
Received April 5, 2022, accepted April 22, 2022, date of publication April 29, 2022, date of current version May 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3171230

Optimized Feature Selection Based on a
Least-Redundant and Highest-Relevant
Framework for a Solar Irradiance
Forecasting Model
NAJIYA OMAR , (Graduate Student Member, IEEE),
HAMED ALY , (Senior Member, IEEE), AND TIMOTHY LITTLE
Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada

Corresponding author: Najiya Omar (najiya.omar@dal.ca)

ABSTRACT Exogenous and endogenous variables are typically evaluated several times during the selection
trial of a predictive model for Global Horizontal Irradiance (GHI). This is accomplished using various
statistical measures (e.g., univariate statistical analysis, correlation analysis, etc.) that are applied to gauge
redundancy and relevancy in specific variables. The main benefits of these approaches include lower
computational cost, fast screening times, accurate measuring of linear and monotonic degrees of variable
pairs, and the removal of features with low relevance. However, they cannot identify instances where
single or groups of predictor variables are non-monotonically associated with the response variable, nor
can they discern whether variables are predictive in combination with other variables or in isolation. The
present study attempts to overcome these challenges by first describing monotonic and non-monotonic
(Spearman’s rho and Hoeffding’s D, respectively) correlation statistics in combined usage for locating
groups with major non-monotonic endogenous variable changes. The proposed work’s novelty is subset
evaluation that determines relevance using Weather Recursive Feature Elimination (WRFE). This is a novel
hybrid feature reduction method that optimizes feature selection using a Least-Redundant/Highest-Relevant
framework. The proposed WRFE utilizes feature importance for measuring variance reduction in Random
Forest Regression (RFR) and as data perturbation in Long Short-Term Memory (LSTM). The simulation
results of GHI hourly predictions demonstrate that the proposed optimal features of the training subset make
the greatest contributions to the prediction target, proving that the high variability of irradiance conditions
lowers training subset reliability.The results showed that the proposed WRFE is superior compared to the
other models with 1.0927 % for the RMSE and the R2 coefficient is exceeding 98%.

INDEX TERMS Feature importance, redundancy and relevancy measures, exogenous and endogenous
variables, recursive feature elimination, long short-termmemory, random forest regression, GHI forecasting,
data perturbation, variance reduction.

NOMENCLATURE
RHmean Average relative humidity.
µ Mean.
ρP Pearson correlation.
ρS Spearman correlation.
σ Standard deviation.
ANFIS Adaptive network fuzzy inference system.
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ARD Automatic Relevance Determination.
BDT Boosted decision tree.
CGHI Clearsky GHI.
DHI Diffuse Horizontal Irradiance.
DNI Direct Normal Irradiance.
DOY Day of year.
DP Dew Point.
GFM Generalized Fuzzy model.
GHI Global Horizontal Irradiance.
H0 Extraterrestrial global solar radiation.
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HMM Hidden Markov Model.
K ref
+ Daily clearness index for the reference sta-

tion.
LR Linear regression.
LSTM Long short-term memory.
MBE Mean Bias Error.
MLR Multiple linear regression.
MTSF Multivariate time-series forecasting.
NGA Niching Genetic Algorithms.
NMIFS Normalized mutual information.
P Pressure.
pC Population correlation coefficient.
PW Precipitable water.
Ra Extraterrestrial radiation.
RBFNN Radial Basis Function neural network.
RFR Random Forest Regression.
RH Relative Humidity.
RMSE Root Mean Square Error.
S0 Sunshine duration.
SA Surface Albedo.
SZA Solar Zenith Angle.
T Temperature.
Tmax Max air temperature.
Tmin Min air temperature.
Tmean Average air temperature.
Tmean Mean air temperature.
UTSF Univariate time-series forecasting.
VIF Variance Inflation Factors.
WD Wind Direction.
WRFE Weather Recursive Feature Elimination.
WS Wind Speed.
f (d) Probability function of Gaussian noise.
M Calendar month number.

I. INTRODUCTION
As a means to better understand relationships between model
components, forecasting models typically use numerous
input variables. Analysis, however, can be compromised by
the high dimensionality of these variables. In particular,
redundant inputs can cause a variety of issues, such as
increasing the computational time, heightening the chance
of under/overfitting, destabilizing estimates on parameters,
and preventing accurate detection of relationships pertaining
to the explanatory and response variables. Unlike relevancy,
redundancy does not include the response variable, whereas
relevancy involves the relationship between the target and
predictors. Therefore, during the process of feature selection,
it is imperative to choose features relevant to the prediction,
while simultaneously ensuring that there is no redundancy in
them. In an earlier study [1], the behavior of Long Short-Term
Memory (LSTM) models was investigated under certain
geographical and meteorological conditions and according to
previous data on solar irradiance. These types of variables
(i.e., exogenous and endogenous, respectively) were utilized
as input features for day-ahead solar irradiance forecasting

models. In the work, a comparison was made between
LSTM model results and Radial Basis Function Neural
Network (RBFNN) outcomes with regard to univariate
time-series forecasting (UTSF) and multivariate time-series
forecasting (MTSF). The results were then validated using
data obtained from a regionwith different climatic conditions.
Interestingly, the LSTM performance deteriorated when
additional features were added. Next, a series of questions are
presented that we will attempt to answer in the current study:
• What types of associations occur between the input
features of exogenous and endogenous variables that
could be considered to enhance the overall prediction
results?

Most of the correlation analysis in the literature is
performed to determine whether a linear relationship exists
among the input features [2]–[5]. In this study, a feature
selection technique based on correlation analysis for redun-
dancy and relevancy measures will be proposed as the
basis for making decisions about redundant and/or irrelevant
attributes. Redundant attributes are usually measured using
Pearson’s correlation coefficient to find linear associations
between the exogenous variables. However, we could argue
that linear association is not enough to make a fully informed
decision about redundant variables.Therefore, wewill inspect
and investigate the following:
• When two exogenous variables are correlated, should
the one explaining the variation of the endogenous
variable be dropped?

• When one of the attributes violates the assumptions of
the Pearson correlation analysis, is this technique still
valid?

• Should nonlinear associations for redundancy measures
be taken into consideration?

Irrelevant attributes are measured using the Spearman rank
correlation coefficient to measure monotonic associations
between each of the exogenous variables and the endogenous
variable.
• If variables are not monotonically related to each other,
which associations does the technique overlook, if any?

For smart grid applications, weather data can be fore-
casted using machine-learning algorithms in univariate and
multivariate time series analysis. Hybrid implementation
should be used during feature selection and model design for
optimal accuracy. In model design phase, the authors in [6]
proposed a wind forecasting model using Support Vector
Regression (SVR) variants based on wavelet transform.
Evaluation of different performance indices identified the
optimal one for wind forecasting. Wind power ramp events
were investigated as well, and indicated an increase in
ramp events when hub height rises. For short-term wind
speed forecasting, the authors used ε−SVR, Least-square
support vector regression (LS-SVR), ε Twin support vector
regression (ε−TSVR), and Twin Support vector regression
(TSVR), comparing them with the Persistence model for
windfarm sites. Regarding absolute error, ε−TSVR beat
TSVR, LS-SVR and ε−SVR, showing that machine intelli-
gent hybrid methodology improves forecasting performance,
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including ramp events. The authors in [7] investigated a
hybrid method based off discrete wavelet transform (DWT)
and learning algorithms, e.g., Twin Support vector regression
(TSVR), random forest regression (RFR), and Convolu-
tional neural networks (CNN) for geographical features.
Wavelet transform-based signal processing extracted wind-
speed features, with SVR-based prediction models giving
the best results, though CNN gave better results in larger
training datasets. Compared to SVM, ANN and ELM, hybrid
TSVR, RFR and CNN models showed improved ramp
event prediction. In considering hybrid wind-battery farms,
the authors in [8] proposed a penalty-cost solution based
on machine intelligent wind forecasting. They compared a
wavelet-Twin support vector regression (TSVR)-based wind-
power forecasting model to Random Forest, ε Twin support
vector regression, and Gradient-boosted machines, aiming
to mitigate penalty cost. Results showed that wind-power
forecasting using a TSVR-based method reduces global
operational costs.In general terms, predictive modeling can
be described as a multivariate problem in which every
variable can have an impact on other input and output
variables in a variety of simple or complex ways. To date,
the interactions and nonlinearities that may potentially
exist between variables are not yet fully researched in the
literature [3], [9]. Even so, they represent critical elements
for developing robust predictive models. In this work, we will
focus on the measures and attributes of redundancy and
relevancy and will investigate how these can be mitigated and
enhanced, respectively, to developmore accuratemodels. The
main contributions of the present work are:

1) Applying Hoeffding’s D and Spearman’s rho to
the individual weather indicators that respond
non-monotonically to GHI forecasting.

2) Analysing the stability performance of the correlation
analysis for a one-year dataset and a ten-year time-
frame.

3) Proposing the novel Weather Recursive Feature
Elimination (WRFE) method for optimizing feature
selection schema according to a Least-Redundant/
Highest-Relevant framework.

4) Employing large training and testing datasets, along
with conducting comprehensive statistical analysis and
testing of specific features.

5) Assessing the effectiveness of the proposed novel
WRFE approach for hourly GHI prediction by applying
it in regions with different solar irradiance and weather
profiles as well as comparing it to other established
models.

A. FEATURE SCREENING
In every case of predictive modeling, the model’s accu-
racy is entirely based on data quality. Therefore, it is
crucial to appropriately choose and prepare exogenous (i.e.,
explanatory) variables as well as to determine any variations
in the endogenous (i.e., response) variables. This can be
accomplished by considering the most common issues that

may occur, in particular redundancy and irrelevance. Both
redundancy and irrelevance can be overcome using variable
screening, followed by selecting predictive variables that
best suit the specified model. Pearson is a correlation
statistic approach that can be applied to measure degrees of
relationships existing between weather variables as given in
Equation (1) [10]. This approach, however, may be invalid
if the variables do not satisfy Pearson correlation assump-
tions. In Pearson correlation analysis, the two assumptions
which need testing are: 1) the normality assumption, and
2) linearity.

ρP(X ,Y ) =

∑n
i=1 (xi − x̄)

(
γi − Ȳ

)√∑n
i=1 (xi − x̄)

2∑n
i=1

(
yi − Ȳ

)2 (1)

Pearson correlations can be highly susceptible to normality
and linearity assumptions and can also easily perceive
outliers. Accordingly, nonparametric correlation strategies
may be preferable to Pearson correlation in some cases.
Examples of nonparametric strategies include Hoeffding’s D
and Spearman’s rho. Spearman’s rho is applied to gauge
the direction and strength of a monotonic relationship
between two variables as given in Equation (2). This is
unlike the Pearson’s correlation, which gauges the direc-
tion and strength of a linear relationship between two
variables. In the Spearman’s rho approach, the correla-
tion between two variables is equivalent to the Pearson’s
correlation between rank scores from the two variables.
Furthermore, whereas Pearson’s correlation measures linear
relationships, Spearman’s correlation determines monotonic
relationships (either linear or non-linear) and ranges between
−1 and 1 [10].

ρS(X ,Y ) = 1−
6
∑n

i=1 d
2
i

n
(
n2 − 1

) (2)

Hoeffding’s D is applied as a non-parametric rank-based
measure for determining non-linear associations, as presented
in Equation (3). The measure ranges from −0.5 to 1 when
no tied ranks exist; otherwise, the measure may feature
lower values. In this technique, stronger associations between
variables are indicated by larger values [11].

D(X ,Y ) =
(n− 2)(n− 3)D1 + D2 − 2(n− 2)D3

n(n− 1)(n− 2)(n− 3)(n− 4)
(3)

II. COMPREHENSIVE DATA ANALYTICS
A. DATA COLLECTION
This research uses data from solar irradiation and
weather readings from the U.S. National Solar Radiation
Database (NSRDB) and the U.S. National Renewable Energy
Laboratory (NREL) [12]. The data were downloaded using
the NSRDB data viewer for Halifax, Nova Scotia, Canada,
at coordinates 44.88 N and 63.51 W. The data were collected
for hourly periods using the time-frame 2000-2018. They
include solar radiation irradiance and meteorological data,
such as Diffuse Horizontal Irradiance (DHI), Direct Normal
Irradiance (DNI), Global Horizontal Irradiance (GHI),
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TABLE 1. Descriptive statistics for dataset.

FIGURE 1. Heatmap of Pearson correlation.

Clearsky GHI (CGHI), Dew Point (DP), Solar Zenith Angle
(SZA), Surface Albedo (SA), Wind Speed (WS), Precipitable
Water (PW), Wind Direction (WD), Relative Humidity (RH),
Temperature (T), and Pressure (P). Table 1 presents the
descriptive statistics information for the dataset that includes
around 82,118 observations.

B. REDUNDANCY MEASURES
Redundant attributes are usual measured by Pearson’s
correlation coefficient. Figure 1 shows a heat map technique
employed to visualize the correlation coefficients. As can
be seen, the coefficient values (+1 to −1) measure linear
associations between the exogenous variables. Inputs with
linear and additive effects that have a constant rate of
change on the output could be insufficient to render a full
decision on the redundant variables. The effect of each
input variable might have a nonlinear relationship with other

input variables, which makes the effects both nonlinear and
non-additive. Thus, nonlinear associations for redundancy
measure will be tested. In Tables 2 and 3, we see the
Pearson and Spearman correlation coefficients for evaluating
bivariate analysis and for measuring linear or monotonic
relationships in the variable pairs. The coefficient values in
the tables are between (+1 and −1), and the redundancy
measure depends on pairwise observations of twelve common
exogenous variables, namely DHI, DNI, CGHI, DP, SZA,
SA, WS, PW, WD, RH, T, and P. Note that we have
excluded the endogenous variable, GHI, from this analysis.
All values on the diagonal are valued as 1, as the variables
are perfectly correlated with themselves. We have also
considered any off-diagonal elements in the matrix’s upper
triangle that mirror those in the matrix’s lower triangle.
The above-mentioned elements include both correlation
coefficients and their respective p-values. A hypothesis test
will be performed to determine any significances in the
correlation coefficient and to gauge if the sample data’s
linear/monotonic relationship may be sufficiently strong to
apply in modeling a relationship within the population.
Further, we can use the two-tailed significance test to express
both the null hypothesis (H0) and alternative hypothesis
(H1) of the correlation. When looking at the population
correlation coefficient (pc),we need to see if there is 95%
confidence (at a 0.05 level of significance), in which
case:
H0 : pc = 0H0 : pc = 0H0 : pc = 0 (‘‘If the population correlation coefficient

equals 0, no association is detected’’).
H1 : pc 6= 0H1 : pc 6= 0H1 : pc 6= 0 (‘‘If the population correlation coefficient

does not equal 0, a nonzero correlation may exist’’).
As shown in Tables 2 and 3, the Pearson and Spearman

correlation coefficients for CGHI and DHI are 0.73 and
0.79, respectively. Further, because p < .0001, p < 0.05 has
been satisfied, indicating that the result is statistically signif-
icant, and the null hypothesis is therefore rejected. Hence,
there is enough evidence at the 0.05 significance level to
assume there is a strong positive linear relationship between
CGHI and DHI variables across the whole population.
Furthermore, there is a strongly negative linear relationship
existing between SZA and DHI, with the Pearson and
Spearman correlation coefficients being −0.74 and −0.81,
respectively, and p < .0001. Therefore, between SZA and
CGHI, using the Pearson and Spearman correlation coeffi-
cients, there is a robust association of −0.99 and −0.995,
respectively.

Figure 2 illustrates pairwise analysis in scatterplot form
with monthly variations, showing a highly skewed DHI.
As shown, between DHI and the CGHI and SZA variables,
the relationships are not as robustly linear as presented in
the Pearson’s correlation coefficient. Additionally, neither
WS, WD, P, nor SA exhibit strong relationships with
other variables, which means they would not be considered
redundant variables in the model. Statistical investigation of
the data presented in Table 2 gives p values to test associations
between DNI and SA, CGHI and WD, and P and SZA. The
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FIGURE 2. Pairwise analysis in scatterplot.

results, respectively, are 0.5269, 0.07, and 0.0577. If p > 0.05,
the results at the 5% level are not significant, thus showing
no correlation between these variables and also failing to
reject the null hypothesis. In this case, the scatter plots in
Figure 3 within variations of 12 clusters would be suitable
for verifying these results.

C. NORMALITY ASSUMPTION TESTS
Table 4 provides descriptive statistics analyses of DHI
datapoints. In order to determine whether the DHI data are
normally distributed, we can apply numerical techniques by
looking at kurtosis and skewness values to gauge normality
according to criteria proposed in [13]. In cases where
sample sizes exceed 300, histograms and absolute values
of kurtosis/skewness can be considered without including
z-values. If there is an absolute kurtosis exceeding 7 or
an absolute skew value exceeding 2, it can be used
as a reference value to determine significant levels of
non-normality. Based on the above criteria, we determine
that the sample data used in our test are slightly kurtotic
and skewed, with kurtosis at 0.756 and skewness at 1.173.
These results indicate that the sample is normally distributed
according to kurtosis and skewness criteria. As a second
consideration, the SAS manual [14] mentions that if the
sample size exceeds 2000, the most appropriate tests are
Cramer-von Mises, Kolmogorov-Smirnov, and Anderson-
Darling. The Shapiro test is more suitable for sample
sizes of less than 2000. In the three referenced tests for
sample sizes larger than 2000, the null hypothesis applies
if the data are normally distributed; otherwise, the null
hypothesis will be rejected with p values < 0.05. In our
test sample, the p values show as being below .05 for

all three referenced tests,as presented in Table 5. This
means that the null hypothesis is rejected and the DHI data
distribution is non-normal. As a third consideration, graphical
methods can be utilized in visualizing variable distribution
and comparing this distribution with theoretical variable
distribution by employing plots such as the Quantile-Quantile
(Q-Q) plot. Figure 4 illustrates an example of DHI data that
are distributed non-normally. In this instance, the Pearson’s
correlation may not be the most appropriate measure to
find variable associations. Instead, a nonparametric approach,
such as Spearman’s correlation, is likely a more suitable
choice. Table 6 presents both the Spearman and Pearson
correlation coefficients in descending rank for DHI and a
range of variables.

D. INCLUSION AND EXCLUSION CRITERIA OF
EXOGENOUS VARIABLES
As mentioned earlier in this research, variable screening is
an effective way to decrease excess exogenous variables,
as this form of screening is able to identify variables that are
redundant. In the current context, the redundancy measure
for considering very high correlated variables using the
Spearman’s technique is coefficients larger than 0.8 in value.
The working hypothesis is that the model’s performance
may be impeded by exogenous variables with monotonic
associations. In our prior example, the two exogenous
variable subsets of CGHI and SZA, along with T and DP, are
all highly correlated, making them redundant. For variable
inclusion, we need to investigate which exogenous variable
should be dropped in cases where they are correlated. This
investigation will be presented in more detail in the proposed
WRFE technique. Table 7 provides a list of highly correlated
variables which could potentially be redundant. As can be
seen, there is a positive monotonic relationship between
CGHI and DHI, where (ρS ) = 0.73. Additionally, we can
see that there is a negative monotonic relationship between
SZA and DHI, where (ρS ) = −0.74. There is also a strongly
negative association between SZA and CGHI, where (ρS ) =
−0.99. In the same table, a negative moderate association
exists between DNI and RH, where (ρS ) = −0.6. Further,
in comparison to other data, DP shows the strongest positive
monotonic and linear relationships to T (up to (ρS ) = 0.95),
and a positive, monotonic, and curvilinear relationship (up to
(ρS ) = 0.79) to PW. There is also a moderate association of
(ρS ) = 0.69 between PW and T.

E. EFFECT OF SAMPLE SIZE IN CORRELATION ANALYSIS
OF WEATHER DATA
To test stability visually, we made a comparison of the
correlation analysis of a one-year dataset. For the year 2000,
there are 4309 datapoint observations, while for the ten-
year time-frame of our study period (2000-2010), there are
47,407. Thus, we observed a relatively stable magnitude of
correlations both in large and small data samples. Moreover,
the majority of the correlation coefficients within the dataset
appeared entirely stable in relation to the dataset size,
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FIGURE 3. Scatter plots illustrating two variables for (a) DNI and SA, (b) WD and CGHI, (c) P and SZA.

FIGURE 4. QQ plot for DHI.

as shown in Table 3 and Table 8, whereas somewere stable but
featured slight fluctuations around their true value. This type
of deviation, however, is considered trivial and is therefore
tolerable. Examples of ρS changes are as follows: DNI and
DHI, ρS changed from 0.06 to 0.13; CGHI and SA, ρS
changed from 0.125 to 0.029; CGHI and P, ρS changed
from 0.04 to 0.02; DP and DNI, ρS changed from −0.04 to

−0.09; DP and P, ρS changed from −0.136 to −0.06; SA
and T, ρS changed from 0.29 to −0.119; SA and WD, ρS
changed from 0.016 to 0.04; and T and P, ρS ’’ changed from
−0.028 to 0.026. As well, there were a few fluctuations in
some other correlation coefficients, changing, for instance,
from a significantly weak association to a significantly very
weak or null association. The correlation coefficients in
other instances changed from a significantly weak association
direction into its opposite significantly weak association.
For instance, for SA and RH, ρS changed from 0.07 to
(−0.02); for SA and P, ρS changed from (−0.079) to (−0.05);
and for WS and WD, ρS changed from (−0.007) to (0.06).
The strongest deviations recorded were in the associations
between SA and SZA, SA and WS, and SA and DP. These
were recorded as being from −0.14 to −0.0088, −0.17 to
0.008, and 0.3 to −0.08, respectively. However, as our
research setting makes allowances for moderate associations
when using Spearman’s coefficients with ρS values greater
than 0.4, these deviations are not considered problematic.
On the other hand, as most deviations in the correlation
coefficients occurred in the yearly dataset (correlation coef-
ficients differ from year to year), they may warrant further
investigation.
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TABLE 2. Pearson correlation coefficients for the year 2000.

TABLE 3. Spearman correlation coefficients for the year 2000.
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TABLE 4. Descriptive statistics analyses of DHI.

TABLE 5. Statistics tests for normality assumption of DHI.

F. RELEVANCE MEASURES
Evaluation of irrelevancy for irrelevant attributes is
commonly done using Spearman’s ranking of correlation
coefficients. This can be performed by measuring mono-
tonic associations between endogenous and exogenous
variables [9], [15]. If the two measured variables present
as being monotonically unrelated, key associations could be
overlooked. In some cases, Hoeffding’s D statistic value can
be applied in conjunction with Spearman’s analysis in order
to identify non-monotonic associations which may not be
identified when only using Spearman’s. As demonstrated
in [16], if the Spearman rank shows as being high, this
indicates a monotonic association, even if the corresponding
Hoeffding’s value is low. In general, however, monotonic
associations are key elements in predictive modeling. When
the Hoeffding rank is high and the Spearman rank is
low, the association is considered non-monotonic. This
pattern of nonlinearity needs further investigation in order
to gauge if and how the association might impact the
model’s performance. On the other hand, if Hoeffding’s is
low and Spearman’s is also low, this indicates a vulnerable
association, which means the attributes are irrelevant and
can be eliminated. Table 9 presents a comparison of
Hoeffding’s D and Spearman’s correlation coefficients.
As can be seen, CGHI, SZA, DNI, DHI, RH, and T are
all deemed relevant attributes to GHI, which is the target.
In this comparison, DNI, CGHI, and SZA are the highest
individual relevant attributes. The results are then validated
for stability via dataset testing. These datasets were collected
in approximate increments of five years (2000, 2005, 2010,
2015, and 2018) as well as for the 11-year dataset for the
study period (2000-2010) for Halifax, NS, as shown in
Table 10. The completed results of the validation are given
in the supplemental materials. Although we can employ
Spearman’s rank correlation coefficients on different data

FIGURE 5. Degree of mutual information between exogenous variables
and GHI.

sizes, Gilpin [17] found that with increases in sample size,
the Kendall correlation coefficient is more practical. Croux
and Dehon [18] agree that the Kendall correlation performs
better than the Spearman correlation in this regard due to
its smaller GES (gross error sensitivity), which makes it
more robust, and its smaller AV (asymptotic variance), which
increases its efficiency. The authors in [19], [20] mention
that the Kendall correlation has a computation complexity of
O(n2) in comparison to the O(n ∗ log n) complexity of the
Spearman correlation, with n being sample size. In which
case, the best approach might be to use both techniques
when dealing with large sample sizes. We performed an
intensive screening of the features using filter methods that
rely on the data’s statistical characteristics, such as parametric
and non-parametric tests. Equation 4 illustrates a way to
capture dependency degree between ith exogenous variables
(x) and endogenous variable (y) [21]. Strong dependence
shows a high degree of mutual information, which indicates
greater knowledge of joint distribution p(x, y) than marginal
distribution p(x)p(y).We applied the normalized mutual
information (NMIFS) method proposed in [22] as a measure
of irrelevancy. For both methods, Figure 5 validates the
results, with CGHI, DHI, SZA, DNI, RH and T all being
features that appear to make the greatest contributions to the
prediction GHI.

I (X;Y ) =
∫∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy (4)

III. WEATHER RECURSIVE FEATURE ELIMINATION
(WRFE)
After implementing exploratory data analysis to the response
and explanatory variables, we can conclude that six features
(CGHI, SZA, DNI, DHI, RH, and T) appear to have the
closest relation with the target (GHI). Even so, we need to
consider our previous finding, which was that CGHI and
SZA (along with DP and T) are redundant attributes. Here,
we can eliminate DP, because it is an unrelated variable
(i.e., it is not one of our six above-mentioned features).
However, for the correlated variables, CGHI and SZA,
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TABLE 6. Nonparametric measure of association with DHI for a 95 % confidence interval.

TABLE 7. List of high correlated variables.

we need to consider the issue mentioned earlier, namely
regarding which of the two exogenous variables should
be dropped if they are correlated. To resolve this issue,
we simply need to look at the mutual information and
correlation coefficients between these two variables and GHI.
In this case, CGHI is obviously more relevant to the response
variable. However, in other cases, the variables could be
non-predictive when in isolation, but highly predictive in
combination with others. When this occurs, we need to
perform a subset evaluation to determine relevance. This can
be done using a hybrid feature reduction method that utilizes
Weather Recursive Feature Elimination (WRFE). In this
method, the feature selection process is implemented through
designing two different machine learning models. The idea
here is to measure each explanatory variable’s contribution
to the final prediction, which can be done by considering
the importance measures for the various features of each
model.

A. METHODOLOGY
When adopting this approach, one first needs to design
LSTM and RFR models, using the six mentioned features.
Next, RMSE needs to be used to calculate the performance,
followed by a calculation of feature importance by looking at
the impurity measure (variance reduction) for the RFRmodel
and data perturbation for the LSTM model. The final step is

to remove the least importance feature and then to design the
two models using the remaining features. Once this is done,
the performance of the newmodels can be compared with that
of the full model performance by using the new RMSE. If the
new RMSE is calculated to be larger than the full model’s
RMSE, the eliminated feature is important and should be
kept. We can also compare any reductions in performance.
If there is a reduction in performance in comparison to
a user-defined threshold (here considered 2.5), the feature
should be eliminated in cases where the drop is smaller
than the threshold. In cases where it is larger, the feature
should be retained. The threshold of 2.5 was firstly selected
arbitrary with performed model tuning, then selected it based
on systematic observation for the set of the performance’s
drop. Figure 6 demonstrates the flowchart of the proposed
WRFE,with algorithm (1) showing the pseudo-code of the
proposed procedure.

1) MODEL IMPLEMENTATION
Accordingly, we measure the feature importance for the
Halifax, NS, dataset for the year 2000. The dataset includes
the six above-mentioned features. As our first step of
algorithm (1), we design and train an LSTM model as
establishing in [1] and calculate predictions of the model.
Next, as stated in [23],we perturb each feature by adding the
random Gaussian distribution noise( mean µ = 0, standard
deviation σ ),with probability function f(d) as defined in
Equation 5, and then calculate the perturbed prediction.

f (d) =
1

σ
√
2π

e−
d2

2σ2 (5)

where d is the Euclidean distance between original feature
(xi) and perturbed feature (x̂i), as defined in 6

d
(
xi, x̂i

)
=

√√√√ n∑
i=1

(
xi − x̂i

)2 (6)

When that is completed, we measure the perturbation
effects in gradients. This is done by calculating RMSE
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TABLE 8. Spearman correlation coefficients for the years 2000-2010.

TABLE 9. Nonparametric relevance measure for a 95% confidence interval (Year 2000).

for the perturbed and original forecasts. In our case, the
calculation is given via the gradient values we obtained from
performing a differentiation operation on the forecasts’ input
sequences. A large difference in RMSE indicates the high
importance of the variable in the system (see Table 12).
We also design and train an RFR model and calculate

feature importance according to reductions of variance (node
impurity). The capability of RFR as an ensemble learning
-based technique that leverages the power of numerous
decision trees for processing large data and enhancing
forecasting decision capabilities and for handling the variance
reduction criteria [24]. The designed forest model is an
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TABLE 10. Nonparametric relevance measure for a 95% confidence interval (Years 2000-2010).

ensemble of T decision trees, each comprising split and leaf
nodes, as inspired by those proposed in [25], [26]. Each split
node (s) consists of a normalized feature Fn and a threshold
τ . We calculate the variance for every single leaf node (lj) that
is related to a particular split node as given in Equation 7:

σ
j
l =

∑m
j=1

(
xj − µj

)2
Nj

(7)

Then we compute the variance of each (s) as the weighted
average variance of (l), as given in Equation 8:

w
(
σ ns
)
=

∑m
j=1 wj ∗ σ

j
l∑m

j=1 wj
(8)

where wj denotes the weight applied to xj values in (s). The
optimal splitting selection rules are determined by running
repeated selections to minimize the variance of a specific
split node. The greater the reduction in variance, the higher
that feature’s importance is in the system (see Table13).
Subsequently, we project input data into lower-dimensional
feature space by finding an optimal input feature subset.
This is done using both statistics descriptors and a hybrid
technique for detecting interactions that may occur between
features. Our optimal subset includes CGHI, RH, DNI,
and DHI. Forecasting models have been trained using
hourly observation data from 2000 to 2002; they have also
been tested using data from 2003. The training dataset
contains 12937 hours, while the testing dataset contains
4310 hours. The forecasting models have been designed
using Keras, as applied to TensorFlow 2.0. Table 11 shows
the hyperparameter values for the proposed LSTM and
RFR models, while Figure 7 demonstrates the inspection
of feature importance according to data perturbation and
variance reduction.

TABLE 11. Hyperparameter values for LSTM and RFR.

TABLE 12. Feature inspection via LSTM model.

TABLE 13. Feature inspection via RFR model.

2) FORECASTING RESULTS AND ANALYSIS
LSTM models are employed to discover seasonality pattern
of the previous 24 hours for the respective input features.
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FIGURE 6. Flowchart of proposed WRFE.

These patterns are then utilized for predicting subsequent
GHI for time (T+1). The input training set formation
considers adjacent 24 values for the N respective input
features for time T. Specifically, it creates a 3-D tensor
(12913, 24, N) and the GHI output training set at size (12913,
1). RMSE values are utilized for performance verification of
the designed models that belong to weather data for different
locations in Canada. From Figure 8, we can see that models
with the resulting optimal set of (CGHI, DNI, DHI, RH)
gave a better performance than the rest in GHI prediction,
with the lowest RMSE given by the model with the six
features (CGHI, DNI, DHI, RH, SZA). When separately
adding exogenous variables to the LSTM models, we can
see that the RMSE between observed and estimated GHI is
affected. Table 14 presents dataset from regions described
by different climatic conditions. As shown, adding T to
LSTM model bumps the RMSE up to 2.068 %, while adding
SZA reduces the RMSE to 1.824 %. This study of inves-
tigating the changes of seasonality effects on the LSTM’s
learning task that has proposed in [27], [28]. We believe
these changes warrant future investigation of seasonality

patterns in the weather data through capturing nonlinear-
ity patterns embedded in the exogenous and endogenous
variables.

3) MODEL VALIDATION
Gray’s relational analysis [29]is applied to the stage of model
selection to calculate grey relational degree and determine
the influence measure of the primary behavior of each set of
the input feature to the model’s performance. This analysis
includes of measuring Gray’s correlation coefficient as given
in Equation 9.

γ (x0(k), xi(k)) =
x(min)+ ζx(max)
10i(k)+ ζx(max)

(9)

10i(k) is the deviation sequence given in Equation 10, and
ζ = 0.5 is distinguishing coefficient.

10i(k) = x0(k)− xi(k) (10)
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TABLE 14. Performance comparison of the proposed WRFE for different locations in Canada.

FIGURE 7. Feature importance according to data perturbation and
variance reduction.

This step is followed by calculating Gray relational
degree/grade as given in Equation 11

.γ (x0, xi) =
1
n

n∑
k=1

γ (x0(k), xi(k)) (11)

Algorithm 1 Proposed WRFE Method
1: Input: a data set of n featuresM (F1,F2, . . . ,Fn)
2: Output: Optimal feature subsetMbest
3: Phase I- Modeling LSTM
4: Design LSTM utilizing the n features
5: Calculate RMSE1 (RMSE for full model performance)
6: for i← 1, n do
7: Eliminating least importance feature fi
8: Perturbing the n features

f1 + d1, f2 + d2, . . . , fn + dn
9: Calculating perturbed prediction error RMSE2 from the perturbed dataset

M
(
Fpn

)
10: Calculating the drop in the performance

E = |RMSE2| − |RMSE1|
11: if E < threshold then
12: remove fi
13: else
14: keep fi
15: Mbest ← Mbest + fi
16: end if
17: end for
18: Phase II: Modeling RFR
19: Design RFR utilizing the n features
20: Calculate RMSE1 (RMSE for full model performance)
21: for i← 1, n do
22: Eliminating least importance feature fi
23: Measuring impurity of the n features (variance reduction)

var ({f1, f2, . . . , fn})=
∑n
i=1

∣∣fi∣∣∣∣M(F1,F2,...,Fn)∣∣ var (fi)
24: Calculating prediction error RMSE2 from the new datasetM (Fnn)
25: Calculating the drop in the performance

E = |RMSE2| − |RMSE1|
26: if E < threshold then
27: remove fi
28: else
29: keep fi
30: Mbest ← Mbest + fi
31: end if
32: end for

We tested the five subsets and concluded that the subset
of CGHI, RH, DNI, and DHI is ranked most efficient.The
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FIGURE 8. Performance comparison of proposed WRFE with several sets of input features
for different locations in Canada.

results are not contradicting the findings of the proposed
WRFE, as shown in Tables 14 and 15. The result of the

WRFE for the optimal subset is verified by Gray’s relational
analysis.
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TABLE 15. Evaluation of proposed WRFE using Gray’s relational analysis.

TABLE 16. Performance evaluation of proposed WRFE vs other feature selection approaches.

B. COMPARISON OF DIFFERENT FEATURE SELECTION
TECHNIQUES
In this section, we compare the performance of the proposed
WRFE with other feature selection methods, including the
Variance Inflation Factors (VIF) analysis proposed in [30],
the Automatic Relevance Determination (ARD) method
proposed in [31], the Niching Genetic Algorithms (NGA)
proposed in [32], the Pearson correlation analysis followed
by the subset evaluator proposed in [33], and the subset
evaluator proposed in [34]. ANN and fuzzy logic models
are used in [30]. Specifically, ANN, ANFIS, MLR models,
and four empirical equations are applied to estimate solar
radiation in Turkey. The meteorological data (month number,
extraterrestrial radiation, air temperature, relative humidity,
sunshine duration, and daylight hours) were measured in
163 stations over 20 years by the Turkish State Meteorolog-
ical Service (MGM). To determine the multi-collinearity of
independent variables, VIF was used. The results indicate
that Ra, M , Tmean, and RHmean can be powerful input
features when estimating solar irradiance in ANN, ANFIS,
and MLR models. As well, we dissect and compare different

input variable combinations using MAE, MARE, RMSE,
overall index of model performance (OI), and R2. We found
that ANN outperforms the ANFIS and MLR models and
the empirical equations estimating Turkey’s solar irradiance
when RMSE is at 1.65 %. The accuracy of ANNs are
supported by [31], where ARD is used to select network
inputs. The dataset features 36 months of global radiation
data (daily) measured at twelve stations in Spain. The authors
aimed to estimate daily global irradiation for complex terrain.
Estimated values from the ANN model were compared to
measured ones, giving an MBE of 0.2 % and an RMSE
of 6.0 %. The daily clearness index and DOY are also
proven to be relevant input variables. Individual station
performance was around [5.0–7.5] %. To further validate
the model, it could be applied to other topographically
complex areas.The authors in [32] propose solving the
variable selection problem by using two applications of NGA
to estimate solar radiation. This strategy selects relevant
input variables by employing different parameters of genetic
algorithm. The technique estimated daily Global Solar
Radiation in northern Argentina by applying linear regression
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to data obtained from 14weather stations. From an average of
64 of 329 initial variables, the results show an R2 of 0.926 and
an RMSE of 2.36MJ/m2, using sunshine hours and the most
relevant variables (pressure, humidity, temperature). In [33],
the authors propose combining GFM and continuous density
HMM to estimate solar radiation based on meteorological
data from 2009-2011. From the total 915 days, data from the
first 750 days is used to training the novel paradigm, while the
remaining data is used to validate the proposed model. After
analyzing estimations from 15 meteorological parameter
combinations, the authors found sunshine duration to be
the main parameter in solar radiation estimation, followed
by temperature, relative humidity, atmospheric pressure and
wind speed. The R-value and RMSE for the best performing
meteorological parameter combinations in the framework are
0.9921 and 7.9124 %, respectively. Conflicting experimental
outcomes have prompted a shift to reconsider ANNs’ useful-
ness. In [34], several authors compare various solar radiation
prediction models, including BDT, ANN, and combinations
of these models using LR. The aim is to test predictions
for daily global solar irradiation, with performance being
validated by a dataset from Algeria’s Applied Research Unit
for Renewable Energies. The dataset includes global solar
radiation, sunshine and air temperature and sunshine duration
during 2014-2016. The authors analysed a range of input
combinations to find the most relevant input parameters to
include in their predictive models. Of the tested parameters,
maximum sunshine duration was found to best improve
the models’ performance.Further, they achieved the best
prediction output using input features that included H0, S0,
Tmax , and Tmean, since errors occurring between predicted
and measured values are generally quite small. With regard
to statistical indicators like RMSE, rRMSE, R2, nMBE,MAE
and nMAE, the ANN model was shown to perform the best
of all the models (e.g., LR, BDT, and hybrid LR-MLP and
LR-BDT), achieving a high accuracy of RMSE = 4.5233
%. Regions that have different climate conditions than those
tested could be the focus of future work. As seen in Table 16,
the proposed WRFE with CGHI, DNI, DHI, and RH as
input features yields the lowest RMSE values. The proposed
forecasting approach shows lower forecasting errors than the
other methods, even with highly fluctuating solar irradiance
profiles. However, there is a slight deterioration in the LSTM
model performance results obtained using the training dataset
for regions with different climate conditions.The ability of
enhancing the usage in RMSE and MBE alone will not
be a proper indicator of the model’s performance. Hence,
the t-statistics criteria usage should be in place with these
two indicators to receive a proper evaluation of the model’s
performance [35]. As shown in Table 14, the performance of
the models shows a verified result where the t-statistic values
(obtained from Equation 12) of the four models are less than
the critical t-values.

t =
[

(N − 1)MBE2

RMSE2 −MBE2

] 1
2

(12)

IV. CONCLUSION
To date, interactions and nonlinearities that potentially exist
between variables are not yet fully researched in the literature.
Even so, they represent critical elements for developing
robust predictive models. In this work, we focused on
redundancy and relevancy, investigating how these can
be mitigated and enhanced, respectively, to develop a
more robust forecasting model for hourly solar irradiance.
Monotonic and non-monotonic associations were probed
by applying Spearman’s rho and Hoeffding’s D correla-
tion analysis in combined usage for locating groups that
have major non-monotonic endogenous variable changes.
We found that while variables might be non-predictive in
isolation, they can be highly predictive in combination
with others. This finding led us to perform a subset
evaluation to determine relevance using the proposed novel
hybrid feature reduction method, Weather Recursive Feature
Elimination (WRFE). Our aim was to optimize feature
selection according to a Least-Redundant/Highest-Relevant
framework, with feature importancemeasuring RFR impurity
and LSTMdata perturbation. The simulation results of hourly
predictions for GHI demonstrate that the resulting optimal
features of the training subset make the greatest contributions
to the prediction target. Overall, the outcomes of these
investigations indicate the superiority of the proposed WRFE
method when compared to other developed models with
regard to RMSE. In addition, our study shows that the high
variability of irradiance conditions lowers the reliability of
the training subset, as most deviations in the correlation
coefficients occurred in the yearly dataset. This may warrant
further investigation.
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