or
water jet sprays to clean the colon. Furthermore, colonoscopy
frames may contain many distractors. Unfortunately, the
rejection of the region showing feces was not reached by

the FSSD detector, as depicted in Fig. 12(C), compared to
MP-FSSD (Fig. 12(F)). However, both detectors succeeded
in detecting a hard polyp case in which the ground truth was
not annotated by experts (Figs. 12 (C) and 12 (F)).

V. CONCLUSION
This work is aimed at the need for effective polyp abnormali-
ties localization and detection in both WCE and colonoscopy
datasets. Several approaches have been published and regu-
larly updated in the field of colonoscopy. However, research
on the use of deep learning for polyp detection from WCE
frames is limited owing to the absence of standard and
public datasets, which has pushed the researchers to use
their datasets in most cases. Besides the problem of medical
ethics, many other reasons may affect the results of state-
of-the-art approaches and lead to subjective performance.
In this paper, we propose a deep polyp detector (MP-FSSD),
an enhanced version of the FSSD to model the visual appear-
ance of small polyp regions that contain an edge extrac-
tion network and a polyp detection network using the same
VGG16 backbone. Therefore, a slight drop in the detection
speed FPS of the FSSD model with remarkable improve-
ment in terms of (mAP) measure. An efficient feature fusion
module was applied to the SSD framework to combine the
embedded pooling layer with different feature layers and
generate new pyramid feature maps. The experimental results
prove that feature maps from different layers can be fully
fused by simple concatenation rather than an element-wise
summation. In the previous qualitative analysis, after adding
the feature pyramid module, the polyp detection mAP was
greatly improved. The effectiveness of this module was also
confirmed using the annotated ETIS-Larib dataset. Although
the MP-FSSD network uses a pre-trained dataset and is
fine-tuned on WCE/colonoscopy datasets to perform polyp
detection, it can achieve advanced performance on three
testing datasets with real-time processing speed and more
compact models. Moreover, MP-FSSD shows good detec-
tion effects for small polyp regions compared with FSSD
in rejecting normal parts under specific circumstances. First,
all the feature maps of different scales are fused once in
the topmost feature map in the multiscale pyramid module
to obtain more semantic and rich features. Second, we used
only one backbone for both the edge extraction and polyp
detection networks, as well as one horizontal connection to
reduce the amount of repetitive computation, which shortens
the detection time.

In the future, to improve the performance on WCE
or colonoscopy datasets, or both, MP-FSSD will be
enhanced using more powerful backbone networks such as
DenseNet [74]. To further improve the robustness and effec-
tiveness, it is worthwhile to explore a filtration strategy to reg-
ularize the edge-pooling layer. Because the proposed system
detects polyps based on the entire image, the influence of the
background (feces, debris, and other circumstances) cannot
be completely avoided.
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