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ABSTRACT Genomic selection (GS) is an emerging technique for predicting unknown phenotypes using
genome-wide marker coverage, allowing the use of efficient computational models to select individuals with
high phenotypic values as candidate breeding populations. However, GS remains challenging inefficient crop
breeding due to the limited size of training populations, the nature of genotype-environment interactions, and
the complex interaction patterns between molecular markers. In this study, we use ensemble learning algo-
rithms to construct gradient boosted decision tree (GBDT) models to achieve the prediction of phenotypic
values from genotypic markers. We trained GBDT using the wheat GS dataset and compared the predictive
performance with six other widely used GS models. The mean normalized discounted cumulative gain
(MNDCG) method was used to evaluate the ability of each model to select individuals with high phenotypic
values. The results of the study show that: (1) Bayesian models converge and reach a steady-state only when
a sufficient number of iterations are set. As the number of iterations increases, the prediction accuracy of
the Bayesian model increases, but the computational efficiency of the model decreases significantly. When
200,000 iterations are performed, the prediction performance of the five Bayesian models is similar and
converges to a smooth state, and their prediction accuracy is 7.60% better than the GBDTmodel overall, and
the computational efficiency of the GBDT model is 70 times that of the Bayesian model. (2) Overall, the
overall prediction performance of the RRBLUP model was the best, but for some traits, the GBDT model
still had a higher ability to select individuals with high phenotypic values than the RRBLUP and Bayesian
models. (3) The prediction accuracy of GBDT andRRBLUPmodels was influenced by the subset of markers,
and the higher the number of markers the higher the prediction accuracy of the models, so the reasonable
selection of genetic marker data of appropriate size could improve the prediction performance of the models.

INDEX TERMS Genomic selection, gradient boosted decision tree, ensemble learning, phenotypic
prediction, wheat.

I. INTRODUCTION
Genomic selection, originally proposed by
Meuwissen [1] et al. to predict unknown phenotypes by
using genome-wide markers, is an effective marker-assisted
breeding paradigm. Researchers have explored the applica-
tion of GS not only in animal breeding [2]–[5] but also in
plant and crop breeding [6]–[11]. Many important traits in
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plant breeding are controlled by multiple genes, and plant or
crop phenotypes for polygenic traits can be better predicted
through the use of whole-genome markers, Unlike MAS, GS
can predict the phenotypic trait values of individuals before
planting the crop, thus contributing to the rapid selection
of superior genotypes and accelerating the breeding cycle
[12], [13]. Despite this, the application of GS in crop breeding
is still at a nascent stage, mainly because its high-dimensional
marker dataset may make it difficult to accommodate more
anomalous and discrete data when performing phenotype
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prediction, which leads to lower prediction accuracy and
stability. Therefore, the application of GS in crop breeding
is still challenging in terms of high predictive performance.

In recent years, genomic selection computational methods,
application strategies, and breeding programs have prolifer-
ated through continuous development and research by many
scholars. Various statistical models for GS breeding have
been developed, including the GBLUP [13], [14], RRBLUP
[15], [16] models based on the improved BLUP algorithm
model, and HBLUP [17], [18], which is commonly used for
animal breeding, and BayesA [1], BayesB [19], Bayesian
LASSO (BL) [20], Bayesian ridge regression (BRR) [21],
BayesC and BayesCπ [19], [22], which are based on the
improved Bayesian algorithm. TheseGSmodels based on tra-
ditional statistical methods usually make assumptions before
performing linear regression analysis. As an example, the
RRBLUP model, which predicts phenotypes based on a lin-
ear function of genotypic markers only when the effects
of all marker genes are assumed to arrive at a minimum
and non-zero normal distribution [54]. These GS models
not only face the statistical challenges associated with high-
dimensional marker data but also have difficulty capturing
the complex relationships within genotypes and between
genotypes and genes. How to optimize the model, minimize
artificially set parameters, and greatly improve computational
efficiency while ensuring high accuracy is the future direction
of genome-wide selection model optimization. Therefore,
novel methods are urgently needed to improve the potential
of GS in plant breeding.

With the continuous development of big biological data,
machine learning has attracted the attention of many biol-
ogists and researchers working in the field of genetics,
and it has been well applied in many disciplines [23], and
researchers have successfully applied it to gene expression
inference [24]–[26], functional annotation of genetic vari-
ants [27], gene and disease association prediction [28]–[30],
the identification of protein folds and prediction of genome
accessibility [11], [31]. These applications demonstrate the
powerful ability of machine learning to learn complex rela-
tionships from biological data [32]–[34]. Therefore, machine
learning has also started to be tried for GS breeding.
Ma,wenlong et al. [36] attempted to use deep convolutional
networks to capture complex interactions between markers
to predict wheat phenotypes, Qin C [37] et al. improved
GS prediction performance by constructing random forests,
Wang H [35], Montesinos-López [39], et al. attempted to use
deep learning for genomic prediction of plants and crops,
Mathieu Blonde [47] et al. attempted to use gradient boosting
regression trees and random forests for genomic prediction
of crops, and Rosado R [54] et al. attempted to use arti-
ficial neural networks to improve the prediction accuracy
of flowering traits in beans. Min-Gyoung Shin [55] et al.
implemented random forest and gradient boosting, to eval-
uate the ability of significant markers in predicting pheno-
type values, and demonstrated the contribution of different
marker combinations on trait values via prediction trees.

Yan J, Xu Y, Cheng Q [56], et al. implemented a machine
learning method, namely light gradient gradient boosting
machine (LightGBM), to evaluate the ability of significant
markers in predicting phenotype values, and LightGBM
has been implemented as a toolbox, Crop Genomic Breed-
ing Machine CropGBM [57], encompassing multiple novel
functions and analytical modules to facilitate genomically
designed breeding in crops, and demonstrate its use on diverse
maize lines containing high-density markers. Overall, these
studies show the potential of machine learning to capture
complex interactions between markers relative to traditional
GS methods.

The gradient boosting (GB) is an ensemble learning strat-
egy that brings together multiple weak learners to build a
strong model [42], [43]; therefore, its prediction accuracy is
significantly better than that of a single model. The GB algo-
rithm has been applied to animal and plant genome prediction
[56], [57], and the prediction ability of GB is better than
that of artificial neural networks (ANN), feed-forward neural
networks (FNN), and random forest (RF) [38]. In contrast
to RF, both GB and RF use ensemble learning algorithms,
but GB is constructed differently from RF [41]. RF builds
independent trees through a bagging ensemble strategy and
averages the results of all trees as the final prediction. GB, on
the other hand, builds the tree by gradient boosting iterations.
In each iteration, the current tree is built based on the previous
tree, and the error between the predicted and actual values of
the previous tree is set as the prediction target of the current
tree. Subsequently, the error value is gradually minimized
by performing hundreds of iterations, and the results of all
trees are summed up as the final prediction value. Compared
with ANN and FNN, GB employs a unique feature extraction
strategy that can accomplish feature selection and prediction
simultaneously. During the tree building process, GB needs to
traverse all the features to select the important nodes, and the
prediction of themodel is only based on the features with high
importance [45]. In addition, the selected features always
keep their original form and no weights are set on them.
However, unlike GB, ANN and FNN models first perform
feature selection by calculating weights for each marker, and
then calculate recombinant new features based on the sum of
weighted features to represent a set of neighboring markers
within a predetermined genomic region [40]. The validity of
the recombinant new traits may be diminished if the region
contains too much information about markers that are not
relevant to the predicted traits. Therefore, excessive feature
weighting may reduce the prediction accuracy and stability
of the neural network, and may also lead to model training
failure due to gradient explosion.

In that study, we explore the application of integrated
learning in the GS domain. The contributions of this paper
are as follows:
• Integratingmultiple decision trees using ensemble learn-
ing techniques to construct GBDT regression prediction
models for predicting individual phenotypic values from
genetic markers.
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• We construct an evaluation method of GS model predic-
tion performance (MNDCG) for evaluating the ability
of the model to select individuals with high phenotypic
values.

• We discuss in this paper the effect of wheat GS dataset
size on the predictive performance of GBDTmodels and
confirm that selecting appropriately sized markers is an
important way to improve the predictive performance of
the models. It is also confirmed that a single evaluation
system does not give a good indication of how good the
model is, and although the predictive performance of the
RRBLUP model is still higher than that of GBDT, for
some traits, the GBDT model will also have a higher
ability to select individuals with high phenotypic values
than RRBLUP.

This paper is structured as follows, Section 2 gives an
account of the sources of experimental data, model evalua-
tion methods, the experimental environment, and the overall
architecture and algorithmic principles of the main models;
Section 3 presents the experimental results; Section 4 focuses
on the discussion of the experimental results, and Section 5
concludes this study.

II. MATERIALS AND METHODS
A. EXPERIMENTAL DATASETS
TheGS dataset used in this studywas obtained from thewheat
gene bank of the International Maize and Wheat Improve-
ment Center (http://genom ics.cimmy t.org/mexic an_irani
an/traverse/irani an/stand arize dData_univa riate .RData),
which The gene bank contains 2000 samples of Iranian bread
wheat (Triticum aestivum) local varieties, each containing
genotypes for 33,709 genetic markers and eight traits (traits:
Grain length (GL), Grain width (GW), Grain hardness (GH),
Thousand-kernel weight (TKW), Test weight (TW), Sodium
dodecyl sulphate sedimentation (SDS), Grain protein (GP)
and plant height (PHT)). Gene markers were generated by
the DArT-Seq platform and obtained by genotyping sequenc-

ing methods. Genomic heritability (h2=
σ 2g

σ 2g+σ
2
e
) is shown in

Table 1, and all gene markers are coded by 0 and 1, indicating
the absence or presence of alleles, respectively. Since the
data used in this study are not raw data, the phenotypic data
have been normalized (mean= 0, standard deviation= 1).
More details about this GS dataset can be found in the
literature [10].

B. EXPERIMENTAL MODELS
1) RRBLUP PREDICTION MODEL
RRBLUP is one of the widely used regression models in
genome-wide association analysis [16], and its corresponding
standard linear regression equation is shown in equation (1).

y = µ+ Gg+ ε (1)

y(n+1) is the vector corresponding to the phenotypic values,
G(n×m) is the gene matrix, µ is the mean of the phenotypic
vector y, g(m× 1) is the marker effect vector associated with

theGmatrix and g obeys a normal distribution g∼N (0, Iσ 2
g ),

and ε(n× 1) is the random effect vector.

2) BAYESIAN PREDICTION MODEL
Five Bayesian regression methods (BayesA, BayesB,
BayesC, Bayesian LASSO, Bayesian ridge regression) are
applied in this study. Bayesian methods include three nec-
essary conditions, prior, likelihood, and posterior. The prior
probability is a quantitative indicator of the parameters’
self-generation before the data are analyzed, and generally
the parameters have a prior distribution of their own. The
likelihood is the conditional probability, and the posterior
probability is derived by combining the prior and the like-
lihood using Bayesian theory. The basic theory of Bayesian
is as follows:

f (θ | y) =
f (y | θ)f (θ )

f (y)
∝ f (y | θ )f (θ ) (2)

f (θ ) is denoted as the prior probability density of θ , f (θ | y)
is denoted as the likelihood value, and f (y | θ ) is denoted as
the posterior density of θ .

The prediction accuracy of various Bayesian models
depends to a large extent on the suitability of their model
assumptions to the genetic construction of the predicted phe-
notypes.When Meuwissen et al. [1] first proposed GS theory,
they provided two Bayesian approaches for solving the prob-
lem that the number of geneticmarkers is usuallymuch higher
than the number of phenotypic records, namely BayesA and
BayesB. BayesA assumes that all markers have effects, and
that all genetic markers obey a positive-tax distribution with
a scale inverse cardinality distribution, where the degrees of
freedom and scale parameters are associated with genetic
structure and are able to determine genetic structure [1], both
of which are given a priori. BayesA uses Markov Chain
Monte Carlo (MCMC) to construct Gibbs sampling chains,
and solves for the markers in the model. BayesB differs from
BayesA in the different prior assumptions on SNP effects.
BayesA assumes that all genetic markers have effects, while
BayesB assumes that only a small fraction of marker loci
have effects and most other chromosomal segments have 0
effects (the proportion of invalid marker loci is π ). BayesB
uses a mixed distribution as the marker effect variance a
priori, so it is difficult to construct fully conditional posterior
distributions for the respective marker effects and variance,
so BayesB uses Metropolis-Hasting (MH) sampling for joint
sampling of markers and methods [19]. BayesC [22] differs
from BayesB in that π is unknown and needs to be solved in
the model to obtain it. Bayesian LASSO (BL) [20] assumes
that genetic markers obey the Laplace distribution, which
is equivalent to a normal distribution where the variance
obeys an exponential distribution. The Bayesian ridge regres-
sion (BRR) [21] model assumes that all markers have the
same genetic variance, and its theoretical model is the same
as that of RRBLUP, but differs in that the BRR model is
based on the MCMC method sampling and thus solving for
marker effects.
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TABLE 1. Phenotypic traits of wheat gene bank, number of observations, number of markers and heritability of the trait.

3) GBDT PREDICTION MODEL
Ensemble learning contains three main methods, boosting,
bagging, and stacking [41]. Gradient boosting [42], [43]
algorithm is a machine learning technique for regression,
classification, and ranking tasks and is part of the boosting
algorithm family, which builds a learner capable of reducing
the loss along the steepest gradient at each step of the iteration
to compensate for the deficiencies of the existing model,
and can boost weak learners to strong learners. The training
process of the algorithm is tandem, and the training of the
weak learners is sequential, with each weak learner learning
from the previous one and finally combining the predictions
of all the learners to produce the final prediction results.

This study mainly uses decision trees as the base learner,
reduces the fitting ability of a single decision tree by
suppressing the complexity of the decision tree, and then
integrates multiple decision trees by gradient boosting to con-
struct the gradient boosting decision tree algorithm (GBDT),
which can finally solve the overfitting problem well. The
GBDT algorithm, also called MART (Multiple additive
regression) [44], [45], is the iterative decision tree algorithm,
which can be viewed as an additive model composed of M
trees, and its corresponding formula is shown in equation (3),
where x is the input sample; w is the model parameter; h is
the regression tree, and α is the weight of each tree.

F(x,w) =
M∑
m=0

αmhm (x,wm) =
M∑
m=0

fm (x,wm) (3)

The GBDT model predicts the genome as shown in Figure 1,
with a decision tree type using CART [46].
• Initialize the first weak learner f0(x), the weak learner
is defined in equation (4). The squared difference
L (Yi, f (xi ) is chosen as the loss function in the GBDT
model as in equation (6), where Yi are the observed phe-
notype value, f (xi) is the predicted phenotype value, and
the squared loss function is convex, The direct derivation
yields f ′0(x) = c = 1

N

(∑N
i=1 Yi

)
, the phenotypic mean

of the training sample.

f0(x) = argmin
c

N∑
i=1

L (Yi, c) (4)

rm,i = −
[
∂L (Yi, f (xi))

∂f (x)

]
f (x)=fm−1(x)

(5)

L (Yi , f (xi )) = (Yi − f (xi ))2 (6)

• Construct m(m = 1, 2, 3, . . . ,M ) classification regres-
sion trees, and calculate the residual value rm,i corre-
sponding to the i(i = 1, 2, 3, . . . ,N ) sample in the mth
tree. The calculation formula is shown in equation (5).
The residuals are used as the true phenotype values of
the training samples to train the next tree, and the mth
regression tree is obtained. Its corresponding leaf node
region is Rm,j, j = 1, 2, . . . , Jm, Jm is the number of leaf
nodes of the mth regression tree. The process requires
finding all possible best division nodes of CART [46]
and calculating the squared loss of the two sets of data
after splitting, SEl is the squared loss of the left node
and SEr is the squared loss of the right node so that the
division node with the smallest value of SEl+SEr is the
best, followed by calculating the best fit value cm,j of
the leaf node regions j = 1, 2, . . . , Jm as in equation (7),
update the learner fm(x) as in equation (8), and after m
iterations getM decision trees and integrate them to get
the strong learner as in equation (9).

cm,j = argmin
∑
x∈R

L (Yi, fm−1 (xi)+ c) (7)

fm(x) = fm−1(x)+
Jm∑
j=1

cm,jI
(
x ∈ Rm,j

)
(8)

FM (x) = f0(x)+
M∑
m=1

Jm∑
j=1

cm,jI
(
x ∈ Rm,j

)
(9)

• The constructed training set is fed into the GBDT pre-
dictor for testing.

• Finally, the sum of the prediction scores of these deci-
sion trees and the product of the learning rate is used as
the final prediction result.

C. MODELS PERFORMANCE EVALUATION
The whole experimental procedure uses the Hold-Out [51]
validation method to extract 70% of the original data
for model training and 30% of the data for model
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FIGURE 1. General architecture of gradient boosting decision tree algorithm.

performance validation. The Pearson correlation coefficient
(PCC) was used to evaluate the prediction performance of
different models, and the mean normalized discounted cumu-
lative gain (MNDCG) method [40], [47] was used to evaluate
the ability of different models to predict individuals with high
phenotypic values. PCC andMNDCG are defined as follows.

PCC(Y ,Ŷ ) =

∑N
i=1

(
Yi − Ȳ

) (
Ŷi − Ŷ

)
√∑N

i=1
(
Yi − Ȳ

)2√∑N
i=1

(
Ŷi − Ŷ

)2
(10)

MNDCG(K ,Ŷ ,Y ) =
1
K

K∑
k=1

∑K
i=1 y(i, Ŷ )d(i)∑K
i=1 y(i,Y )d(i)

(11)

where N in equation (10) denotes the number of test samples,
and Yi and Ŷi denote the phenotypic observations and phe-
notypic predictions at i, respectively, where i takes a range
of values 1≤ i≤N , Ȳ denotes the mathematical expecta-
tion of phenotypic observations, and Ŷ denotes the math-
ematical expectation of phenotypic predicted values. The
d(i) = 1/

(
log2 i+ 1

)
in Eq. (11) denotes the monotonically

decreasing discount function at i, y(i,Y ) denotes the ith phe-
notypic observation, and Y is in descending order, y(1,Y ) >
y(2,Y ) > · · · y(N ,Y ), y(i, Ŷ ) is the ith phenotypic predicted
value corresponding to Y in the two-dimensional score matrix
(Ŷ ,Y ), where Ŷ is in descending order, and the higher value
of MNDCG indicates that the GS prediction model performs
better in selecting the first K individuals with higher pheno-
typic values (α = K/N ; 1 6 K 6 N ; 1% 6 α 6 100%, N is
the number of test samples), and MNDCG = y(i, Ŷ )/y(i,Y )
when K= 1.

D. EXPERIMENTAL ENVIRONMENT
Experimental hardware environment configuration Inter(R)
Core(TM) i7-10700kCPU@3.80Hz processor, NVIDIA
Quadro P400 graphics card, 8GB running memory, 1T
hard disk capacity. The experimental software environment
is JetBrains PyCharm Community Edition 2019.2.4× 64
(https://www.jetbrains.com/pycharm/) and RStudio (https://
rstudio.com/). The GBDT model is based on the sklearn
framework (https://sklearn.apachecn.org/), and the RRBLUP
model is based on the ‘‘rrBLUP’’ package (https://cran.r-
project.org/web/packages/rrBLUP/index.html), the BayesA,
BayesB, BayesC, BL, and BRR models are based on
the R language package ‘‘BGLR’’ (https://cran.r-project.
org/web/packages/ BGLR/index.htm) for experiments.

III. RESULTS
A. COMPARISON OF THE PREDICTION PERFORMANCE
OF GBDT AND THREE MACHINE LEARNING MODELS
We constructed four GS prediction models based on the
sklearn framework, including gradient boosting decision
tree (GBDT), random forest (RF), artificial neural network
(ANN), and k-nearest neighbor (KNN) algorithm, and eval-
uated the predictions of these four models using the wheat
dataset. The experimental results showed (Figure 2) that
GBDT had the highest prediction correlation for eight traits
(TKW, TW, GL, GW, GH, GP, SDS, and PHT) with PCC
values of 0.615, 0.564, 0.689, 0.706, 0.542, 0.527, 0.402, and
0.352, respectively; KNN had the lowest prediction correla-
tion with PCC values of Compared with the ANN, RF and
KNN models, the average prediction accuracy of GBDT for
the eight traits was improved by 7.82%, 3.12%, and 24.78%,
respectively.
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FIGURE 2. Pearson correlation coefficients of GBDT, ANN, RF and KNN
models for eight tested traits.

B. COMPARISON OF THE PREDICTION PERFORMANCE
OF GBDT AND FIVE BAYESIAN MODELS
Genomic predictions were made for eight test traits of wheat
using BayesA, BayesB, BayesC, BRR, BL, and GBDT mod-
els, and the predictive performance of the models was eval-
uated using Pearson correlation coefficients of phenotypic
predictions and phenotypic observations. We verified the pre-
diction accuracy of Bayesian models for different numbers of
iterations, and their prediction performance leveled off when
200,000 iterations were performed. The results in Table 2
show that for the trait GW, the GBDT model has the highest
prediction accuracy with PCC values of 0.706; for several
other traits, BayesA, BayesB, BayesC, BRR, and BL have
similar prediction results with average prediction accuracy of
0.591, 0.592, 0.591, 0.590 and 0.589, respectively, relative
to the overall improvement of prediction accuracy of GBDT
is 7.60%. In addition, Bayesian models are far less com-
putationally efficient than the GBDT model when 200,000
iterations are performed. For PHT trait with lower heritability,
each model showed lower prediction accuracy than several
other traits, indicating that the prediction performance of
the models was somewhat influenced by the magnitude of
heritability.

The MNDCG was also used to evaluate the ability of the
model to predict individuals with high phenotypic values
(Figure 3). At different α levels, the MNDCG values of
GBDT were higher than the five Bayesian models for traits
TKW (53% ≤ α ≤ 100%), GW (1% ≤ α ≤ 100%) and
GP (1% ≤ α ≤ 18%); for traits TW (1% ≤ α ≤ 27%),
GL (1% ≤ α ≤ 100%), GH (1% ≤ α ≤ 100%), GP
(1% ≤ α ≤ 100%), SDS (1% ≤ α ≤ 100%) and PHT
(5% ≤ α ≤ 100%), the MNDCG values of GBDT were
overall higher than those of BRR; for traits GL and GH, the
MNDCG values of BayesA, BayesB, BayesC, and BL were
not significantly different when 1% ≤ α ≤ 100% and were
all higher than those of GBDT.

C. COMPARISON OF THE PREDICTION ACCURACY
OF GBDT AND RRBLUP MODELS
The prediction accuracy of the GBDT and RRBLUP models
are discussed separately in this subsection. The results in

Table 3 show that the correlation between phenotypic pre-
dictions and observations is higher for the RRBLUP model
than for the GBDT. Studies have shown that the RRBLUP
model still exhibits good predictive power in genomic pre-
diction [37], [54]. Based on this, further comparison of
the predictive ability of the RRBLUP and GBDT mod-
els for individuals with high phenotypic values (Figure 4)
showed that for traits GH (Figure 4.e), SDS (Figure 4.g),
GL (Figure 4.c) and PHT (Figure 4.h), the MNDCG val-
ues of RRBLUP were higher than those of GBDT over-
all when 1%≤α≤ 100%, where the GBDT model had the
lowest MNDCG values of 0.093 and −0.016 for traits GH
(α= 97%) and SDS (α= 100%), respectively; for traits GW
(1%≤α≤ 100%) (Figure 4.d), TKW (60%≤α≤ 100%)
(Figure 4.a), TW (8%≤α≤ 17%) (Figure 4.b), and GP
(1%≤α≤ 73%) (Figure 4.f), the MNDCG values of GBDT
were higher than those of RRBLUP.

In terms of model prediction accuracy, the overall pre-
diction accuracy of the GBDT model for the eight traits
was lower than that of RRBLUP, and in terms of the ability
of the models to select individuals, both models showed
their respective selection advantages for different traits. For
some individuals with higher phenotypic values, GBDT also
showed good selection ability. In addition, GBDT differs
from the RRBLUP model in that the GBDT model does
not make a priori assumptions about the markers, and its
prediction process uses a different feature extraction strat-
egy by building a regression tree through a gradient boost-
ing algorithm and traversing all features to select important
feature nodes. The prediction process of GBDT is based
only on features with high importance and can accom-
plish both feature selection and phenotype prediction, so
this unique computational approach also greatly improves
its computational efficiency in the phenotype prediction
process.

D. EFFECT OF THE NUMBER OF MARKERS ON
MODEL PREDICTION PERFORMANCE
In the course of this study, to investigate the effect of the selec-
tion of different marker numbers on the prediction accuracy
of GBDT and RRBLUP models, a subset of markers with
different dimensions (Markers= 1000, 2000, 5000, 8000,
12000, 15000, 18000, 20000) were selected to construct the
prediction models, and the Hold-Out [51] method was used
to validate for each of the different marker subsets.

The PCC of both GBDT and RRBLUP models were
affected to some extent when the number of markers changed.
For traits GL, GH, and PHT, the PCC of GBDT and RRBLUP
showed a significant increasing trend as the number of mark-
ers increased, however, for the other five traits, the PCC
showed a more moderate increasing trend as the number of
markers increased. For individual models, when the number
of markers varied, the PCC was highest for TKW (2K), TW
(8K), GL (15K), GW (8K), GH (15K), GP (12K), SDS (15K),
and PHT (20K) with 0.640, 0.576, 0.699, 0.717, 0.558 0.537,
0.418 and 0.332; for traits TKW (15K), TW (20K), GL (20K),
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TABLE 2. Pearson correlation coefficients of six GS models for eight tested traits. (Notes: TKW: Thousand-kernel weight; TW: Test weight; GL: Grain
length; GW: Grain width; GH: Grain hardness; SDS: Sodium dodecyl sulphate sedimentation; GP: Grain protein; PHT: Plant height).

FIGURE 3. Box plot of the MNDCG value for GBDT and five Bayesian models with top-ranked α increasing from 1% to 100%.

TABLE 3. Pearson correlation coefficients of CBDT and RRBLUP for eight tested traits. (Notes: TKW: Thousand-kernel weight; TW: Test weight; GL: Grain
length; GW: Grain width; GH: Grain hardness; SDS: Sodium dodecyl sulphate sedimentation; GP: Grain protein; PHT: Plant height).

GW (15K), GH (20K), GP (8K), SDS (20K) and PHT (15K),
RRBLUP had the highest PCC with 0.633, 0.626, 0.785,
0.731 0.651, 0.552, 0.487 and 0.384; for traits TKW, GW, and
GP, the PCC values and trends of the GBDT and RRBLUP
models were similar. However, the predictive performance of
RRBLUP for the eight tested traits was slightly higher than
that of the GBDT model (Figure 5).

The MNDCG results showed (Figure 6) that the GBDT
model predicted the highest mean MNDCG values of 0.492,
0.662, 0.826, 0.389, 0.670, 0.482, 0.541, and 0.283 for traits
GP (2K), GL (5K), GW (5K), SDS (5K), TKW (8K), GH
(8K), TW (18K) and PHT (20K), respectively when differ-
ent numbers of markers were used. The RRBLUP model
predicted the highest mean MNDCG for traits GP (2K),
GL (5K), GW (12K), SDS (20K), TKW (12K), GH (18K),
TW (5K) and PHT (15K), with 0.480, 0.668, 0.631, 0.680,
0.751, 0.420, 0.736, and 0.641, respectively. For traits GH,
TW, SDS, and PHT, although the MNDCG values of the

GBDT model were lower than those of RRBLUP, there was
a significant improvement in the MNDCG values of the
GBDT model as the number of markers increased (Figure 6).

At different α, when the number of markers was 1K, except
for traits TW and PHT, for traits TKW (1% ≤ α ≤ 100%),
GL (93% ≤ α ≤ 100%), GW (1% ≤ α ≤ 100%), GH
(97% ≤ α ≤ 100%), GP (1% ≤ α ≤ 59%), and SDS
(1% ≤ α ≤ 2%), the MNDCG values of GBDT were higher
than RRBLUP by 3.91%, 0.30%, 8.76%, 8.67%, 6.66%, and
6.50%, respectively (Figure 7.a).

When the number of markers was 2K, the MNDCG values
of GBDT increased over RRBLUP for traits TKW (3% ≤
α ≤ 100%), GL (22% ≤ α ≤ 100%), GW (1% ≤ α ≤

100%), GH (98% ≤ α ≤ 100%), and GP (1% ≤ α ≤ 47%),
in addition to traits TW, SDS, and PHT, respectively 4.18%,
2.62%, 5.88%, 10.48%, and 5.32%, respectively (Figure 7.b).

When the number of markers was 5K, except for traits
TW and PHT, for traits TKW (50% ≤ α ≤ 100%), GL

48132 VOLUME 10, 2022



T. Yu et al.: Predicting Phenotypes From High-Dimensional Genomes

FIGURE 4. MNDCG value curves for GBDT and RRBLUP with top-ranked α increasing from 1 to 100%.

(1% ≤ α ≤ 100%), GW (1% ≤ α ≤ 100%), GH
(97% ≤ α ≤ 100%), GP (1% ≤ α ≤ 56%), and SDS
(1% ≤ α ≤ 6%), the MNDCG values of GBDT over
RRBLUP were increased by 2.41%, 3.12%, 7.61%, 8.58%,
4.56%, and 8.24%, respectively (Figure 7.c).

When the number of markers was increased to 8K, except
for traits TW, SDS and PHT, for traits TKW (48% ≤ α ≤

100%), GL (31% ≤ α ≤ 56%, 84% ≤ α ≤ 100%),
GW (1% ≤ α ≤ 100%), GH (98% ≤ α ≤ 100%),
and GP (1% ≤ α ≤ 51%), the MNDCG values of GBDT
over RRBLUP by 2.09%, 0.56%, 7.87%, 9.23%, and 2.00%,
respectively (Figure 7.d).

When the number of markers was 12K, the MNDCG
values of GBDT increased over RRBLUP for traits TKW
(82% ≤ α ≤ 100%), GL (17% ≤ α ≤ 100%), GW
(1% ≤ α ≤ 100%), GH (98% ≤ α ≤ 100%), and GP
(1% ≤ α ≤ 60%), in addition to traits TW, SDS, and
PHT, respectively 0.64%, 0.78%, 5.75%, 9.20%, and 3.47%,
respectively (Figure 7.e).

When the number of markers was 15K, except for traits
TW, SDS and PHT, the MNDCG values for traits TKW
(71% ≤ α ≤ 100%), GL (78% ≤ α ≤ 100%), GW
(1% ≤ α ≤ 100%), GH (98% ≤ α ≤ 100%), GP
(1% ≤ α ≤ 98%), and GBDT increased over RRBLUP
by 0.72%, 0.72%, 10.12%, 7.44%, and 6.52%, respectively
(Figure 7.f).

When the number of markers was 18K, except for traits
SDS and PHT, for traits TKW (67% ≤ α ≤ 100%),
GL (12% ≤ α ≤ 39%, 85% ≤ α ≤ 100%), GW
(1% ≤ α ≤ 100%), GH (98% ≤ α ≤ 100%), GP
(1% ≤ α ≤ 92%), and TW (5% ≤ α ≤ 15%), the GBDT
MNDCG values increased by 1.10%, 0.48%, 11.48%, 5.75%,
5.40%, and 0.51%, respectively, compared to RRBLUP
(Figure 7.g).

When the number of markers was 20K, except for traits
TW, SDS and PHT, the MNDCG values for traits TKW
(51% ≤ α ≤ 100%), GL (98% ≤ α ≤ 100%), GW (1% ≤
α ≤ 100%), GH (98% ≤ α ≤ 100%), GP (1% ≤ α ≤ 86%),
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FIGURE 5. PCC curves for GBDT and RRBLUP models when subsets of different markers were used.

and GBDT were improved over RRBLUP by 2.62%, 0.11%,
10.87%, 15.35%, and 4.61%, respectively (Figure 7.h).

IV. DISCUSSION
Genome-wide prediction is an emerging technique for pre-
dicting unknown phenotypes using genome-wide marker
coverage, and with the continuous updating and increasing
maturity of sequencing technologies and the increasingly
low cost of genotyping, genome-wide prediction is gradually
being promoted in plant and animal breeding [51-52], and
the selection of genomic models play a crucial role and
directly affects the prediction of phenotypes. In this study,
we mainly used an integrated learning approach (GBDT) for
genomic prediction in wheat and compared the prediction
performance with five typical Bayesian models (BL, BRR,
BayesA, BayesB, BayesC) and RRBLUP model, in addition,
the prediction performance of each model for the top K
ranking of individual phenotypic values was analyzed in the
study, and the effect of a different number of markers on the
prediction performance of GBDT and RRBLUP models was
explored.

Overall, the prediction results of GBDT and the five
Bayesian models were relatively similar, but their applica-
bility differed for the different traits tested, with the GBDT
model having the highest prediction performance for traits
TKW and GW, the BL model for traits PHT and GL, and the
BayesA model for traits SDS, GP, GH, and TW. The results
demonstrated that it is difficult to have optimal methods in the
genomic prediction that are adapted to all traits [50], [52], and
even when Bayesian theoretical models are used in different
population experiments, the prediction performance varies

because of the differences between traits [19]. And even
before this study, Bayesian theoretical models were used by
Mathieu Blondel et al. to predict maize, rice, and barley and
compared with another ensemble learning method (Gradient
boosted regression trees, GBRT) [47]. For the barley dataset,
the average result of GBRT prediction was 0.554, the average
result of BayesC was 0.593, and the average result of BL
was 0.581; for the maize dataset, the average result of GBRT
predictionwas 0.419, the average result of BayesCwas 0.393,
and the average result of BL was 0.383; for the rice dataset,
the average result of GBRT prediction of 0.713, BayesC of
0.688, and BL of 0.714 for the rice dataset, and these previous
findings again support the conclusions we reached.

However, Bayesian models tend to have more parame-
ters with estimation, which brings more computational effort
while improving prediction accuracy. Half of the parameter
solution process first assumes the distribution type of the
variables to be sought in the model, i.e., assumes the prior
distribution of the parameters, determines the joint distribu-
tion of the samples and parameters, and derives the posterior
distribution of the parameters according to Bayes’ theorem,
constructs a Markov Chain Monte Carlo (MCMC), sam-
ples based on Gibbs or Metropolis-Hasting (MH) sampling
method, set a sufficient number of iterations until conver-
gence, and reach a smooth state. In the study, the Bayesian
model is set to the default 15,000 iterations, and to determine
whether the Bayesianmodel is fully converged, we set a series
of gradient iterations of 1,000, 2,000, 5,000, 10,000, 20,000,
50,000, 100,000, and 200,000, and the number of burn in
under each iteration is set to the total number of iterations.
number of iterations is set to 50% of the total number of
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FIGURE 6. Box plot of the MNDCG value for GBDT and RRBLUP when subsets of markers were used with top-ranked α increasing from 1% to 10%.

iterations. Figure 8 shows the trend of the prediction accu-
racy of the five Bayesian models with increasing number of
iterations. GBDT and RRBLUP in the figure do not involve
MCMC iterations, and their prediction accuracy is used as
the reference standard. It can be seen from Figure 8 that the
prediction accuracy of the five Bayesian models gradually
improves as the total number of MCMC iterations increases,
but the MCMC needs to re-estimate all marker effect values
for each iteration and the process is continuous and non-
parallel, which consumes a large amount of computation
time, as shown in Figure 9. The high accuracy of Bayesian
methods is based on the result of successful convergence, and
when the iterative process fails to converge successfully, it
leads to low prediction accuracy. Therefore, it is a challenge
for Bayesian methods to set the number of iterations when the
genetic structure of traits is unknown, which to some extent
limits its application in plant and animal breeding practices
with strong time-sensitive needs.

In this study, the average predictive performance of the
GBDT model for the eight traits was lower than that of the

RRBLUP model, and the experimental results suggest that
RRBLUP is still a valid genomic prediction model [37].
However, in past studies, most researchers have singularly
used Pearson correlation coefficient as a method to eval-
uate the goodness of genomic prediction models; in fact,
the correlation coefficient is easily influenced by extreme
individual phenotypic values, and its magnitude can only
indicate the fit between phenotypic predictions and observa-
tions and the feasibility of the model and does not fully rep-
resent the goodness of the prediction model [53]. Therefore,
Mathieu Blonde [47], Wenlong Ma [36], and others used the
MNDCG method to measure the ability of GS models to
select individuals with high breeding values before K. In this
study, although the RRBLUP model predicted higher cor-
relations than the GBDT model, for some traits, the GBDT
model still had a higher ability to select individuals with high
phenotypic values than RRBLUP.

However, in genomic prediction, many factors affect the
predictive performance of the models. We grouped these
factors into three categories: the first category is the influence
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FIGURE 7. Improvement of GBDT over RRBLUP for eight traits when subsets of markers were used with top-ranked α increasing from 1% to 100%.

brought by the data itself, containing the training population
size, heritability and genetic structure of traits, geneticmarker
types and sampling strategies, minimum allele frequencies,
and the number of markers and QTL. The second category is
the limitations of the models themselves, including algorithm
design, model a priori assumptions, parameter selection, and
type of model. The third category is the choice of valida-
tion method, which contains K-fold cross-validation, leave-
one-out cross-validation, and leave-out cross-validation. This
study focuses on validating the effect of the number of mark-
ers on the GBDT and RRBLUP models. The experimental
results also show that the prediction performance of the
models is affected by the marker size, but not regularly and
that the ability of the models to select individuals with high
phenotypic values varies depending on the marker subset size
[36], [42], so the selection of the appropriate size of marker
data has a significant impact on the prediction performance
of the models.

Hold-Out validation was used for the experiments in this
study, and the GBDT model was optimized by continuously

optimizing the model parameters during the training process,
and finally, the number of weak learners was adjusted to
12000, the learning rate was 0.02, the maximum depth of
the decision tree was 5, the maximum number of leaf nodes
was 20, and the minimum sample weight sum of leaf nodes
was 0.025, so the GBDT model may still have some limi-
tations, the experimental accuracy may not be the best, and
the parameters of the model need to be adjusted for different
experimental groups.

In the next study, we will try to further explore the research
in the following aspects: (1) perform GS linear regression
prediction experiments with more complex algorithms and
richer marker datasets using GPU acceleration techniques;
(2) downscale genetic marker data using data downscaling
methods in machine learning to reduce computing time and
improve model efficiency; (3) treat genomic selection as a
classification problem and try to use more complex (3) treat
genomic selection as a classification problem and try to per-
form nonlinear binary or multiclassification GS experiments
using more sophisticated machine learning techniques and
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FIGURE 8. Trend of prediction accuracy of Bayesian model with different number of MCMC iterations.

FIGURE 9. Trend of computational efficiency of Bayesian model with
different number of MCMC iterations.

artificial intelligence techniques; (4) combine genome-wide
association analysis (GWAS) methods to filter marker data
and select genotypic marker data with high genetic effects

as target data, which can avoid the impact of invalid genetic
markers onmodel prediction performance; (5) try to use more
GS data from different populations for model validation.

V. CONCLUSION
In this study, genomic prediction analysis was performed for
eight traits of wheat TKW, TW, GL, GW, GH, GP, SDS,
and PHT using seven methods: GBDT, RRBLUP, BayesA,
BayesB, BayesC, BL, and BRR. It was found that (1) except
for the GW trait, the prediction accuracy of GBDT was
lower than the overall prediction performance of the five
Bayesian models, but the overall computational efficiency of
GBDT was higher than that of the Bayesian models. (2) The
high accuracy of Bayesian methods is based on the result of
successful convergence, and when the iterative process fails
to converge successfully, it leads to low prediction accuracy.
Therefore, how to set the number of iterations is a challenge
for Bayesian methods when the genetic structure of traits is
unknown, which to a certain extent limits its application in
breeding practice due to the high requirement of timeliness in
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plant and animal breeding. (3) RRBLUP is still a promising
GS model, and its overall prediction effect is better than
several other models. In addition, the prediction accuracy of
the model is affected by the size of the number of markers to a
certain extent. (4) For the PHT traits with low heritability, all
sevenmodels showed low prediction performance. Therefore,
how to optimize the models and improve the computational
efficiency of GS models while ensuring higher accuracy and
robustness is the direction of future genome-wide prediction
model optimization.
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