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ABSTRACT With the rapid increase in the world’s population, the global electricity demand has increased
drastically. Therefore, it is required to adopt efficient energy management mechanisms. Since the energy
consumption trends are rather dynamic. Therefore, precise energy demand estimation and short and/or
long-term forecasting results with higher accuracy are required to develop the optimization and control
mechanism. Consequently, the machine learning (ML) techniques along with distributed demand response
programs are being adopted to predict the future energy demand requirement with satisfactory results. In this
paper, different state-of-the-art ML algorithms such as logistic regression (LR), support vector machines
(SVM), naive Bayes (NB), decision tree classifier (DTC), K-nearest neighbor (KNN), and neural networks
(NNG5), have been implemented to analyze their performance. The main objective of this paper is to present
a comparative analysis of ML algorithms for short-term load forecasting (STLF) regarding accuracy and
forecast error. Based on the implementation and analysis, we have identified that, among other algorithms,
the DTC provides comparatively better results. Therefore, we devised the enhanced DTC (EDTC) by
integrating fitting function, loss function, and gradient boosting in DTC mathematical model for fine-tuning
the control variables. The implementation results show that the proposed EDTC algorithm provides better
forecast results (i.e., 99.9 % recall, 100% F1, 100% precision, 99.21 % training accuracy, and 99.70% testing
accuracy.)

INDEX TERMS Smart grids, electric load forecasting, machine learning algorithms, logistic regression,

decision tree.

I. INTRODUCTION

The tremendous increase in the world economy and
population, along with rapid development in urbanization,
can enhance the need for energy usage in the years ahead.
Electricity, a vital energy source, can be generated from
various sources, including water, wind, solar cells, fossil
fuels, and thermal & nuclear reactors. Furthermore, as our
population grows and progresses, the demand for electric-
ity rises, prompting the need for increased energy produc-
tion. The essential concerns in energy management (EM)
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are electricity generation, transmission, and distribution. The
electric grid (EG) is a well-known interconnected network
that connects customers to energy providers and transports
energy from producer to consumer. It consists of power plants
that generate electricity, substations that regulate electrical
voltage based on usage, transmission lines (the transporter
of electricity), and distribution lines that link customers [1].
As described above, classical EGs use a centralized network
with thousands of units. Enhancing the EG load introduces
the potential for generating overhead, resulting in power qual-
ity issues. As a result, the installation of new plants becomes
necessary. On the other hand, these grids lack a reliable
forecast system for predicting intermittent power failures,
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their reasons, reaction latency, memory space, and resource
utilization [2]-[5].

Scientists determined that the current electrical power sys-
tem (PS) has remained unchanged for several decades [6]-[9].
With the population growth, there is a massive electricity
demand. The shortcomings of the traditional PS include a
lack of visibility, mechanical switches, which results in a
slower response time, and a lack of monitoring and power
control. Metamorphoses in climatic conditions, component
failure, the demand for energy, population growth, demand
for fossil fuels, a drop in electric power output, a shortage of
energy storage, unilateral communication, and various other
issues all contribute to the need for new grid technology.
Hence, a new grid framework is crucial to handle such issues.
The smart grid (SG), a next-generation energy infrastruc-
ture, appears as a critical technology to meet high-priority
demands and enhance modern human life quality [10].
According to a comparison, the conventional EG provides
one-way communication confined to energy users, whereas
SG provides vast two-way communication. In the traditional
EG, power quality concerns are resolved slowly; however,
in the case of SG, a rapid self-healing facility is proffered.
The traditional EG system is more vulnerable to cyber-attacks
and natural calamities, responding considerably more slowly.
The SG, on the other hand, is significantly more resistant
to natural disasters and cyber threats. The conventional EG
system responds gradually to system disturbances, whereas
the SG automatically detects and responds to problems and
has a far lower impact on customers. Power flow control is
completely limited in the traditional EG system; however, it is
immense in SG [11], [12].

Both classical (time-series) and computational intelli-
gence methods are used in the literature for ELF [13].
Both approaches have their drawbacks. The limitations of
the previous classical methods in dealing with non-linear
data are cited. On the other hand, computational intelli-
gence approaches are chastised for their handcrafted features,
restricted learning ability, ineffectual learning, erroneous
appraisal, and insufficient motivating importance. Despite
this, specific current ML models are used for ELF, which
partially solves the problems mentioned above and improves
performance due to an innovative technique [14]. Since
low prediction accuracy results in significant economic loss,
a proper system must overcome the concerns mentioned
above. A 1% increase in forecast error results in a 0.01 billion
rise in overall utility costs. As a result, electric utility compa-
nies are attempting to design an STLF model that is fast, accu-
rate, robust, and accessible. Furthermore, explicit forecasting
might help spot failures and ensure reliable grid operation.
Aside from forecasting accuracy, forecasting stability, or the
ability of the forecasting model to maintain a constant degree
of forecasting accuracy, is also critical for a forecasting
model to ensure the safe operation of the energy system.
However, forecasting stability is frequently overlooked based
on previously proposed forecasting models [15]. Artificial
intelligence and its subset ML algorithms [16]-[19] can be
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used to predict faults in SG, which aids in the implemen-
tation of precautionary measures The most major technical
challenge, predicting an SG’s stability, is considered in this
study because it determines the effective energy transfer in
over 60% of the SGs. [20]. The SG environment with Al
technology is depicted in Fig. 1.

A. MOTIVATIONS

With the rapid increase in the world’s population and indus-
trial revolutions, the global electricity demand has increased
drastically [21]. Consequently, the increased load demand
is fulfilled by combining traditional and distributed energy
generation technologies such as photovoltaic energy, energy
storage system, and electric vehicles [19]. However, their
integration into the primary grid or residential premises has
posed severe problems regarding prediction and forecasting.
This is also due to dynamic load demand and consumption
trends [22]. Furthermore, numerous works are being pre-
sented involving load demand management through active or
passive involvement of prosumers. The main objective was
to reduce the energy consumption cost and customer dissatis-
faction without considering SG stability and control [23]. The
first solution is to invest in the generation and transmission
infrastructure. At the same time, the second solution is to
manage the demand requirements through customer engage-
ment and ML-based optimal control strategies [24]. This
former is a long-term solution and requires more investment
cost. However, the latter is a short-term solution without more
investment costs on infrastructure [25]. However, to opti-
mally utilize the full potential of ML algorithms for stability
and control, it is a prior requirement to identify the most
suitable and reliable algorithm for prediction, forecasting,
and estimation before any decision making. In this context,
the present work has explored different state-of-the-art ML
algorithms such as LR, SVM, NB, DTC, KNN, and NNs,
for STLF. The main focus of this paper is to identify the
best suitable algorithms for STLF through implementation
and comparison. Through implementation, we determine that
the DTC algorithm has provided significant results compared
to other counterpart algorithms. Furthermore, recent research
has concentrated on feature engineering and classical meth-
ods such as decision tree (DT), ARIMA, and ANN. Despite
overfitting issues, the DT outperforms training and performs
poorly in forecasting, whereas ANN has low generalization
power. It is not an easy task to control the rate of conver-
gence. Furthermore, these learning models are not ideal for
large amounts of data because their performance degrades
as the size of the data increases. Moreover, the optimization
module must be integrated with the forecaster to achieve
exceptional performance. A DT was used in several ML and
data mining tasks as a classifier. In this study, we discuss
several recent works about the DT in Table 2. The selection
and adjustment of hyper-parameters have a significant impact
on the forecast accuracy of ML systems [23]. Therefore,
optimal and accurate hyper-parameters tuning is a substantial
challenge with ML models [26]. These individual/single ML
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algorithms are not helpful in all aspects (accuracy, conver-
gence rate, stability) because every individual approach has
its imperfections and inherent limitations [27], [28]. They
depend on random weights, biases [29], thresholds [30],
and hyper-parameters tuning [31]. These problems influence
ELF and cause unstable performance. These shortcomings
deprive individual methods of achieving all objectives (accu-
racy, convergence rate, stability) simultaneously [32]-[34].
However, by properly tuning hyper-parameters and optimiz-
ing random weight and bias initialization, the DTC model
can be assumed to be promising and effective in improving
forecast accuracy [22], [35]-[37]. Furthermore, none of these
models evaluated accuracy, stability, and convergence rate
simultaneously [38], [39]. As a result, a robust, enhanced
model is required to address the shortcomings of existing
models while simultaneously improving forecast accuracy
and stability with a fast convergence rate.

B. REAL CONTRIBUTIONS

With this motivation, in this work, a novel, robust, enhanced
forecasting algorithm is developed by integrating fitting func-
tion, loss function, and gradient boosting analysis with DTC,
called the EDTC forecasting model. The novelty and signifi-
cant technical contributions are highlighted below.

o The state-of-the-art ML algorithms such as SVM, KNN,
NN, DTC, and LR are compared for predicting the
forecast accuracy. While DTC gives more effective and
efficient results with comparatively high accuracy, good
speed, and low memory usage among these classifiers.

« Since hyperparameters highly affect the stable perfor-
mance of ML algorithms in ELF. It is a challenge to
select and modify these parameters for accurate and
stable performance. To overcome the hard-to-tune hyper
parameters problem of the ML algorithm, we proposed a
novel and enhanced DTC EDTC) by optimizing random
weights and bias initialization of the DTC. The proposed
EDTC improves the accuracy by adding fitting function,
loss function, and gradient boosting in DTC mathemat-
ical model for fine-tuning the control variables.

o Experiments on real datasets acquired from the New
York ISO (NYISO) are performed to validate the effec-
tiveness of the proposed methodology. Experimental
results show that our proposed EDTC model outper-
forms other benchmark ML models such as SVM, KNN,
NN, LR, and DTC in accuracy, stability, and conver-
gence rate.

1) NOVELTY ASPECT

This paper has compared different ML algorithms from a
load forecasting perspective. Firstly, SVM, KNN, LR, ANN,
and DTC are implemented to analyze the results in terms
of features and classification parameters, as depicted in the
Table 1. Results show that, among other algorithms, the DTC
gives more accurate and efficient output with comparatively
high speed. One of the main reasons for the high speed and
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accuracy of DTC is the optimal memory utilization to store
the rule-set in the form of smaller trees. Furthermore, the
classification process in DTC has occupied lower memory
than other techniques because it generates fewer rules to
develop the optimal output. The accuracy is also higher as
the error rate is low on unseen cases due to the develop-
ing pruned trees. Therefore, we have identified that DTC
could generate more accurate results if the control parameters
are further optimized based on comparative analysis. This
paper has proposed an enhanced EDTC to perform feature
selection, cross-validation, reduced error pruning, and model
complexity to optimize the error ratio. The feature selection
is used for dimensionality reduction. Where it minimizes the
attribute space of the feature set, it is also analyzed that the
classification accuracy can be further increased if the model
complexity is increased. Therefore, by applying the reduced
error pruning technique, the overfitting problem of the DTC is
solved. Results show that the proposed EDTC has improved
the accuracy by 1-2%. The classification error rate is also
reduced compared to the existing algorithms. Eqs. 20-24 in
the revised version describe the mathematical formulation
that was used to modify the DTC algorithm. Whereas in DTC,
only the Egs. 18 and 19 are used to handle the control variable,
causing reduce accuracy and slow convergence.

C. PAPER ORGANIZATION

The following is how the paper’s material is structured.
Section I provides a concise introduction and motivation for
ELF and ML approaches for ELF difficulties. Section II is
devoted to studying the existing literature on the applica-
tion of ML approaches to ELF. In section III, ML-models
are depicted. Section IV characterizes the devised method-
ologies. Whereas section V confers the simulation results
and discussions. Section VI explains the critical analysis.
Section VII concludes by clarifying the research and its out-
comes and concluding remarks.

Il. LITERATURE SURVEY
This section contains an overview of various research solu-
tions, methodology, outcomes, and limitations of existent
works on SGs. The SG, which will replace the definitive
energy grid, will be capable of two-way communication.
To distribute the electricity transferred from various sources,
a convoluted system is employed with the assistance of
EVs [41]. Since it regulates its features to maximize per-
formance, this adds new overhead to the SG modeling.
As aresult, stability, robustness, efficiency, and dependability
must be monitored frequently under various operating con-
ditions. Researchers have employed ML methods such as
LR, KNN, SVM, ANN, random forest (RF), ridge regres-
sion (RR), gradient boosting (GB), extra trees regressor
(ETR), stochastic gradient descent (SGD), and gradient
boosting (GB) to evaluate load in SG.

SGs are transitioning to demand-based power supply
services for customers. As a result, forecasting consumer
load is obligatory. An endeavor is made to confine if the
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TABLE 1. Characteristics comparison between proposed and existent ML algorithms.

Characteristic EDTC LR DTC SVM NN
Learning type Eagerly learner Eager learner Lazy Eager learner Eager learner
Speed Very fast Fast Slow Fast with active Slow
Accuracy Good in many domains Good in many domains High Significantly high -
Scalability Efficient for small dataset | efficient for large datasets - - Low
Interpretability Good Good Average - Worse
Transparency Rules Not rules (Black box) Rules Black box Black box
Missing Val interpretation Missing Values Missing Values Missing Values Sparse data -

FIGURE 1. Al technology embedded into the SG context.

existent short-term load forecasting (STLF) framework or
anthropological-structural data accurately foretells individual
consumer household load [42]. An STLF framework was
developed based on anthropological structural data from the
residential consumers to identify the optimal LF framework
for an individual load. The devised model can forecast devi-
ated loads using a particular instance at different time series.
The researchers used back-propagation (BP), NN, and SVM
to predict the proposed STLF framework. According to the
results, devised STLF is 7% more accurate than SLTF and
reduces inaccuracy by 60%. The study affirmed the enhance-
ment of the SLTF model by employing anthropological struc-
tural data correctness. The week ahead household data were
used to learn an ANN to forecast the energy consumption
hourly for the subsequent day.

Hernandez et al. devised an ELF based ANN technique
in SGs that involved three main stages: segmentation using
K-means classification, a self-organizing map (SOM)
approach uses pattern recognition, and demand forecast-
ing (DF) in individual clusters [43]. Realtime data from a
Spanish corporation was used to validate the ANN model.
Periodic values were used to train the model (weekahead and
month ahead). This framework outperformed benchmarks
based on generalized regression NN and radial basis function
NN. The sustainability of the SG is reliant on the ability
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TABLE 2. DT algorithms based accuracy in latest literature survey.

References

[35]

Techniques used
DT, KNN, LR, SVM, and
NB

Accuracy achieved
DT: 98.93%, KNN: 98.23%, LR: 92.13%, SVM: 89.12%,
and NB: 80.12%

36 DT DT: 89.14%

37 DT and KNN DT: 98.12%, and KNN: 97%
40 DT (XGboost) and RF DT: 83.12% and RF: 81.78%
22 DT and KNN DT: 98.12% and KNN: 97.98%

SVM, KNN, NN, LR,
and EDTC

EDTC:99.7%, KNN: 94.50%, NN: 98.9%, LR: 98.5%,
and SVM: 97.5%

Proposed

to generate uninterrupted electricity based on usage. Chen
and Ahmad used three diverse ML frameworks for MTLF
and LTLF in the SG [44]. They use nonlinear ANN com-
prising of ada boost, multivariate linear regression (MLR),
and auto-regressive exogenous multivariate inputs framework
(AEMIF). The researchers diverged the load into three inter-
vals based on aggregated exhaustive consumption metrics:
one month ahead, seasonal perspective, and one year ahead.
The models enhanced predictability while accurately defin-
ing energy differences, modifications, and coming energy
prediction prospects. Because of its superior prediction abil-
ity, the Ada boost model outperformed the other models.
Khan et al. presented a comprehensive review of dynamic
pricing (DP) and EL in the SG [45]. The study focused on
the relationship between real-time pricing (RTP), time of use
(TOU), and critical peak price (CPP). Computational and Al
models were presented as procedures to LF. In Al frame-
works, ANN, RNN, auto-regressive integrated moving aver-
age (ARIMA)-SVM, generalized regression neural networks
(GRNN), SVM, wavelet transformation (WT)-ANN, wavelet
transformation error correction (WTEC)-ANN, probabilistic
NN (PNN), Expert systems, and fuzzy logic (FL) were used.
According to the study results, forecasting algorithms based
on Al outperformed other stochastic approaches.
Muhammad er al. recently completed a survey on
projecting yields of photo-voltaic (PV) [45]. Because the
overwhelming majority of studies endeavored to predict PV
output using conventional, analytic, and Al approaches. This
study discovered that ANN might provide more accurate
forecasts than traditional and quantitative models. According
to the survey, the precision of any prediction technique varies
depending on the day, seasonal variance, infusion factors, and
other appraisal matrices. In the recent SG [45], Muhammad
and Abbas explored AI-ELF algorithms. The performance of
these frameworks were determined by its structure, input fac-
tors, activation function, and ML algorithms used for training
and creating predictive errors. It was discovered that the BP
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training method was often used to train NN, despite the fact
that it posed various problems. ANN, on the other hand, was
better suited for ELF and produced better results than BP.
It was eventually able to confirm that integrated techniques
had more significant effects.

It is well known that regular power outages cause a slew of
catastrophic failures. To address this issue in SG, improved
surveillance of blackout situations has become necessary.
Gupta et al. indicated prior blackout incidents using a time
series model, particularly SVM, which they verified using an
IEEE 30-bus testing ground [46]. SVM was learned to use
a historical database that was created by evaluating system
efficiency in static and transient modes. This resource doc-
umented both normal and aberrant events (cascading failure
conditions). Pan and Lee conducted a comparison between
ANN and SVM in the SG [47] midterm LF. ANN was
typically used for forecasting; recently, researchers adapted
SVM. The parameters for the day ahead, the week ahead,
the month ahead, and the year ahead LF were analyzed.
Mitchell et al. utilized these hyper-parameters for ELF on
several loads [48]. SVM produced the global minimum on
some occasions, according to the results. Both systems per-
formed severely, with more than 4% deflection on intermit-
tent load, while 2.3% variation on steady load.

Climate change, seasonal variability, sea-level rise, and
natural calamities all impact ELF. As a result, SG demand
management (DM) determines its dependability and stability
in satisfying the consumer’s regular power requests. The
demand schedule can be efficiently derived from a reason-
able projection of users’ electricity usage patterns. Ali and
Azad used ML approaches for DM and LF, such as LR,
SVM, and MLP [49], which beat the other frameworks.
The restricted quadratic optimization problem was used in
support vector regression (SVR), which transferred the input
characteristics into high dimensional space using a ker-
nel. The support vector regression (SVR), which used a kernel
to transfer the input characteristics into high-dimensional
space, is employed to solve the restricted quadratic opti-
mization (RQO) problem. SVR beat the BP-trained NN and
other LR approaches. It also produced high-quality results
when time series data was unavailable. As a result, the study
advised SVR for LF. In other forecasts, SVM, like DM, per-
formed admirably. When estimating lake water levels, SVM
outperformed ANN and regression techniques, particularly
the seasonal auto-regressive (SAR) paradigm, demonstrating
coherence and a great outcome (long-term prognosis) [50].
SVM fused with the time series forecasting (TSF) module
is employed for financial analysis, which assisted in over-
coming two typical issues, namely noisy and non-stationary
data [51], [52]. Furthermore, SVM with sparse representa-
tion outperformed statistical models and GRNN [53]. The
fusion of chaotic GA and SVR algorithms improved the
precision of chaotic LF [54]. Furthermore, SVM outper-
formed MLP in forecasting wind speed. Alazab e al. created
a multi-directional LSTM (MDLSTM) framework to antici-
pate the SG’s resilience, and the results show that MDLSTM
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FIGURE 2. Flow chart of ML frameworks.

outperforms classical LSTM, RNN, and gated recurrent units
(GRUs) [19].

It is clear from the prior studies that ML approaches are
pretty valuable for LF. Statistical models are simple to build
and require few computations, yet they are inaccurate. How-
ever, a vast amount of data and calculations are necessary
to create these models. LF is influenced by various factors,
including building material, size, individual loads, the num-
ber of loads, occupant behavior, and weather, among others.
Furthermore, regardless of data set size, it is clear that most
SG research has been conducted utilizing DL methods. How-
ever, due to the magnitude of the SG data set, ML techniques
coped better than DL models. Thus, the current effort focuses
on the application of ML techniques to the SG data set. The
problems were described in an overview of the survey. Table 3
shows the frameworks employed and the conclusions drawn
from their approach.

lll. ML MODELS

This study covers the supervised ML algorithms based on
regression. In this study, all the ML models are used to fore-
cast the hourly load consumption. The general flow adopted
in all the algorithms is depicted in Fig. 2.

A. LR

The LR algorithm is a supervised ML technique that conducts
regression. It only determines the linear relationship between
the input and output variables. When their relationship is non-

linear, it is considered as multi-variable regression (MVR).
The following is how the LR is defined:

y=~6o+6-x ey
Here,
X - input training data
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TABLE 3. Literature review on SGs.

Identified problem Devised frameworks Generalizations
1.3 layered ANN (60 — 20 — 1 neuron)

Individual consumer’s household load The STMLF was not evaluated to some other model, nor was the effect of data during

for DF [42] 2.SVM . EP forecasting, while the relationship was not discussed. °
3. Regressive framework
1.SOM The system was not tested in an MG context.
STLF within micro-grids [43] 2. K-Means clustering In addition, the number of patterns examined for review
3. MLP when compared to other models
. . 1. ANN-NAEMI . . .
Forecasting long and med{um-terms 5 MLR3 VE.II'IOLI.S forecasting errors
energy demand in SG at different level [44] 3 Ada-Boost with big data and setting input parameters
1. LSSVM-MIMO
Linking between EL and EP signals of 2. ANN The system may anticipate load power signals without using previous data on
the non-linear patterns [55] 3. Optimization based QOABC algorithm | a certain forecast day, although it may not be particularly precise.
4. GMI
To avoid catastrophic loss, an alert notification for
predicting blackout episodes in SG was developed [46] 1.SVM The SG robustness can be evaluated.
Midterm LF [47] ; i\IiII\NA NA
STLF [48] 1.SVM Achieving global minimum repeatedly By SVM.
2.ANN Deviation in prediction on constant and erratic loads.
;' EXM’ SVR SVR showed to be the best option for the context
Demand and LF in SG [49] . . . . (even with the big dataset, it was suitable with the other methods),
3. NN with BP algorithm for training . . N . o
while MLP has more computational cost.
4. MLP
1.SVM
Lake water Levels prediction [50] 2. ANN In the long-term, SVM produced more compatible and superior outcomes than other algorithms.
3. SAG framework
Financial TSF [51] 1. Fuzzy based SVR In noisy and quasi data, the model yielded better results.

The framework used few SVs than the classical one.
The framework should be explored with a sophisticated loss function.

Non-stationary financial TSF [52] . SVM with regularized risk function

ERP [53 1. Linear and non-linear SVM SVM outperforms traditional NN, and the structural
153] 2. GA for feature selection risk minimization approach was used to reduce over-fitting.
1. LSTM-based RNN.
. 2. Reduction of recursive feature. . .
ELF in SG [56] 3. ETR as benchmark ML framework. On a multiple datasets, RNN-based LSTM may not function adequately.
4. Ga for recognizing layers in LSTM.
1. ANN, WT-ANN
A thorough examination of LF and 2. ARIMA-SVM, Regression Albased f " loorith tperf Iytical model
dynamic electricity pricing [57] 3. WTEC-ANN, FL -based forecasling algorithms outperiorm analytical moders.
4. Stochastic frameworks
L - . 1. ANN To improve forecast accuracy, integrated approaches can be utilized to train the NN.
An exploration of Al-based LF models [23] 2. BP, gradient descent ANN outperforms BP in terms of performance.
1. SVM with PBK and RBK
STLF [58] 2.PCA Individual kernel SVM functions executed ineffectively.
3. Rough set theory
Cyclic ELF [59] ;:(Sf\lizitic GA ARIMA and Tensor Flow SVR simulated annealing models outperformed
y -output (supervised learning) considered as input, while layers reside between the input and
8o - intercept output levels taken as hidden layers. The hidden layer should
- converge the input layer parameters and depart the yielded
01 - coefficient of x 2) & p yerp p Y

values to activation functions. Forecasting is assembled at
The optimal values of 6y and 6; are discovered to have the the final layer, which is suggested as an output layer. Fig. 1
best-fit forecast line. The cost function is then determined illustrates the general architecture of NNs. The working of

using these values. This model essentially seeks the most hidden layer is represented in Eq. 4:
appropriate value of y with the most minor difference between k
the valid and forecasted values. As a result, updating the val- Hy = @1 + Z Won + 6 4)
ues of 6y and 0 is required to minimize the mistake. In Eq. 3, i1
the cost function £ is defined often known as gradient descent nth input and " hidden layers having weight Wiy, and 6, is
(GD): .
the value of bias factor.
1 n
F=- Z i —yi)? 3) ¢ KNN
i=1

KNN is frequently used for classification and regression in
In this case, y; represents the actual value, and z; is the data recognition and consistency. KNN is a supervised ML in

anticipated value. As can be seen, this technique essentially a family of algorithms. It is a non-parametric strategy used to
returns the z and y values of RMSE. The values of 8y and 6, consider statistics. In both cases, the input is obtained from a
are chosen at random here, and they are changed with each training block, which is the training input, and then a corre-
iteration, reducing the RMSE value and determining the best sponding target and output model are formed. Because infer-
fit line for the model via GD. ences are produced directly from training examples, K-NN is

a type of memory-based learning. The neighbors are derived
B. NN from a known class’s set of objects. If K = 1, the class is

After executing certain mathematical computations, the NN assigned to the class’s single nearest neighbor. A straight line
translates the input values to the suitable output unit [60]. The will always be formed under a standard clustering algorithm
NN is composed of two layers: a layer that accepts attributes when there is the shortest distance between two peers, and
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this distance is known as the Euclidean distance [61]. The
result of KNN regression is the mean of its KNNs. The
disadvantages of the KNN algorithm include that it is not
the fastest algorithm, works with a limited number of inputs,
requires homogeneous features, and is sensitive to local data
alignment. Equations for KNN are as follows: Euclidean
equation (&,) is represented in Eq. 5:

H
C= | D (j— B’ 5)
j=1
Manhattan equation (9)1,) is presented in Eq. 6:
H
Me = loj — B (6)
j=1
Minkows equation (9)t€,) is presented in Eq. 7:
H 1/p
MRe = | D (o = B’ )
j=1
D. SVYm
The classification method is described mathematically as:
D
Fauv) =" viXj () + ¢, ®)
j=1

where vj‘?o(j = 1,2,3,...) are the forecaster parameters
computed The dimensional space is marked by D, and ¢
is determined by the distribution of data and classification
variables. SVM tries to define a hyper-plane that separates
data points in a D-dimensional subspace. In this study, the
hyper-plane is defined by Eq. 8. The regularized risk function
Ry is therefore defined as follows:

2? —f(u, v)) + ov?

D
=1
Ry (v) =2

) ; ©))
where o is the feature selection regulating threshold, » is
the insensitive loss function parameter, and 2]"-" is the targeted
load consumption pattern. The parameter v must be obtained
through minimization of this 9Ry. The robust error function u
is calculated as follows:

0if
8 — v

. 2?—f(u,v))<)f (10)

otherwise.

Eq. 10 employs a function to minimize Eq. 9 and can be
modeled as follows:

M
f(u rr,rr*) = Z(n* —rr)ﬁ* (u uj) + K (11)

j=1
where 7% > O for all I values. £* (u, z) is the SVM Kkernel
function that shows the multiplication of radial basis KPCA
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in the feature space f* as:

D
F w2 =) XWX (12)
j=1

In an infinite feature space, the £* eliminates the requirement
for X; feature will be calculated. By maximizing the quadratic
form, the = and 7 * can be obtained:

R(n* )

= —x i (nj* + 71]-) + Zsﬁ (nj* - n,-) (13)

M
_ % > (nj* + nj> (nj* - 7Tj) R (), 37) - (14)

The generalized versions of kernel functions are as follows,

where 33 indicates the principal component:

(i). Linear kernel function: It is a function that is used in
conjunction with SVM to provide identical data points
in a dataset [62].

R, 2)=(r, 2) (15)

(i1). Logistic Sigmoid based kernel function: It is also known
as the Hyperbolic tangent kernel, which developed in
the NN research area. The Sigmoid function has been
employed as an activation function for NNs in the major-
ity of cases.

&(r, 2) = tanh (ao(r, 24+ a1> (16)

(iii) Radial basis kernel: It is an ubiquitous kernel func-
tion that is commonly utilized in a wide range of
kernel-based ML techniques. It is indeed commonly
used for SVM classification tasks.

R(r, 7) =exp (—Gllr — z||2) (17

E. DTC

DTC is one of the few classification approaches that allow us
to comprehend the whole reasoning that the classifier applies
when making a specific classification [63]. DTC displays
a graphical representation of all possible decision options
based on certain circumstances. It, like a tree, starts with a
root and then spreads to various viable answers. The training
data set is added to the tree by the root node, and each node
subsequently asks a true or false question about one of the
features. The dataset is now separated into two independent
subsets. Eq. 18 gives the equation for entropy:

n
E:I(pi.p2....pn) = Y (pilog (1/p;) (18)
i=1
(1, P2, - --pn) indicates the class label probabilities The
Gini-index (6J) was used to partition the data in the proposed
model. It is determined by subtracting the sum of each class’s
squared probabilities from one. It prefers larger partitions that
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are simple to implement, whereas information gain prefers
smaller partitions that have different values. Mathematically,
®7J is presented in Eq. 19:

GI=1-— Z(P(x = k))? (19)

where P(x = k) is the probability that a target feature takes a
specific value, k.

F. PROPOSED EDTC

A DT that incorporates fitting functions, loss functions, and
gradient descent analysis is known as an enhanced DTC
[9]. The DT in this work creates starting values for fitting
functions with multiple regression, which handles with a
large number of input variables. The errors between observed
data sets and output values are then determined using a loss
function. Furthermore, popular loss functions include square-
error, absolute-error, and unfavorable binomial log-likelihood
functions. The gradient boosting (GB) approach is then uti-
lized to find the fitting function with the lowest predicted loss
function value. The preceding phase is repeated to acquire the
best fitting procedure.

Following the input vector p and the output variable q,
which contains training samples (p,,, Q) are provided, when
the value of loss function (£(q, §(p))) is reduced, a fitting
function (Fp) is chosen. §p is a linear combination of a cluster
of basis functions f,(p) after R iterations, which is depicted
in Eq. 20:

R
O =) 8f P +c (20)

r=1

where c is the constant value.The gradient boosting algorithm
uses the gradient descent analysis to approximate targeted
Eq. 20. The specific method is described as follows: Let
fo(p) = 1 then find the constant coefficient 9 from a sum
of the minimum loss function £(q;, 6):

J
So(P) = dofo(q) = do = arg H{Sinz £, 8 (2D

j=1

After getting fo(p), we can use the recursive idea to solve this
problem. §o(P), §1(P), §r—1(p) are derived by the Eq. 22:

Sr(P) = Fr—1(P) + dr - §+(P) (22)
We derive §, as a sum of minimum loss function
J
8 =Y £ [§r—1(0) + 8- (23)
j=1

while f,(p) is the sum of the negative gradient of §,_1(p;):

J
fr(@) == AzLQ. Fro1(P) (24)

j=1

The procedure of E-DTC is described in algorithm 1.
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Algorithm 1 EDTC
Require:
J
l . = i i (S
So(p) = arg m;nj; £ 8)

2. J: Number of data sets

Ensure: F(p) = §r(P)
3. R: Iteration times
For r = 1toR ;

4.5 == AzL(q;. Fro1(P)

j=1
J
5.8 =) Q) [§r-1(0) + 85-(P)D
ji=1
6.5,(P) = 5-1(P) + 5, - ,(P)

end

Selected features

Gain above
average?
Yes
No Max
: iteration?

Construct a GBDT

Feature subset

Initial population

Solution No

i| Generate solutions
H acceptable?

Yes

Search for new
source

Record the best
solution

No Max Yes
i iteration?
i ABC GBDT

FIGURE 3. EDTC algorithm processes.

1) PROPOSED EDTC DESCRIPTION
Algorithm 1 is an improved top-down algorithm of DTC,
and it uses information gain presented in Eq. 19 as split-
ting criteria to build a DT. The criteria of EDTC is Gain
Rations which is a modification of the information gain. The
benefit of EDTC is noticeably low error rates, less memory,
and high optimization. Therefore, ETDC algorithm is more
accurate and much faster. EDTC has tree like structures,
prunes the original dtc, and creates DT in the way of “divide
and rule”. In addition, the most improvement in DTC is
through gradient boosting technique. Algorithm 1 illustrates
that objective function of proposed EDTC is to get boosting
factor § from the minimum loss function £(q;, 6) as depicted
in Eq. 21. The principle of algorithm is repeatedly calling
weak learners and giving these weak learners high weight
vote value. By doing so, the training process can focus more
on the cases that caused error, which tends to reduce bias.
With respect to EDTC, the most critical feature of EDTC
is boosting technique, and another is the construction of a
cost-sensitive as formulated in Eqs. 21 and 23. The proposed
EDTC algorithmic process is depicted in Fig. 3.

Definition 1: Let the input data which is expected to clas-
sify correctly.

Proof: Input to algorithm consists of a collection of

training cases, each having a tuple of values for a fixed set

VOLUME 10, 2022



T. Alquthami et al.: Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid

IEEE Access

Prediction

&
3 A
SVM Logistic
Kernels  Regression
Data
S Pre-processing E %
B i Result
i Analysis
— Naive Bayes Neural Network Output
ﬂ= @ 7 s /N
NN ! Data B- g © $
Normalization N —_
Smart Grid Soe \ét _’\{\/I:
Dataset " | > 1 I
( @ Output Score
h - N
Encoding K-Nearest Decision
Neighbour Tree

FIGURE 4. The work-flow of the devised framework.

of attributes (or independent variables) A = {Aq, Az, ...,
A} and a class attribute (or dependent variable). An attribute
Ay is described as continuous or discrete, if it is the EDTC
algorithm. In case of the DTC, Attributes are of type only
numerical or nominal. The class attribute (target attributes)
C is discrete and has values Cq, Cy, ..., Cx O
Remark 1: EDTC which classifies the data correctly.

IV. PROPOSED METHODOLOGY

The designed system comprises four major components,
as illustrated in Fig. 4. The first section contains the datasets,
which consist of four years of publicly available NYISO
datasets (2017-2020). Pre-processing is the second stage,
in which we attempt to clean the data. Pre-filtering is critical
for enhancing the quality of data and the importance of ML
algorithms, both of which can aid in successful forecasting.
The third component features engineering, which improves
classification accuracy, reduces data dimensions to avoid
complexity, and speeds up the processing time [64]. Two ML
methods are used for feature engineering in the proposed
system. DTC determines the relevance of characteristics first.
RFE is then used to remove low-importance features from the
datasets. The vital components are kept, which can help with
accuracy. Before being fed to classifiers, data is separated
into training and testing sets in a 3:1 ratio. The first nine
months of data from each year are used as the training set,
with the remaining three months serving as the testing set.
The classifiers employed are SVM, LR, KNN, DTC, ANN,
and E-DTC. For LF, we improved DTC and proposed EDTC.

A. DATA-SET DESCRIPTION

Python is used to carry out the experiments. Four years of
NYISO data are used [65]. The data contains sixteen features
and 1095 instances, as well as system load data for each
day and a variety of additional parameters. We extract the
essential characteristics in the first stage because all aspects
are incompatible.

B. DATA SETTING AND PREPROCESSING

Pre-processing is critical for increasing the quality of the data
as well as the effectiveness of ML algorithms [66]. Normal-
ization and data transformation are two typical pre-processing
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strategies utilized in any ML model. The variables in an SG
dateset are distributed across several ranges, which typically
results in a bias favoring values with higher weights, reducing
the effectiveness of the devised framework. Since attribute
normalization aids in the convergence rate and numerical
stability of NN training, a zero-mean normalization strategy
is used in the study for data normalization on the load and
temperature variables. Normalization is performed according
to Eq. 25:

Y= (25)

where y]’- refer to the zero average score of the j instance,
v is the mean in time series dataset, while x correspond to
standard deviation of the dataset, respectively. To normalize
the test data, the mean and standard deviation of the training
data were employed. For final predictions, test data outcomes
are normalized. we used dunce variables to control for these
characteristics, as most previous ELF research has been done
and described in the literature [24], [67], [68].

Machines process data using mathematical formulae;
therefore, data must be quantitative. Since the majority
of the dataset comprises both categorical and numerical
information, data encryption is achieved during data pre-
processing [69], which converts quasi inputs to numeric ones
before supplying them to ML frameworks. After that, data is
divided into training and testing datasets. The training dataset
is used to prepare the ML algorithms, then considered with
a new dataset to enhance their performance. In this work,
30% is used to evaluate the performance of the produced ML
algorithms, while 70% of the dataset is used to understand
the ML algorithms, while diverse ML techniques, rather than
DL-based algorithms, are used for classification depending
on the magnitude of the dataset. To classify the SG dataset,
conventional ML schemes such as LR, KNN, NN, SVM, and
DTC were used in this work. Fl-score, accuracy, receiver
operating characteristic (ROC), and precision are then used to
test the efficiency of the ML algorithms. The acquired results
are similar to previous work on the SG datasets. The ML
methods employed in this work are detailed in the following
subsections.

C. FEATURE ENGINEERING

In the AEMO (NWS) data-set, DTC-based FE is used to
select the essential traits and reduce outliers; feature patterns
are considered vectors. The feature values in these vectors
have separate timestamps. Features for EL are regarded as
load demand, and those with a minor impact on EL forecast-
ing may be removed. DT, the most advanced and efficient
feature extraction technique, determines the importance of
features. The DT method assigns a score to each character-
istic individually. Then, features are selected using recursive
features elimination (RFE) depending on their score. The
score given by DT is shown in Fig. 5a. Let 0.5 be the feature
selection threshold (Tjs). When the grades of features are
greater than the T;, these features may be kept and be used
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FIGURE 5. Importance of features calculations by devised DT &
forecasting trends of different techniques.

TABLE 4. The devised DTC based FS with different T§s values. (Threshold:
Tjs, Time: T, Error: ¢, Dropped features: §5.)

Parameters | Observations
Tis 0.70 0.60 0.55 0.50
T 89s 98s 105s 121s
¢ 3.1% 3.0% 1.9% 1.4%
Fo DA-MLC DA-MLC | DA-MLC | DA-MLC
RT-MLC RT-MLC RT-MLC RT-MLC
DA-CC DA-CC DA-CC DA-CC
RT-CC RT-CC RT-CC RT-CC
RSP RSP RSP RSP
RT-EC RT-EC RT-EC
RT-LM RT-LM
Rgcep Rgep
RT-Demand
DA-LMP
RCP

for further processing. Besides, the grade of features smaller
than the fixed Tj; value may be pitched. Distinguishable
%ss weights are employed to restrain the FS process for
considering the significance of feature extraction. The results
are depicted in Table 4. Simultaneously, it boosts the Tjs
values from 0.5, resulting in dropping more features. It is
evident from the results that increment in Ts value is directly
proportional to the more feature drop (5 ). It would enhance
the training momentum but lessen the forecasting accuracy.

With feature extraction, the retrieved features are sent to
classifiers; however, the data was split into testing and train-
ing sets before feeding the data to classifiers. The information
for nine months of each year is retained in the training set,
while the data for the remaining three months is preserved in
the evaluation set. With that, the models are trained using a
training set. The fundamental reason for writing this work is
to compare basic ML methods with one upgraded DTC for
LF. These five strategies (SVM, LR, NN, KNN, and EDTC)
are often employed for LF, but it is unclear which one is
best suited. After training, the performance of classifiers was
assessed using a testing set.

D. PERFORMANCE METRICS

Four statistical measures assess classifier accuracy: RMS,
MSE, MAPE, and MAE. MSE and MAE have built-in func-
tions, and RMS and MAPE have defined roles. The study also
considers performance aspects, including recall, F1 score,
precision, and accuracy, to evaluate the ML algorithms. In the
most delinquent research, 70% of the SG data-set can be used
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for training, whereas 30% for verification and validation. The
parameters mentioned above and the ROC curve are used to
evaluate the ML frameworks, increasing the confirmation of
the outcomes.

V. SIMULATION RESULTS AND DISCUSSION

A. PREDICTION TRENDS AND STATISTICAL MEASURES
RESULTS

The forecasted trend is depicted in Fig. 5b. When the predict-
ing trend is compared to the actual trend, it is obvious that
DTC and EDTC closely reflect the real trend. This signifies
that these two algorithms are operating admirably. Further-
more, in terms of trend following, EDTC outperforms DTC.
Furthermore, the comparison is shown using other statistical
indicators. MAE is depicted in Fig. 6a. EDTC has a very
low MAE, which indicates it causes very little error when
compared to other approaches. Moreover, in our scenario
described in Tables 1 and 7, the EDTC processing time is
relatively short. MAE for EDTC is ranked on first and is
better than DTC. MAPE is also calculated for the STLF
as shown in Fig. 6b. In MAPE, the error rate of KNN is
more unpredictable than that of EDTC. In this case, EDTC
outperforms all other approaches. The performance of KNN
may improve as the number of instances rises. Tables 1 and 7
show that EDTC works well and has a very quick emergence
time. RMS performance is depicted in Fig. 6¢c. RMS follows
the same pattern as MAPE. EDTC’s performance is superior
to those of its competitors. DTC is ranked second. A function
is defined to calculate RMS using the conventional RMS
formula. Finally, the MSE score is illustrated in Fig. 6d. For
MAE and MSE, sklearn’s built-in functions are employed.
The MSE for NN is close to 0, indicating that it has an
extremely low MSE. Once again, LR comes in second. DTC’s
score is nearly comparable to EDTC’s, but EDTC outper-
forms DTC in this category as well. Based on the foregoing
extensive explanation of outcomes, it is obvious that DTC and
EDTC are excellent for STLF due to their ease of use, rapid
emergence, and high accuracy. Furthermore, DTC and EDTC
can capture non-linear and noisy LF data quite effectively.
Furthermore, as time passes, the data load increases, but the
performance of EDTC does not decline, but rather improves.
As a result of our experiments, we recommend using DTC
and EDTC for STLF among the previously stated ML
algorithms.

B. PERFORMANCE METRICS RESULTS

1) NN RESULTS

The confusion metric (CM) for NN classification in Table 5
shows that we achieved 97.5% accuracy with 1057 records
out of 1084 and 2.5% false positive rate (FPR) in case of
stable class, while in unstable/faulted case, the accuracy and
FPR attained are 98.00% with 1887 out of 1916 records and
1.5% respectively. The classification report (CR) for NN in
Table 6 represents that we got 98.5%, 97.60%, and 99.50% F1
score, precision, and recall respectively in stable class, while
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TABLE 5. Confusion metrics (CM) for the proposed EDTC and other ML algorithms.

CM for NN CM for KNN CM for DTC CM for SVM CM for the proposed EDTC
Labels Stable | Unstable Labels Stable Unstable Labels Stable Unstable Labels Stable | Unstable Labels Stable | Unstable
1057 | 27 70T | 383 1050 | 34 977 [ 107 1084
Stable | 9750, | 2.5% Stable | ¢4 705 | 35.3% Stble | g5 805 | 3.13% Stable | 94 105 | 9.9% Stable | 150q, | O
29 1887 275 1641 6 1850 157 1759 I 915
Unstable | 50 | 93, Unstable |\ g, | g5.6% | UMS@IC | 3440, | 9660 | UPS@DIC | ghg | gpgg | Unstable | o, 99.9%

TABLE 6. Classification report (CR) for proposed EDTC and existing ML models.

ML Models Labels Precision | Recall | FI Support | Training Accuracy | Training Loss | Testing Accuracy | Testing Loss
SVM Stable 0.830 0.901 0.864 | 0.361 97.20 0.07 97.50 0.07
Unstable | 0.941 0.896 0918 | 0.639 97.20 0.07 97.50 0.07
NN Stable 0.99 0.957 0.973 | 0.361 98.45 0.07 98.90 0.07
Unstable | 0.976 0.995 0.985 | 0.639 98.45 0.07 98.90 0.07
KNN Stable 0.718 0.647 0.681 | 0.639 94.23 0.08 94.50 0.08
Unstable | 0.811 0.856 0.833 | 0.639 94.23 0.08 94.50 0.08
DTC Stable 0.959 0.920 | 0.932 | 0.361 97.98 0.05 98.50 0.05
Unstable | 0.961 0.943 0.969 | 0.639 97.98 0.05 98.50 0.05
Proposed EDTC Stable 0.999 1.000 1.000 | 0.361 99.21 0.02 99.70 0.02
po! Unstable | 1.000 0.999 1.000 | 0.639 99.21 0.02 99.70 0.02
12 3:5 0:8—
20 0 30 0.7+
mt.s w8 mz.s w:::
§1n E 6 g% 20,
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(a) MAE score (b) MAPE score. (c) RMS error score. (d) MSE score.
FIGURE 6. MAE, MAPE, RMS, & MSE scores.
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FIGURE 7. ROC for NN, SVM, KNN, & DTC.

in the unstable category, F1-Measure scores, the precision,
and recall are 97.30%, 99.00%, and 95.70%, and 97.30%,
respectively. The ROC for the NN classifier is depicted in
Fig. 7a, where the area under the curve (AUC) is 97.96%.

2) SVM RESULTS

The CM for SVM classifier in Table 5 shows that we achieved
90.1% forecasting accuracy with 977 records out of 1084 and
9.9% FPR in case of stable class, while in unstable/faulted
case, the accuracy and FPR attained are 91.80% with 1759 out
of 1916 records and 8.2% respectively. The classification
report (CR) for SVM in Table 6 represents that we got
86.4%, 83.00%, and 90.10% F1 score, precision, and recall
respectively in stable class, while in the unstable category,
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F1-Measure scores, the precision, and recall are 91.80%,
94.10%, and 89.60%, respectively. The ROC for the SVM
classifier is depicted in Fig. 7b, where the AUC is 90.21%.

3) KNN RESULTS

The CM for KNN classifier in Table 5 shows that we achieved
64.7% forecasting accuracy with 701 records out of 1084 and
35.3% FPR in case of stable class, while in unstable/faulted
case, the accuracy and FPR attained are 86.60% with 1641 out
of 1916 records and 14.4% respectively. The classification
report (CR) for KNN in Table 6 represents that we got
68.1%, 71.80%, and 64.70% F1 score, precision, and recall
respectively in stable class, while in the unstable category,
F1-Measure scores, the precision, and recall are 83.30%,
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TABLE 7. Analysis of proposed and existent ML models based on
classification parameters.

Parameters EDTC LR KNN DTC NN

Accuracy in general Excellent Good Good Very Good Good
Speed of learning with respect to
number of attributes and the number of | Excellent | Very Good Good Average Average
instances
Speed of classification Excellent Good Very Good Good Average
Tolerance to missing values Good Good Excellent Very Good | Very good
Tolerance to irrelevant Attributes Good Average Good Excellent Good
Pealing with discrete fbinary Excellent | Very Good | Average | VeryGood | Excellent

attributes
Tolerance to noise Excellent Good Good Good Very Good
Dealing with Over fitting Excellent Average Excellent Average Average
Attempts for incremental learning Excellent Good Very Good Good Good
Explanation ability/transparency of Good Good Average Good Very Good

knowledge/classifications

81.10%, and 85.60%, respectively. The ROC for the KNN
classifier is depicted in Fig. 7c, where the AUC is 76.45%.

4) DTC RESULTS

The CM for DTC classifier in Table 5 shows that we
achieved 96.8% forecasting accuracy with 1050 records out
of 1084 and 3.13% FPR in case of stable class, while in unsta-
ble/faulted case, the accuracy and FPR attained are 96.50%
with 1850 out of 1916 records and 3.44% respectively. The
classification report (CR) for LR in Table 6 represents that
we got 95.9%, 92.10%, and 93.20% F1 score, precision,
and recall respectively in stable class, while in the unstable
category, F1-Measure scores, the precision, and recall are
96.10%, 94.30%, and 96.90%, respectively. The ROC for
the DTC classifier is depicted in Fig. 7d, where the AUC is
90.21%.

5) EDTC RESULTS

The CM for EDTC in Table 5 shows that we achieved 100%
forecasting accuracy with 1084 records out of 1084 and 0%
FPR in case of stable class, while in unstable/faulted case,
the accuracy and FPR attained are 99.90% with 1915 out
of 1916 records and 0.1% respectively. The classification
report (CR) for EDTC in Table 6 represents that we got
100%, 99.9%, and 100% F1 score, precision, and recall
respectively in stable class, while in the unstable category,
F1-Measure scores, the precision, and recall are 100%, 100%,
and 99.00%, respectively. The ROC for the EDTC is depicted
in Fig. 8a, where the AUC is 99.95%.

C. TRAINING AND TESTING LOSS AND ACCURACY
Training and testing accuracy along with loss of ML algo-
rithms are described in Table 6. Graphical representation in
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Fig. 8c shows that SVM training accuracy and loss is 97.20%
and 0.07 respectively, while its testing accuracy is 97.50%
with 0.07 data loss. NN classifier having training and testing
accuracy 98.45% and 98.90% with data loss 0.07 respec-
tively.In the case of LR, data loss is 0.05 for both training
and testing, and accuracy is 97.98% and 98.50%, respectively.
The effectiveness of KNN training and testing is 94.23%
and 94.80%, respectively. For both training and testing with
KNN, the data loss is 0.08. EDTC achieved 99.07 % accuracy
and 0.02 loss for training and testing. The EDTC obtained
1.98% higher accuracy compared to SVM, KNN, NN and LR.

D. METRICS PERFORMANCE IN CLASSIFICATION REPORT
Table 6 shows the effectiveness of ML models in terms of pre-
cision, recall and F1-score. The EDTC achieved a 100.00%
F1-score, 99.00% recall and 100% precision, which is more
remarkable than the ML models stated above for stable class.
Similarly, in terms of precision, recall, and Fl-score, the
EDTC model beat the standard models in the unstable class.

E. ACCURACY ACHIEVED BY PROPOSED EDTC
The proposed EDTC framework has the highest forecast
accuracy of 99.89% compared to other classifiers employed
in this work, as shown in Table 9. ETDC outperforms dif-
ferent algorithms used in this work regarding prediction
accuracy, recall, precision, and F1-Measure because it is
a probability-based algorithm. while Table 10 depicts the
comparison of proposed EDTC with other existing frame-
works. We observed that Authors of [12], [70], [71] achieved
99.01%, 97.82% and 95.37% AUC using MLSTM, EKNN
and Adaboost respectively while proposed EDTC achieve
99.42% AUC.

Remark 2: The following conclusions can be drawn from
the results:

(i): Compared to DL models, ML techniques are better
suited for classifying the SG dataset due to their small size.

(ii): Because the number of attributes is relatively low, the
EDTC outperforms the other ML methods considered.

VI. CRITICAL ANALYSIS

Aside from performance, ML algorithms have several advan-
tages over other Al and classical models for LF, including
noise tolerance, pattern generation rather than assumption,
handling non-linearity, and ease of use [72]. We employed
five strategies in particular (EDTC, SVM, LR, KNN,
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TABLE 8. Advantages EDTC over other ML Algorithms.

Proposed EDTC SVM

DTC

KNN NN

Fast, highly scalable model building

Easily Observed & develop generated rules (parallelism) and scoring.

large.

TABLE 9. The accuracy achieved after a comparison of ML algorithms and
devised EDTC.

Classifier Achieved accuracy
SVM 92.43
KNN 79.45
LR 84.76
NN 93.79
DTC 98.12
Proposed EDTC 99.43

TABLE 10. Comparison of proposed EDTC with other existing works in
terms of accuracy.

Frameworks Achieved accuracy
MLSTM [12] 99.12
E-KNN [70] 95.11
Adaboost [71] 98.16
Proposed
EDTC 99.42

and NN). Tables 1, 7, and 8 provide a brief explanation of
the logic behind the use and performance of each strategy.

VII. CONCLUSION AND FUTURE SCOPE

The stability of the SG is essential for efficient power distri-
bution to the control stations. ML techniques play an integral
part in signifying the resilience of the SGs. With the emer-
gence of different Ml algorithms, the foremost challenge is
to find the most appropriate algorithm to predict the stability
of the SG. To accomplish this, a comprehensive survey of
the state-of-the-art ML algorithms has been performed to
predict the stability of SGs. In this work, a novel EDTC
model is introduced to predict the stability of the smart grid.
The proposed model has experimented on the smart grid
dataset from NYISO. The performance of EDTC is compared
with traditional ML models like SVM, KNN, NN, LR, and
DT. The experimental results proved that the DTC algorithm
outperforms SVM, KNN, LR, and NN. The comparative
analysis proves the superiority of the proposed model con-
cerning the accuracy, precision, loss, and ROC curve metrics.
The proposed model achieved 99.07% training and testing
accuracy, which is 3% times higher than other traditional
ML algorithms. As part of the future work context aware
paradigm, dynamic power requirements can be met while also
making the SGs more reliable.

REFERENCES

[1] B. Zhao, L. Zeng, B. Li, Y. Sun, Z. Wang, M. Shahzad, and P. Xi,
“Collaborative control of thermostatically controlled appliances for bal-
ancing renewable generation in smart grid,” IEEJ Trans. Electr. Electron.
Eng., vol. 15, no. 3, pp. 460-468, Mar. 2020.

VOLUME 10, 2022

Robust to noisy training data and
effective if the training data is

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

[10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

More accurate than DT classification but
less than EDT.

High tolerance of noisy data and ability
to classify patterns for untrained data.

K. Berk, A. Hoffmann, and A. Miiller, ‘‘Probabilistic forecasting of indus-
trial electricity load with regime switching behavior,” Int. J. Forecasting,
vol. 34, no. 2, pp. 147-162, Apr. 2018.

J. R. Cancelo, A. Espasa, and R. Grafe, “Forecasting the electricity load
from one day to one week ahead for the Spanish system operator,” Int. J.
Forecasting, vol. 24, no. 4, pp. 588-602, 2008.

M. Djukanovic, S. Ruzic, B. Babic, D. J. Sobajic, and Y. H. Pao, “A neural-
net based short term load forecasting using moving window procedure,”
Int. J. Electr. Power Energy Syst., vol. 17, no. 6, pp. 391-397, Dec. 1995.
L. J. Soares and M. C. Medeiros, ‘“Modeling and forecasting short-term
electricity load: A comparison of methods with an application to Brazilian
data,” Int. J. Forecasting, vol. 24, no. 4, pp. 630-644, Oct. 2008.

R. Hu, S. Wen, Z. Zeng, and T. Huang, “A short-term power load
forecasting model based on the generalized regression neural network
with decreasing step fruit fly optimization algorithm,” Neurocomputing,
vol. 221, pp. 24-31, Jan. 2017.

A. Kavousi-Fard, H. Samet, and F. Marzbani, “A new hybrid modified
firefly algorithm and support vector regression model for accurate short
term load forecasting,” Expert Syst. Appl., vol. 41, no. 13, pp. 6047-6056,
2014.

Z. H. Osman, M. L. Awad, and T. K. Mahmoud, “Neural network based
approach for short-term load forecasting,” in Proc. IEEE/PES Power Syst.
Conf. Expo., Mar. 2009, pp. 1-8.

N. Zeng, H. Zhang, W. Liu, J. Liang, and F. E. Alsaadi, “A switching
delayed PSO optimized extreme learning machine for short-term load
forecasting,” Neurocomputing, vol. 240, pp. 175-182, May 2017.

V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: Communication technologies
and standards,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529-539,
Nov. 2011.

S. K. Desai, A. Dua, N. Kumar, A. K. Das, and J. J. P. C. Rodrigues,
“Demand response management using lattice-based cryptography in smart
grids,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018,
pp. 1-6.

M. Alazab and R. Broadhurst, Cyber-Physical Security: Protecting Critical
Infrastructure at the State and Local level, 1st ed, M. C. Robert and
H. Simon Eds. Cham, Switzerland: Springer, 2017, pp. 251-266.

L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro,
A.J. Sanchez-Esguevillas, J. Lloret, and J. Massana, “A survey on
electric power demand forecasting: Future trends in smart grids,
microgrids and smart buildings,” IEEE Commun. Surveys Tuts., vol. 16,
no. 3, pp. 1460-1495, 3rd Quart., 2014.

A. Rahman, V. Srikumar, and A. D. Smith, “Predicting electricity con-
sumption for commercial and residential buildings using deep recurrent
neural networks,” Appl. Energy, vol. 212, pp. 372-385, Feb. 2018.

L. Xiao, W. Shao, C. Wang, K. Zhang, and H. Lu, “Research and applica-
tion of a hybrid model based on multi-objective optimization for electrical
load forecasting,” Energy, vol. 180, pp. 213-233, Oct. 2017.

N. Deepa, B. Prabadevi, P. K. Maddikunta, T. R. Gadekallu, T. Baker,
M. A. Khan, and U. Tariq, “An ai-based intelligent system for health-
care analysis using Ridge—Adaline stochastic gradient descent classifier,”
J. Supercomput., vol. 77, no. 2, pp. 1998-2017, 2021.

Anamika and N. Kumar, “Market clearing price prediction using
ANN in Indian electricity markets,” in Proc. Int. Conf. Energy

Efficient Technol. Sustain. (ICEETS), 2016, pp.454-458, doi:
10.1109/ICEETS.2016.7583797.
T. R. Gadekallu, N. Khare, S. Bhattacharya, S. Singh,

P. K. R. Maddikunta, and G. Srivastava, “Deep neural networks to
predict diabetic retinopathy,” J. Ambient Intell. Hum. Comput., pp. 1-14,
Apr. 2020, doi:10.1007/s12652-020-01963-7.

H. Patel, D. S. Rajput, G. T. Reddy, C. Iwendi, A. K. Bashir, and
O. Jo, “A review on classification of imbalanced data for wireless
sensor networks,” Int. J. Distrib. Sensor Netw., vol. 16, no. 4, 2020,
Art. no. 1550147720916404.

48431


http://dx.doi.org/10.1109/ICEETS.2016.7583797
http://dx.doi.org/10.1007/s12652-020-01963-7

IEEE Access

T. Alquthami et al.: Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

W. Tian, “A review of smart grids and their future challenges,” in Proc.
MATEC Web Conf., vol. 173. Les Ulis, France: EDP Sciences, 2018,
p- 02025.

G. K. Venayagamoorthy, ‘“Dynamic, stochastic, computational, and scal-
able technologies for smart grids,” IEEE Comput. Intell. Mag., vol. 6, no. 3,
pp. 22-35, Aug. 2011.

M. Li, H. Xu, and Y. Deng, “Evidential decision tree based on belief
entropy,” Entropy, vol. 21, no. 9, p. 897, 2019.

M. Q. Raza and A. Khosravi, “A review on artificial intelligence based
load demand forecasting techniques for smart grid and buildings,” Renew.
Sustain. Energy Rev., vol. 50, pp. 1352-1372, Oct. 2015.

X. Liu, Z. Zhang, and Z. Song, “A comparative study of the data-driven
day-ahead hourly provincial load forecasting methods: From classical
data mining to deep learning,” Renew. Sustain. Energy Rev., vol. 119,
Mar. 2020, Art. no. 109632.

A. Dedinec, S. Filiposka, A. Dedinec, and L. Kocarev, “Deep belief
network based electricity load forecasting: An analysis of Macedonian
case,” Energy, vol. 115, pp. 1688-1700, Nov. 2016.

P-S. Yu, T.-C. Yang, S.-Y. Chen, C.-M. Kuo, and H.-W. Tseng, “Com-
parison of random forests and support vector machine for real-time radar-
derived rainfall forecasting,” J. Hydrol., vol. 552, pp. 92-104, Sep. 2017.
J. Wang, Y. Song, F. Liu, and R. Hou, “Analysis and application of fore-
casting models in wind power integration: A review of multi-step-ahead
wind speed forecasting models,” Renew. Sustain. Energy Rev., vol. 60,
pp. 960-981, Jul. 2016.

S. Wang, X. Wang, S. Wang, and D. Wang, “Bi-directional long short-
term memory method based on attention mechanism and rolling update for
short-term load forecasting,” Int. J. Electr. Power Energy Syst., vol. 109,
pp. 470-479, Jul. 2019.

F.-J. Yang, “An extended idea about decision trees,” in Proc. Int. Conf.
Comput. Sci. Comput. Intell. (CSCI), 2019, pp. 349-354.

D. Liu, Y. Shi, and Y. Tian, ‘‘Ramp loss nonparallel support vector machine
for pattern classification,” Knowl.-Based Syst., vol. 85, no. 5, pp. 224-233,
2015.

T.-Y. Wang and H.-M. Chiang, “Solving multi-label text categorization
problem using support vector machine approach with membership func-
tion,” Neurocomputing, vol. 74, no. 17, pp. 3682-3689, Oct. 2011.

H. Akbaripour and E. Masehian, “Efficient and robust parameter tuning
for heuristic algorithms,” Dept. Ind. Eng., Tarbiat Modares Univ., Iran,
Tehran, Tech. Rep., 2013.

M. Gavrilas, “Heuristic and metaheuristic optimization techniques with
application to power systems,” Power Syst. Dept., Tech. Univ. Iasi, Iasi,
Romania, Tech. Rep., Oct. 21, 2010.

S. Binitha and S. S. Sathya, “A survey of bio inspired optimization algo-
rithms,” Int. J. Soft Comput. Eng., vol. 2, pp. 137-151, May 2012.

S. Nandhini and K. S. J. Marseline, ‘“‘Performance evaluation of machine
learning algorithms for email spam detection,” in Proc. Int. Conf. Emerg.
Trends Inf. Technol. Eng. (ic-ETITE), 2020, pp. 1-4.

1. Ramadhan, P. Sukarno, and M. A. Nugroho, “Comparative analysis of
K -nearest neighbor and decision tree in detecting distributed denial of
service,” in Proc. 8th Int. Conf. Inf. Commun. Technol. (ICoICT), 2020,
pp. 1-4.

W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Machine learning-
based fast intra mode decision for HEVC screen content coding via deci-
sion trees,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 5,
pp. 1481-1496, May 2020.

G.-C. Liao, “Hybrid improved differential evolution and wavelet neural
network with load forecasting problem of air conditioning,” Int. J. Electr.
Power Energy Syst., vol. 61, pp. 673-682, Oct. 2014.

Y. Dai and P. Zhao, “A hybrid load forecasting model based on support
vector machine with intelligent methods for feature selection and parame-
ter optimization,” Appl. Energy, vol. 279, Dec. 2020, Art. no. 115332.

V. M. E. Batitis, M. J. G. Caballes, A. A. Ciudad, M. D. Diaz, R. D. Flores,
and E. R. E. Tolentino, “Image classification of abnormal red blood cells
using decision tree algorithm,” in Proc. 4th Int. Conf. Comput. Methodol.
Commun. (ICCMC), Mar. 2020, pp. 498-504.

M. Alazab, S. Khan, S. S. R. Krishnan, Q.-V. Pham, M. P. K. Reddy,
and T.R. Gadekallu, “A multidirectional LSTM model for predicting
the stability of a smart grid,” IEEE Access, vol. 8, pp. 85454-85463,
2020.

F. Javed, N. Arshad, F. Wallin, I. Vassileva, and E. Dahlquist, ‘‘Forecasting
for demand response in smart grids: An analysis on use of anthropologic
and structural data and short term multiple loads forecasting,” Appl.
Energy, vol. 96, pp. 150-160, Aug. 2012.

48432

(43]

[44]

(45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(57

(58]

[59]

[60]

[61]

[62]

[63]

L. Herniandez, C. Baladrén, J. M. Aguiar, B. Carro,
A. Sanchez-Esguevillas, and J. Lloret, ‘“Artificial neural networks
for short-term load forecasting in microgrids environment,” Energy,
vol. 75, pp. 252-264, Oct. 2014.

T. Ahmad and H. Chen, “Potential of three variant machine-learning
models for forecasting district level medium-term and long-term energy
demand in smart grid environment,” Energy, vol. 160, pp. 1008-1020,
Oct. 2018.

M. Q. Raza, M. Nadarajah, and C. Ekanayake, “‘On recent advances in PV
output power forecast,” Sol. Energy, vol. 136, pp. 125-144, Oct. 2016.

S. Gupta, R. Kambli, S. Wagh, and F. Kazi, “Support-vector-machine-
based proactive cascade prediction in smart grid using probabilistic
framework,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2478-2486,
Apr. 2015.

X.Panand B. Lee, “A comparison of support vector machines and artificial
neural networks for mid-term load forecasting,” in Proc. IEEE Int. Conf.
Ind. Technol., Mar. 2012, pp. 95-101.

G. Mitchell, S. Bahadoorsingh, N. Ramsamooj, and C. Sharma, “A com-
parison of artificial neural networks and support vector machines for short-
term load forecasting using various load types,” in Proc. IEEE Manchester
PowerTech, Jun. 2017, pp. 1-4.

A. B. M. S. Ali and S. Azad, “Demand Forecasting in Smart Grid,” in
Smart Grids Green Energy and Technology. A. Ali, Eds. London. U.K.:
Springer, 2013, pp. 135-150, doi: 10.1007/978-1-4471-5210-1_6.

M. S. Khan and P. Coulibaly, “Application of support vector machine in
lake water level prediction,” J. Hydrol. Eng., vol. 11, no. 3, pp. 199-205,
May 2006.

R. Khemchandani and S. Chandra, “Regularized least squares fuzzy sup-
port vector regression for financial time series forecasting,” Expert Syst.
Appl., vol. 36, no. 1, pp. 132-138, Jan. 2009.

F.E. H. Tay and L. J. Cao, ““Modified support vector machines in financial
time series forecasting,” Neurocomputing, vol. 48, nos. 1-4, pp. 847-861,
Oct. 2002.

W.-C. Hong, “A hybrid support vector machine regression for exchange
rate prediction,” Int. J. Inf. Manage. Sci., vol. 17, no. 2, pp. 19-32, 2006.
Q. Zhang, Y. Sun, and Z. Cui, “Application and analysis of ZigBee tech-
nology for smart grid,” in Proc. Int. Conf. Comput. Inf. Appl., Dec. 2010,
pp. 171-174.

H. Shayeghi, A. Ghasemi, M. Moradzadeh, and M. Nooshyar,
“Simultaneous day-ahead forecasting of electricity price and load
in smart grids,” Energy Convers. Manage., vol. 95, pp.371-384,
May 2015.

S. Bouktif, A. Fiaz, A. Ouni, and M. A. Serhani, “Optimal deep learning
LSTM model for electric load forecasting using feature selection and
genetic algorithm: Comparison with machine learning approaches,” Ener-
gies vol. 11, no. 7, p. 1636, Jun. 2018.

A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan, “Load
forecasting, dynamic pricing and DSM in smart grid: A review,” Renew.
Sustain. Energy Rev., vol. 54, pp. 1311-1322, Feb. 2016.

W. Li, N. Yan, and Z.-G. Zhang, “Study on long-term load forecasting
of mix-SVM based on rough set theory,” Power Syst. Protection Control,
vol. 38, no. 13, pp. 31-34, 2010.

W.-C. Hong, Y. Dong, L.-Y. Chen, B. K. Panigrahi, and S.-Y. Wei, “Sup-
port vector regression with chaotic hybrid algorithm in cyclic electric
load forecasting,” in Proceedings of the International Conference on Soft
Computing for Problem Solving (SocProS) (Advances in Intelligent and
Soft Computing), vol. 130, K. Deep, A. Nagar, M. Pant, and J. Bansal,
Eds. India: Springer, Dec. 2011, pp. 833-846, doi: 10.1007/978-81-322-
0487-9_79.

A. R. Javed, M. U. Sarwar, S. Khan, C. Iwendi, M. Mittal, and N. Kumar,
“Analyzing the effectiveness and contribution of each axis of tri-axial
accelerometer sensor for accurate activity recognition,” Sensors, vol. 20,
no. 8, p. 2216, Apr. 2020.

N. Deepa, Q.-V. Pham, D. C. Nguyen, S. Bhattacharya, B. Prabadevi,
T. R. Gadekallu, P. K. R. Maddikunta, F. Fang, and P. N. Pathirana, “A sur-
vey on blockchain for big data: Approaches, opportunities, and future
directions,” 2020, arXiv:2009.00858.

A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Clas-
sification of tweets data based on polarity using improved RBF kernel of
SVM,” Int. J. Inf. Technol., pp. 1-16, Jan. 2020.

Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu, “Interpreting CNNs via decision
trees,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 6261-6270.

VOLUME 10, 2022


http://dx.doi.org/10.1007/978-1-4471-5210-1_6
http://dx.doi.org/10.1007/978-81-322-0487-9_79
http://dx.doi.org/10.1007/978-81-322-0487-9_79

T. Alquthami et al.: Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid

IEEE Access

[64] H. Chitsaz, P. Zamani-Dehkordi, H. Zareipour, and P. P. Parikh, “Elec-
tricity price forecasting for operational scheduling of behind-the-meter
storage systems,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6612-6622,
Nov. 2018.

[65] ISO New England Data, 1SO Geneva, Switzerland, USA. Accessed:
May 5, 2022. [Online]. Available: https://bigdata.seas.gwu.edu/data-set-
18-iso-new-england-load-data-set/

[66] B. K. Tripathy, D. P. Acharjya, and V. Cynthya, “A framework for intel-
ligent medical diagnosis using rough set with formal concept analysis,”
2013, arXiv:1301.6011.

[67] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, ““Short-term load
forecasting with deep residual networks,” IEEE Trans. Smart Grid, vol. 10,
no. 4, pp. 3943-3952, Jul. 2019.

[68] Z.Guo, K. Zhou, X. Zhang, and S. Yang, ‘A deep learning model for short-
term power load and probability density forecasting,” Energy, vol. 160,
pp. 1186-1200, Oct. 2018.

[69] B. K. Tripathy and K. R. Arun, ‘A new approach to soft sets, soft multisets
and their properties,” Int. J. Reasoning-Based Intell. Syst., vol. 7, nos. 3—4,
pp. 244-253, 2015.

[70] V. Arzamasov, K. Bohm, and P. Jochem, “Towards concise models of grid
stability,” in Proc. IEEE Int. Conf. Commun., Control, Comput. Technol.
Smart Grids (SmartGridComm), Oct. 2018, pp. 1-6.

[71] 1. Pisica and M. Eremia, “Making smart grids smarter by using machine
learning,” in Proc. 46th Int. Univ. Power Eng. Conf. (UPEC). VDE: Soest,
Germany, 2011, pp. 1-5.

[72] M. Hayati and Y. Shirvany, “Artificial neural network approach for short
term load forecasting for Illam region,” World Acad. Sci., Eng. Technol.,
vol. 28, pp. 280-284, Jul. 2007.

THAMER ALQUTHAMI (Member, IEEE)
received the Doctor of Philosophy (Ph.D.) degree
in electrical engineering with a minor in math-
ematics from the Georgia Institute of Technol-
ogy. He is an Experienced Assistant Professor
with a demonstrated history of working in higher
education and industry. He has strong education
professional. His research interests include smart
grids, renewable energy, power system operation
and control, complex system modeling and simu-
lation, energy audit, energy efficiency and savings, and data analytics. He is
skilled in PSCAD/EMTDC, Python, PTI/PSSE, RTDs, building automation
implementation, R-Statistics, and C++.

MUHAMMAD ZULFIQAR received the B.Sc.
and M.S. degrees in electrical engineering from
Bahauddin Zakariya University, Multan, Pakistan.
He is currently pursuing the Ph.D. degree with the
I UET, Lahore. He is also working as a Lecturer
with the Department of Telecommunication sys-
tems, Bahauddin Zakariya University. His research
interests include optimization, planning, energy
management, and machine learning applications in
smart/micro grids. He is a Lifetime Professional
Engineer from the Pakistan Engineering Council.

VOLUME 10, 2022

MUHAMMAD KAMRAN joined the UET
Lahore, in 1994, after attaining industrial experi-
ence by serving PEL, SIEMENS, and NESPAK.
He has been a Professor with the Electrical, Elec-
tronics and Telecommunication Department, UET
Lahore, New Campus, since December 2007. He is
currently the Dean of the Faculty of Electrical
Engineering. His responsibilities include moni-
toring academic activities in electrical engineer-
ing, computer engineering, computer science and
biomedical engineering programs in all campuses of UET. Moreover, his
responsibilities include teaching graduate and undergraduate courses and
management of faculty. Further, his academic issues related to B.Sc. elec-
trical and biomedical engineering technology are also dealt which include
curriculum modifications and NTC accreditation. He is a HEC Approved
Supervisor for M.Sc. and Ph.D. degree program. He is actively taking
courses at the Center for Energy Research and Development at new Campus.
He is a Nominated Curriculum Committee Member of the Higher Education
Commission in Electronics. He is a member of selection board of various
national universities. He has successfully supervised two Ph.D. candidates
and 33 master’s students. He is also supervising almost ten scholars in
postgraduate studies in which three are Ph.D. students. He is looking forward
to engaging students in various industrial and research-oriented projects.

AHMAD H. MILYANI received the B.Sc. (Hons.)
and M.Sc. degrees in electrical and computer engi-
neering from Purdue University, in 2011 and 2013,
respectively, and the Ph.D. degree in electrical
engineering from the University of Washington,
in 2019. He is currently an Assistant Professor
with the Department of Electrical and Computer
Engineering, King Abdulaziz University, Jeddah,
Saudi Arabia. His research interests include power
systems operation and optimization, renewable
and sustainable energy, power electronics, electric vehicles, and machine
learning.

MUHAMMAD BABAR RASHEED (Senior
Member, IEEE) received the master’s and Ph.D.
degrees from COMSATS University, Islamabad,
in 2013 and 2017, respectively. He is currently
working as a GET-COFUND Marie Curie Fellow
at the UAH, Spain. Previously, he was work-
ing as an Associate and an Assistant Professor
with the Department of Electronics and Electri-
cal Systems, The University of Lahore, Pakistan.
After that, he obtained Postdoctoral Fellowships
from Durham University U.K., and King Abdulaziz University (KAU),
Saudi Arabia, in the years 2019 and 2020. He has authored over 40 peer-
reviewed papers in well-reputed journals and conference proceedings and
supervised/supervising more than ten students in their final year projects and
theses. His research interests include LP, NLP, and heuristic optimizations,
machine learning, smart grids, electric vehicles, and demand response. He is
an Active Reviewer of many esteemed journals and conferences, including
the IEEE Transactions, IEEE Access, the IEEE TRANSACTIONS ON INDUSTRY
APPLICATION SYSTEMS, Applied Energy, and Energies.

48433



