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ABSTRACT Continuum manipulators are a type of robot used for delicate applications, including safe
human-robot interactions. Controlling these manipulators for an accurate trajectory, especially in the case of
pneumatic actuation, is extremely challenging. Thus, this article proposes a real-time kinematic trajectory
control of a pneumatically actuated multi-segment bionic continuum manipulator with a mobile base by
combining a neural network and analytical model with a cascaded controller to overcome this challenge. The
inverse kinematics solution of the multi-segment manipulator is developed by using a neural network and an
inverse piecewise constant curvature approach. The neural network is trained by using a separate learning
algorithm. Although hybrid inverse modeling gives better solutions than existing techniques, significant
residual positional error of the manipulator tip remains due to inherent material hysteresis. Thus, a cascaded
PI-controller is utilized to compensate for the residual positional error. The controller gains are updated in
each step by predictions of the actuator length, where the Jacobian entries are computed from the neural
network model. The proposed procedure is validated on Festo Didactics’ elephant trunk-like two-segment
continuum manipulator, Robotino-XT. Three different cases are considered for real-time trajectory tracking,
where the OptiTrack vision system is used for validation by tracking the manipulator tip pose. For the
trajectory points outside the manipulator workspace, simultaneous trunk and base movements are used.
In experimental validation, the proposed scheme is shown to give much reduced manipulator tip trajectory
error as compared to the existing methods.

INDEX TERMS Bionic continuum manipulator, inverse kinematics, kinematic control, neural network,
separate learning algorithm.

I. INTRODUCTION
Nowadays, there is a growing research interest in bionic
continuum manipulators (BCMs) which are inspired by dif-
ferent living organisms and try to emulate their structures and
motions, such as snake [1], octopus arm [2], and elephant
trunk [3] (See Fig. 1) robots. BCMs are replacing conven-
tional rigid robots in specific fields where versatility and
safety of human-robot interaction are prioritized over speed
and positional accuracy [4]. Since continuum manipulators
are highly dexterous, they are used in cluttered environments
and delicate applications such as invasivemedical surgery [5],
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rescue operation [6], and fish handling. For such manipu-
lators, various actuation principles like pneumatic actuated
muscles [7]–[9] and tendon drives [10] are utilized to accom-
plish large movements.

Despite several advantages, these under-actuated robots
suffer control inaccuracies [11]. The nonlinear material
behavior such as hysteresis, especially under large strain,
compromises repeatability and adds complexity to the inter-
pretation and prediction of the system behavior [12]. This
unpredictability is a significant challenge that has drawn the
attention of a significant number of researchers.

The kinematic modeling procedures of a BCM are much
more complex than their rigid counterparts due to the high
flexibility of the links. Moreover, the conventional modeling
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FIGURE 1. Robotino-XT (image courtesy: ‘‘˙Festo AG & Co. KG., all rights
reserved’’; reproduced with permission).

approaches cannot be applied to a BCM due to the lack of
discrete rigid links in their structure [13]. The existing mod-
eling approaches of the BCMs are broadly based on either the
constant curvature model ([8], [14]–[18]), variable constant
curvature model [20], or variable curvature model [21]–[26].
In the constant curvature model, the manipulator backbone
is assumed to be a perfectly circular arc at any state [15].
The developed model in [15] is extended for a multi-segment
manipulator to increase dexterity by considering C0 and
C1 continuity between the segments [16], [17]. In recently
reported applications of the constant curvature modeling
approach, a multi-segment BCM is controlled for invasive
medical surgery [16], [27]. Similar to the constant curvature
model, the piece-wise constant curvature model is developed
by considering a large number of small segments connected
in series [20]. However, both constant and piece-wise con-
stant curvature modeling approaches fail to accurately eval-
uate the end-effector pose of non-cylindrical cross-section
manipulator segments, such as conic or bellow-type manip-
ulator segments. Variable curvature models are developed
to fit the backbone shape of a conic BCM for better tip
accuracy [22], [25]. Similar to the geometric constant cur-
vature model, the variable curvature model is developed
for conic manipulators [22]. The elementary difference in
both models is the consideration of exact actuator length.
In another geometric modeling approach, the Pythagorean
hodograph approach is used to map the length of a conic
BCM to tip pose [23]. The authors in [25] proposed an
exact analytical forward kinematic (FK) model for a single
segment conic BCM based on an elliptic integral approach.
On the other hand, the Cosserat-rod method, which deals
explicitly with continuum structure, computes the most accu-
rate results for the FK modeling of BCMs by employing
numerical simulations [26]. However, most of the techniques
mentioned above lack accuracy in task space due to several
assumptions and are computationally complex for real-time
implementation [28].

High precision model-based inverse kinematics (IK) for
BCMs remains a challenge. While the differential Jacobian
method [3], [29] is most often used, resolving the redundancy

for highly under-actuated continuum manipulators poses
several challenges. The modal approach [30] and the elastic
beam theory approach [31] are regarded as the most accu-
rate methods to map task space parameters (TSPs) to joint
space parameters (JSPs) by considering linear combinations
of the shape functions. However, those perform poorly during
real-time control of the hyper-redundant robots due to high
computational complexity and delayed feedback. In [32],
a geometric IK approach of a pneumatically actuated BCM
is proposed, where each segment’s pose is assumed a priori.
However, it is desired to find all the JSPs (manipulator actu-
ator lengths) from only the target pose in most practical
applications. Moreover, most of the above-mentioned model-
based approaches fail to find the JSPs accurately, especially
for the applications that need precise solutions. Moreover,
most existing modeling techniques do not offer a solution to
avoid singularity problems. It is also a tedious job to find the
inverse solutions from the FK because of the limitations of the
numerical methods, which tend to be too slow for real-time
implementation [28].

Thus, in recent times, model-free approaches to calculate
the inverse solutions of the BCMs have gained in popularity.
The JSPs of a two-segment conic BCM is approximately
estimated from the TSPs (manipulator pose) by using distal
supervised learning and radial basis function in the neural
network (NN) model [33]. The work in [33] is extended
in [34] to formulate an adaptive NN model for improved
trajectory tracking. In [35], the goal babbling approach is
developed to tackle the IK problem of a three-segment
continuum manipulator. A hybrid method for the evalua-
tion of IK of compact bionic handling assistant is proposed
in [36]. In [26], a feed-forward NN model is used to approx-
imate the inverse solution of a BCM. Considerably high
accuracy is reported for shape reconstruction of a BCM
under external loading conditions by using short-term mem-
ory NN [37]. The above-discussed inverse models work in
well-defined environments and lack robustness, i.e., accurate
trajectory tracking capability under unknown external dis-
turbances acting on the manipulator backbone. Thus, there
is a need to develop adaptive kinematic control approaches
for accurate trajectory tracking of BCM in the presence of
uncertainties.

Different control strategies have been developed to control
the tip pose and shape of BCM.A closed-loop task-space con-
troller, explicitly specifying the shape configuration, is pro-
posed for a tendon-driven BCM [38]. Therein, IK is solved
as a nonlinear optimization problem. An arc space (circu-
lar arc parameters of each segment) controller is proposed
in [39], which uses external data of each segment’s configu-
ration parameters and actuator lengths to achieve asymptotic
tracking of arc parameters. In [40], the trajectory tracking
of a tendon-driven BCM is successfully employed where
the static manipulator equation is developed by using the
principle of virtual work. Most of these model-based con-
trol approaches are computationally expensive. For faster
numerical calculation, an inverse Cosserat-rod-based BCM
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control is proposed [41]. The aforementioned model-based
control approaches require accurate kinematic and dynamic
formulations to control the task space of the BCMs. However,
most of the developed control models to date suffer from
a lack of accuracy due to a number of assumptions (con-
stant curvature, omission of slackness in tendons, omission
of gravitational effect and external load, structural defor-
mation, hysteresis, uncertainties in kinematic and dynamic
parameters, and so forth) considered for the mathematical
formulation.

Model-free approaches are commonly used to control the
conventional rigid arm robots [42], [43]. Using the concept
for rigid arm robots [43], a low-level joint controller based on
feed-forwardNN is developed in [28] to control OCTARMVI
soft robot. A combination of the NN and genetic algorithm is
proposed to control a cooperative robot [44]. In [45], a fuzzy
controller for kinematic control of continuum manipulator is
developed, which skips evaluation of the Jacobian in each
step. In one such control scheme reported in [46], the kine-
matic Jacobian matrix is estimated in real-time by steadily
moving every actuator. A two-stage-task-space controller for
compact bionic handling assistant is developed based on dis-
tal supervised learning and adaptive neural control [34]. In a
similar effort, a recurrent NN is used to control a BCM in [47].
The above discussedmodel-free approaches offer much faster
computation speed than the model-based approaches; how-
ever, those do not predict the inverse solutions accurately each
time due to the nonlinearities of the BCM material behav-
ior. Moreover, the model accuracy in a pneumatic actuated
manipulator is way less than in tendon-driven robots due to
the inherent material hysteresis nonlinearities and actuation
delay. This technology gap leads to the requirement of an
effective closed-loop controller for the end-effector trajectory
of a pneumatic actuated continuum manipulator in the task
space.

From the literature, it is found that the tip of a pneu-
matically actuated multi-segment BCM is very difficult to
control due to the high flexibility, nonlinear material behav-
ior, hysteresis, and memory effect [28]. The developed
model-based controllers for the BCMs are mostly track-
ing controllers, which require an accurate dynamic model.
Though the numerical inverse solution of some of the
model-based methods is accurate, they are computationally
complex and thus, unsuitable for real-time control appli-
cations [36]. To reduce the computational complexity and
effects of nonlinearities and disturbances, etc., the use of
a model-free approach appears to be a good choice. How-
ever, control architectures developed for rigid arm manip-
ulators are unsuitable for pneumatically actuated BCMs.
Thus, a specially tailored kinematic control architecture is
required for pneumatically actuated continuummanipulators.
This problem draws our attention to improve the BCM’s
trajectory tracking accuracy by using a kinematic controller in
real-time.

In this regard, the major contributions of the present
research are as follows.

• This paper proposes a combined model-free and model-
based approach to exploit the advantages of the two
methods.

• The developed hybrid real-time cascaded closed-loop
kinematic control approach is able to deal with model
ambiguity by controlling the JSPs of the pneumatically
actuated BCMs.

• The proposedmethodology uses a separate learning (SL)
algorithm [48] governed NN model to find the inter-
mediate segment pose from the desired tip pose of the
manipulator and then again uses the NN model to find
the arc parameters (arc length, arc angle, and arc radius
of curvature) from the respective segment pose. The
JSPs are then determined from the arc parameters by an
inverse model of the piecewise constant curvature model
to preserve the accuracy (geometric length constraints)
of the actuator length [16].

• Since the obtained inverse solutions from the hybrid
approach are not error-free, a cascaded closed-loop
kinematic controller with a mid-level PI-controller is
proposed. The developed controller controls themanipu-
lator JSPs (actuator lengths) instead of the actuator space
parameters (pneumatic actuation pressures) in order to
eliminate the effect of material hysteresis and mate-
rial memory effect. The required actuation pressures to
attain the desired lengths are initially estimated by a NN
model and are updated in each time step by model-free
Jacobian regularization.

• The proposed hybrid kinematic control model is advan-
tageous compared to the model-based approach in a way
that it can accurately control the real-time trajectory
tracking of a BCM by reducing the computational cost
and thus, the feedback delay.

• Moreover, the neural network training uses position data
at specific locations along the manipulator backbone,
just like a high degree of freedom (DoF) manipulator.
The training database size is drastically reduced by
implementing the inverse piecewise constant curvature
model in comparison to a purely model-free approach.

• Theworking behavior of the developed hybrid kinematic
controller is applied to the Festo Didactics’ trunk of the
Robotino-XT (Fig. 1). Note that the kinematic controller
neglects the dynamic (inertial) forces, and hence, it is
valid for small accelerations.

The rest of this paper starts with a short description of
Robotino-XT in Section-II. A generalized kinematic model
for a serially connected BCM is described in Section-III by
using NN and SL algorithms, and thereafter, the real-time
control scheme is described in Section-IV. Section-V explains
the experimental test bench (Robotino-XT and OptiTrack)
and the workspace of the manipulator. Therein, the param-
eters used for the BCM control are given. Different test cases
used to validate the proposed control algorithm and the cor-
responding experimental results are presented in Section VI.
Finally, in Section-VII, conclusions and perspectives from
this study are drawn.
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II. ROBOTINO-XT
The Robotino-XT, schematically shown in Fig. 2, is a com-
bination of a mobile Robotino and a portable bionic han-
dling assistant (PBHA). The existing PBHA framework is
connected to Robotino at its base and extended with a
bio-mechatronic gripper at its head. The polyamide-made
PBHA comprises two segments connected in series (See
Fig. 2(a)). Each segment consists of three parallel-coupled
individually actuated bellow tubes with 120◦ actuator spac-
ing, as shown in Fig. 2(b). The 4.12◦ cross-sectional taper
angle of the manipulator allows variable curvature bending
of the segments. Each tube is pneumatically actuated by a
compressor comprising two membrane pumps with a maxi-
mum design limit of 2 bar pressure. The inherently flexible
structure of the bellow tubes is stiffened to a specific limit
by pressurization. Note that the spatial displacement of the
segment is predominantly due to two-axis bending, which
results from differential pressure in the tubes of a segment.
The axis extension of the backbone (a centerline connecting
each section) is prevented by a steel wire (shown in Fig. 2(c))
attached to the backbone of the trunk. For each bellow tube,
a wire-cable potentiometer measures its actual length at any
state. These wire cables are routed through cable guides
attached on the outside of each bellow tube.

FIGURE 2. (a) Robotino-XT without gripper, (b) A-A sectional view of the
PBHA, (c) The attached central steel wire in the manipulator backbone
restricts axial movement, and the six potentiometer wire cables on the
side walls of six actuators measure the tube lengths at any state. The
control inputs are the separate pressures in the six tubes.

The distribution of pressures, manipulator self-weight, and
applied external loading on the manipulator are shown by a
free body diagram of segment a-b as in Fig. 3(a). It can be
seen that the forces (FP) due to uniform pressurization in
the tubes act perpendicular to the cross-sectional plane. Note
that in Fig. 3(a), the force due to fluid pressure is shown

FIGURE 3. (a) Free body diagram of the manipulator segment a-b. The
manipulator experiences pneumatic forces through bellow tubes, load
due to gravity, and external loadings (b) Forces acting on the head (rigid
hub) of the segment due to pneumatic actuation and steel rod.

only for bellow tube1. By denoting the distal end area of
the tube as A, the magnitude of the pneumatic force is PA.
Since each segment of PBHA has three bellow tubes with
120◦ actuator spacing, the resultant moment created by the
pressure generated forces (see Fig. 3(b)) is

M =

√
3 dA
2

(P3 − P2) î+
dA
2
(2P1 − P2 − P3) ĵ,

where d is the distance from manipulator backbone to bellow
tube backbone, and the resultant force is given as

P1 + P2 + P3 − Fr = 0,

where Fr is the resisting force due to the central steel wire
in the manipulator backbone. The inextensible steel wire
restricts the axial extension of the manipulator and only
allows a two-way bending. Note that the six potentiome-
ter wires do not carry much tensile force. Apart from the
pneumatic forces, the manipulator also experiences load due
to gravity and externally applied loads. In Fig. 3(a), all the
externally applied loads are lumped into the resultant wrench
forces and moments (F,M) at points a and b.

The pneumatic actuators of PBHA have high material non-
linearity due to hysteresis in the polyamide material, mechan-
ical friction, and pneumatic valves [34]. The aforementioned
effects affect the pose of the tip to such an extent that the tip
position is not unique for the same set of applied pressures
from different initial tip positions (see Fig. 4). For example,
Fig. 4 shows the tip position of the PBHA for four input
pressure sets P1,P2,P3 and P4; each applied ten times from
different random initial tip positions. Note that each pressure
set includes six tube pressures. Ideally, there should be a
distinct tip position corresponding to each input pressure set
and there should be four points in Fig. 4. However, it is
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FIGURE 4. Illustration of tip position of the PBHA for input pressure sets:
(P1: [0.35,1.35,1.25,0.27,1.29,1.38] bar, P2: [0.35,1.35,0.40,1.26,1.29,0.32]
bar, P3: [1.30,1.35,1.25,0.27,0.38,0.32] bar, P4: [0.35,0.25,1.25,1.26,1.29,
0.32]) bar Here each pressure set is applied ten times from different
random initial tip positions or pressures.

found that there are four clusters of points. This demonstrates
how thematerial hysteresis, and dynamical uncertainties limit
the positional control of the PBHA, i.e., the infeasibility of
only pressure-based control. However, the tip position can be
controlled accurately by controlling the tube lengths because
each combination of the six tube lengths always gives a
unique position. However, note that the converse is not neces-
sarily true, i.e., for any given tip position, there can be none (if
outside the workspace), one or more pressure combinations.
Since the tube lengths are measured, those can be controlled
by dynamically modifying the tube pressures. Thus, while
the control objective is to position the robot tip somewhere
and the control input is the tube pressures, the tube lengths
can be introduced as intermediate control variables in the
control loop. Note that an external system (OptiTrack) is used
in this article to measure the robot tip position. However,
OptiTrack measurements are not used in the control loop, and
those are used here simply for independent validation of the
experimental results.

Some possible backbone shapes of the PBHA in three
dimensions are shown in Fig. 5(a), where frame {x0, y0, z0} is
attached to themanipulator base, frame {x1, y1, z1} is attached
to the base of the second segment, and frame {x2, y2, z2} is

FIGURE 5. Modes of motion of (a) PBHA backbone, (b) Mobile base of
Robotino-XT.

attached to the tip of themanipulator. Note that the curvilinear
z-axis is aligned with the backbone shape, and bending occurs
about local x and y axes perpendicular to the z-axis.

The 3-DoF mobile base of the Robotino-XT, as shown in
Fig. 5(b), is fitted with a three-motor Omni-drive propulsion
unit. The integrated infrared sensors measure the linear dis-
tance traversed in x and y-directions and the rotation about
z-axis. The drive system and sensor module help the Robotino
to follow a predefined path. The Robotino is equipped with
a wireless real-time communication system to transmit the
sensor data and address its drive units. The mobile base con-
trol, as pre-built in Robotino-XT, is extremely accurate, and
hence, it is outside the scope of this article. Wherever the base
movement will be utilized in this article, it would be assumed
to be accurate, and any errors in tip position/trajectory would
be assumed to be only due to the pneumatic actuated parts.

III. KINEMATIC MODEL
A. FORWARD KINEMATICS OF PBHA
This section focuses on the kinematic model of the PBHA of
the Robotino-XT. The objective of the kinematic model is to
find the position and orientation of the head coordinate frame
from the actuator (bellow tube) lengths at any given state
and vice versa. Here, the piecewise constant curvature model
is used to find the pose of each PBHA segment from the
length of the actuators. According to the piecewise constant
curvature model, the manipulator segment shape is assumed
to be a circular arc [14]. Since a circular arc can be uniquely
defined by a set of arc parameters, the arc parameters of any
PBHA segment can be defined as [16]

km =
[
sm βm κm

]T
, km ∈ R3×1 (1)

where k is the vector of arc parameters, s is the arc length,β
is the arc angle, κ is the curvature of the backbone of the
segment, and m ∈ 1, 2 is the segment number. Note that,
(·)T indicates the transpose of a matrix or vector. The arc
parameters k for m-th segment can be given in terms of the
JSPs as [16]

sm (lmn)= (lm1 + lm2 + lm3)
/
3,

βm (lmn)= atan2
(√

3 (lm3 − lm2) , lm2 + lm3 − 2lm1
)

κm (lmn)=
2
√
l2m1 + l

2
m2 + l

2
m3 − lm1lm2 − lm2lm3 − lm3lm1

(lm1 + lm2 + lm3) rsm
,

(2)

where rs is the radius of the segment, lmn is the length of the
actuators, and n ∈ 1, 2, 3 is the tube number in each segment.
Note that a single inextensible steel wire passes through the
central backbone to connect the PBHA base to its tip. Thus,
the length of each segment (s1, s2) may vary at different
instances; however, the total length (L = s1 + s2) of PBHA
remains constant (see Fig. 2(c)). Note that some authors have
wrongly considered s1 and s2 as constants [23], [34].

In Fig. 6(a), the head coordinate of a circular arc of
radius rc is given in xz-plane as (rc (1− cosα) , rc sinα),
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FIGURE 6. (a) Planar representation of a circular arc in xz-plane with arc
parameters k = , (b) Spatial representation of the circular arc with
arc parameters k = .

i.e. p = [rc (1− cosα) 0 rc sinα]T, where α = κs. Here,
it can be noted that the manipulator segment motion also
comprises a rotation α about the positive y-axis. For spatial
movement of the manipulator segment, the entire arc shown
in Fig. 6(a) is rotated about the positive z-axis with an angle
β as shown in Fig. 6(b). The double rotation produces a
homogenous transformation T ∈ R4×4 from the base of the
arc to the head of the arc. Thus, the transformation from the
arc base to the tip is given as [15]

T =
[
Rz (β) 0T

0T 1

] [
Ry (α) p

0 1

]
.

Noting that rc = 1
/
κ , the transformation T from base to

head of each manipulator segment in terms of arc parameters
is given as

Tmbmh =



cαmcβm −sβm sαmcβm
cβm (1− cαm)

κm

cαmsβm cβm sαmsβm
sβm (1− cαm)

κm

−sαm 0 cαm
sαm
κm

0 0 0 1


(3)

where αm = κmsm, c (·) → cos (·), s (·) → sin (·), and[
cβm(1−cαm)

κm

sβm(1−cαm)
κm

sαm
κm

]T
is the Cartesian position of

segment m. Using (3), T from world frame to tip of the first
segment of the PBHA is obtained as

Tw
1h = Tw

1bT
1b
1h, T ∈ R4×4 (4)

Denoting x1 = [x1, y1, z1]T as the position of the head
frame of the first segment from the world reference frame,
and x′2 =

[
x ′2, y

′

2, z
′

2

]T as the position of the head frame of
the second segment from the base of the second segment,

x1 = Tw
1h (1, 4),

y1 = Tw
1h (2, 4),

z1 = Tw
1h (3, 4),

x ′2 = T2b
2h (1, 4),

y′2 = T2b
2h (2, 4),

z′2 = T2b
2h (3, 4), (5)

where T (i, j) represents i-th row and j-th column of T. Note
that the orientations are not independent variables in constant
curvature model. In fact, orientations about x and y-axes are,
respectively, found as θx1 = atan2

(
−Tw

1h (2, 3) ,T
w
1h (3, 3)

)
and θy1 = atan2

(
Tw
1h (1, 3) ,T

w
1h (3, 3)

)
, where atan2 (y, x)=

tan−1 (y/x) for x > 0, tan−1 (y/x)+ π for x < 0, y ≥ 0,
tan−1 (y/x)− π for x < 0, y < 0, (πsign (y)) /2 for x = 0,
and undefined for x = 0, y = 0. Orientation about the z-axis
is computed from cos2 θz1 = 1− cos2θx1 − cos2 θy1 .

Likewise, using (3),T fromworld frame to tip of the PBHA
is obtained as

Tw
2h = Tw

1b

∏2

m=1
TmbmhT

mh
(m+1)b, T ∈ R4×4 (6)

where the transformation fromm-th segment head to (m+ 1)-
th segment base is an identity matrix because the thin hub
between any two segments is rigid.

The position of the second PBHA segment is x2 =
[x2, y2, z2]T, where

x2 = Tw
2h (1, 4),

y2 = Tw
2h (2, 4),

z2 = Tw
2h (3, 4). (7)

Note that x2 = f
(
x1, x′2

)
. As per constant curvature model,

the orientations are θx2 = atan2
(
−Tw

2h (2, 3) ,T
w
2h (3, 3)

)
and

θy2 = atan2
(
Tw
2h (1, 3) ,T

w
2h (3, 3)

)
. Orientation about z-axis

is computed from cos2 θz2 = 1− cos2 θx2 − cos2 θy2 .
The FK schematic of the PBHA by using a piecewise

constant curvature model and the manipulator base as the
world frame is shown in Fig. 7. It can be observed that x1
is a function of l11, l12 and l13, and x′2 is a function of l21, l22
and l23; whereas the pose of the second PBHA segment x2 is
a function of l11, l12, l13, l21, l22 and l23.

FIGURE 7. FK model of each segment of the PBHA depicting the mapping
from the JSPs to TSPs.

B. INVERSE KINEMATICS OF PBHA
Since the PBHA is an under-actuated manipulator, multiple
backbone postures are possible for a particular desired tip
position. For example, consider a special planar case with
two segments, β1 = β2 = 0, and α2 = −α1 (See
Fig. 6). Then the tip of the second segment has position
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x2 =
[
(s1 + s2) (1− cos(α1))

/
α1,0, (s1 + s2) sin (α1)

/
α1
]T

and orientation θ2 =
[
π/2 π/2 0

]
rad, i.e., along the z-axis.

Keeping the angles α1, α2, β1 and β2fixed, the position and
orientation of the tip of the second segment do not change
if L = s1 + s2 is constant. For this example, there is an
infinite number of combinations of values of s1 and s2 that
produce the same position and orientation of the tip of the
second segment. This demonstrates that the inverse solution
of a PBHA is not unique for a given tip position. In fact, deter-
mination of the optimal inverse solutions of PBHA is quite
complicated [36].Moreover, it is challenging to deduce the IK
resolutions from the model-based FK models because of the
complicated nonlinear mathematical formulations involved
in the 3D geometry solution. For example, the pose of the
first segment (x1) cannot be uniquely determined from the tip
pose (x2), which in turn hampers the determination of the
inverse solution, i.e., l11, l12, l13, l21, l22 and l23. Besides,
several assumptions made during the development of the
model-based approaches limit the accuracy of IK.

Thus, this paper introduces a hybrid method based on
both model-based and model-free techniques to find the
inverse solution (schematically represented in Fig. 8) of the
PBHA to avoid the above-discussed problems. The hybrid
method uses penalty parameters in the model-free step so
that for a given initial tip pose and segment backbone shapes,
the neighborhood pose on the robot tip trajectory is opti-
mally selected from many possible solutions. Thereafter,
using the model-based piecewise constant curvature tech-
nique, the lengths of the actuators from the arc parameters
of the corresponding segment are obtained by inverting (2) as
lmn = g−1 (km).

FIGURE 8. Hybrid IK Model of PBHA where NN1 is used to find each
segment’s head frame from their base frame, and NN2, NN3 are used to
find arc parameters of first and second segment respectively.

The hybrid inverse model consists of a model-free tech-
nique in the form of NN to find the x1 and x′2 directly from
x2 in the case of PBHA. Additionally, two more NN models
are used to find the arc parameters k1 and k2 from x1 and x′2,
respectively. Thus, form segmentmanipulator, oneNNmodel
is required to find the base frame to head frame pose of
each segment directly from the position of the PBHA tip.
Moreover, additional m number of NN models are required
to find the corresponding arc parameters of the segments.
Therefore, for m segment manipulator, (m+ 1) number of

NN models are required to solve the IK with the proposed
hybrid approach.

This paper considers a three-layer NN model having an
input layer (I), a hidden layer (H), and an output layer (O).
The output r of the NN model is given as [43]

r = f2
(
W2

Tf1
(
W1

Tp
))
. (8)

where p is the given network input, W1 is the weight matrix
between the input (I) and hidden (H) layers, and W2 is the
weight matrix between the hidden (H) and output (O) layers,
and f1(·) and f2(·) are the activation functions.

The SL algorithm for NN training is a supervised learning
process considered here to update the weight values of the
network [48]. Since both over-training and under-training
affect the accuracy and stability of the network, the SL algo-
rithm attempts to eliminate over-fitting and under-fitting of
the network. Here, the SL algorithm is implemented in the
three-layer network, which is divided into two sub networks.
A loss function L (–T− r) is defined, which measures the
difference between actual output T and predicted output r.
For the first sub-network i.e., hidden layer to output layer,
the empirical risk EH–O [W2] for the averaged samples is
modified and defined as

EH–O [W2] =
1
2

∑
l

∑N3

k=1

[
–Tlk − rlk

]2
+

1
2
λ
(
‖W2‖

2
2 +1�

)
.

s.t. �min ≤ � ≤ �max (9)

where –T ∈ RN3×1 is the target vector, l is the number of
training scenarios, rlk is the output to the kth output unit
for the l-th training scenario, λ is the penalty term, ‖·‖2 is
the Euclidian norm, � is the penalty regularization term,
and �min, and �max are minimum and maximum value of
� respectively. The penalty regularization term is defined
separately for different neural networks. For instance, � is
defined as

1� =

{
‖1x1‖22 +

∥∥1x′2
∥∥2
2 , for NN1

‖1k‖22 , for NN2 and NN3.

For NN1, additional constraints are defined as

x1min ≤ x1 ≤ x1max , x′2min
≤ x′2 ≤ x′2max

,

and for NN2, an additional constraint is defined as

kmin ≤ k ≤ kmax.

The penalty term and the squared network output are added
to the empirical risk function to select a particular solution
from multiple possible solutions. The use of the penalty term
in (9) offers an effective way to control the magnitude of
squared network output, and thus, a particular inverse solution
of a network is selected. Moreover, the penalty due to the
additional constraints allows the network outputs to lie within
a prescribed range. For instance, in the case of NN3 in Fig. 8,
the arc parameters (

[
s1 β1 κ1

]T) are considered as a penalty
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to the network such that unique arc parameters are chosen.
In literature, it has been established that the squared network
output is small for a larger penalty term [49]. In the case
of PBHA, the Euclidian norm of the empirical risk function
in (9) is minimized for a good performance in terms of MSE
for a penalty term value of λ = 0.001.
The weight is updated by using the damped-least

square method and Newton’s method of approximation.
Furthermore, by using the updated weight values, the ideal
value of the hidden layer is determined [48]. Determination
of the ideal values of the hidden layer completes the first
training process of NN by using the SL algorithm. Similarly,
the derived ideal values for l-th training scenario are further
used as a target vector for the second sub-network training
between the input and hidden layers.

The SL algorithm effectively trains the NN based on the
‘Divide-and-conquer method’, which does not use random
hidden output values or perturbation parameters. Here, the
three-layer network is divided into two sub-networks as I-H
and H-O, which are trained separately. The training of H-O is
similar to back propagation algorithm. However, to train the
I-H, the ideal values of H are determined separately by using
Newton’s approximation method.

The proposed inverse hybrid model for PBHA is a combi-
nation of both a piecewise constant curvature model (model-
based) and a NN (model-free). Themodel avoids the complex
mathematical nonlinear equations and gives a better alterna-
tive for fast and accurate optimal solutions for the real-time
control of the BCM.

IV. KINEMATIC CONTROL OF BCM
A. KINEMATIC SATURATION
To design an efficient controller that allows the PHBA to
respond correctly to commands, the actuation pressures (in
terms of gauge values) must be within acceptable ranges.
As per the manufacturer of the PBHA, the maximum allow-
able pressure for the bellow tubes are in the range of Pmn ∈[
0 2

]
bar. If all the actuation pressures Pmn lie in the

allowable range, then the low-level controller input is equal
to the controller output. However, if any actuation pressure
Pmn does not lie in the allowable range, then the low-level
controller modifies the input pressures to avoid saturation.
If any Pmn < 0 bar then the particular input command is
converted to 0 bar, i.e. Pmn = 0. However, if one or more
Pmn > 2 bar, then the maximum value is determined from
the lot as

Pmax=max
(̂
P
)

=max
([̂
P11, P̂12, P̂13, P̂21, P̂22, P̂23

]T)
(10)

where P̂ ∈ R6×1 is the updated pressure set from the con-
troller. To get the controller output within the defined pressure
range, normalization of P̂ is done. Therefore, the pneumatic

tube pressures are scaled to

P =

 P̂, ∀ (m, n) : Pmn ≤ 2 bar
Pallowable
Pmax

P̂, ∃ (m, n) : Pmn > 2 bar.
(11)

The input actuation pressures to the manipulator through the
low-level controller are updated by using (11). This low-
level controller is in-built with Robotino-XT and cannot be
modified or over-ridden.

B. CONTROLLER MODELLING
The PBHA is actuated by a filtered input pressure set
P through a low-level controller. This low-level controller
comes preinstalled in the Robotino-XT setup, and it cannot
be modified. Therefore, any modified control architecture for
the tip pose accuracy is constrained to use this preinstalled
controller. The in-built controller in the Robotino-XT is an
open-loop controller and has been so far used by researchers
for only position control [36].

Thus, in this section, an efficient closed-loop kinematic
controller for a pneumatic actuated multi-segment BCM
(here, for PBHA) is proposed to control the tip pose by
controlling the length of the actuators, and finally, extended to
a trajectory tracking problem. It is noted that the path control
problem will be treated here as a piece-wise (or step-through)
position control problem due to the inherent slow response of
the pneumatic actuation system.

For the desired position χd , the hybrid IK model, as dis-
cussed in Section-III(B) is used to determine the desired JSPs
of the PBHA. Moreover, the NN model is also used to find
an initial nominal actuation pressure set P0 from the desired
length of the actuators. Since multiple solutions may exist for
the desired tip pose, a penalty regularization is performed to
select an optimal actuation pressure set. This paper selects the
regularization term (Euclidian norm) by assuming the mini-
mum pressure variation required to reach a target position.
Since the volumetric change in each bellow is negligible due
to bending of the bellow, the actuation work under isothermal
conditions is primarily due to pressure change, and the energy
consumption is indirectly minimized.

Here, a PI-controller is used to control the length of the
actuators, where the difference in the desired actuator lengths
ld and the actual actuator lengths la of the bellow tubes are
the inputs to the controller. Assuming that the output of the
controller is the pressure difference 1P̂ (t), the pneumatic
pressures for actuation is updated by

P̂ (t) = P̂ (t − 1)+1P̂ (t) (12)

where P̂ (t) is the actuation pressures in the current state, and t
is the current step. The change in pressure required for length
correction is given as

1P̂ (t) , KPe (t)+KIeI (t) , 1P̂ ∈ R6×1 (13)

where t is the current step,KP is the proportional gain matrix
and KI is the integral gain matrix. The error e (t) and its
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discrete-time integral eI (t) are defined as (14) and (15),
shown at the bottom of the page.

The PI-controller gain parameters KP and KI are tuned by
minimizing the total mean square error (MSE) of the system.
Therefore, total MSE is defined by the total cost function as

E = EP + EI (16)

where EP is the mean cost function for proportional constant
and is defined as

EP = 0.5
∑∞

h=0
eT (t + h)WPe (t + h), (17)

and EI is the mean cost function for integral constant and is
defined as

EI = 0.5
∑∞

h=0
eTI (t + h)WIeI (t + h). (18)

where WP ∈ R6×6 and WI ∈ R6×6 are positive definite
diagonal weight matrices.

To minimize the total cost function E in (16), a learning
rule is implemented. Therein, the change in proportional gain
parameters are defined as

1KP = −η
(
∂E
/
∂KP

)
(19)

where η is the positive definite learning rate, and its value
should be chosen to be sufficiently small.

If it is assumed that the current change in input pneumatic
pressure P (t) largely affects up to n-th future iteration step
actuator length la (t + n), then 1KP in (19) can be rewritten
by using the chain rule as

1KP

= −η

[
∂E
∂EP

∂EP
∂e (t + n)

∂e (t + n)

∂la (t + n)

∂la (t + n)

∂P (t)
∂P (t)

∂1P̂ (t)

]T
×
∂1P̂ (t)
∂KP

, (20)

where
∂E
∂EP
= 1,

∂EP
∂e (t + n)

= WPe (t + n),

∂e (t + n)

∂la (t + n)
= −I,

∂la (t + n)

∂P (t)
= J,

∂P (t)

∂1P̂ (t)
= ε = 1 or

Pallowable
Pmax

,

∂1P̂ (t)
∂KP

= eT (t),

I is 6 × 6 identity matrix, and J is the Jacobian matrix. The
Jacobian J ∈ Rmn×op is defined as [50]

J =
∂la (t + n)

∂P (t)

=


∂l11,a (t + n)

∂P11 (t)
· · ·

∂l11,a (t + n)

∂Pop (t)
...

. . .
...

∂lmn,a (t + n)

∂P11 (t)
· · ·

∂lmn,a (t + n)

∂Pop (t)

, (21)

where la is the actual length of the actuator tube, subscripts
m, o = 1, 2 refer to the segment number, and n, p =
1, 2, 3 refer to the bellow tube number. The PI controller
gains are tuned by using the Jacobian from an offline trained
NN model for model linearization, i.e., for computing ∂lmn

∂Pop
.

The Jacobian is a block diagonal matrix with two 3 × 3 off-
diagonal null matrices because actuator lengths in the bellows
in a segment do not change when any bellow of the other
segment is pressurized, i.e., ∂lmn,a

∂Pop
= 0 whenm 6= o. Inserting

all the partial derivatives and rearranging, (20) can be written
as

1KP = ηεJTWPe (t + n) eT (t). (22)

Similar to (22), the change in integral gain parameters 1KI
is defined as

1KI = ηεJTWIeI (t + n) eTI (t). (23)

Note that the integral control is only used to reduce steady-
state error. If the integral control is assumed to start from
t1 ≥ 0 then

1WI = 0, t < t1. (24)

Using (22), and (23), the gain matrices are updated for task
space control of the BCM. The proposed tuning process is
repeated until the control gain parameters 1KP and 1KI
nearly approach zero and does not reduce appreciably there-
after, which also indicates a fully minimized cost function
defined in (16).

A block diagram of the proposed closed-loop cascaded
PI-controller is shown in Fig. 9. Since it has been assumed for
the controller that the current input pneumatic pressure P (t)
largely affects up to n-th future step output actuator length
la (t + n), the modeling shows that theKP andKI are updated
by an NN-based Jacobian matrix for n step future error.
Note that the external visual processing system (Opti-

Track), as in Fig. 9, does not participate actively in controlling
the tip of the PBHA. It is used only as an observer to record
the position and trajectory in real-time to determine the per-
formance and accuracy of the developed controller.

e (t) = 1l (t) = ld (t)− la (t) (14)

eI (t) =
∑

e (t) =
[∑t

ς=1 e11 (ς),
∑t
ς=1 e12 (ς), · · · ,

∑t
ς=1 e23 (ς)

]T
. (15)
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FIGURE 9. Closed-loop cascaded control architecture for real-time implementation.

C. CONVERGENGE OF THE CONTROLLER
For the proposed control scheme defined in (22) and (23), it is
assumed that the command steps between the adjacent points
on the end effector trajectory are sufficiently small such that
the evolution of states is locally Lipschitz and linear. Then let
the linearized state equation for the PBHA in discrete-time be
defined as

x (t + 1) = Ax (t)+ BP (t), (25a)

la (t + 1) = Cx (t + 1), (25b)

where x is the state vector, andA,B andC are the state, input,
and output matrices, respectively. If it is assumed that the
current P (t) affects up to n-th future output actuator length
la (t + n), then the Jacobianmatrix is given by using the chain
rule as

J=
∂la (t+n)
∂P (t)

=
∂la (t+n)
∂x (t+n)

∂x (t+n)
∂P (t)

=CAn-1B (26)

The state and measurement updates are separated. It is
assumed that before the parameter update process begins, the
length of actuators are given as la0 (t + 1) for an input P0 (t).
At this step, the state equation is written as

x0 (t + 1) = Ax0 (t)+ BP0 (t)

la0 (t + 1) = Cx0 (t + 1) (27)

The gain parameters KP and KI need to be updated if the
output error after n number of future steps does not converge
to zero. Then the input pressure P0 (t) is adjusted by updating
1P0 (t) as

1P0 (t) = 1KPe0 (t)+1KIeI,0 (t). (28)

The input pressure update1P0 (t) in (28) can be rewritten
for n number of future steps by inserting 1KP and 1KI

from (22) and (23) as

1P0 (t) = ηε
[
JTWPe0 (t + n) eT0 (t) e0 (t)

+ JTWIeI,0 (t + n) eTI,0 (t) eI,0 (t)
]

(29)

Noting that eT0 (t) e0 (t) ≥ 0, eTI,0 (t) eI,0 (t) ≥ 0 and η ≥
0, define two variables η1 = ηeT0 (t) e0 (t) ≥ 0 and η2 =
ηeTI,0 (t) eI,0 (t) ≥ 0. Then (29) can written as

1P0 (t) = ε
[
η1JTWPe0 (t + n)+ η2JTWIeI,0 (t + n)

]
.

(30)

The updated pneumatic pressure is then written as

P1 (t) = P0 (t)+1P0 (t). (31)

The subsequent state update is performed by using the
updated pneumatic pressures as

x1 (t + 1) = Ax0 (t)+ BP1 (t). (32)

Equation (32) can be rewritten by inserting (31) as

x1 (t + 1) = Ax0 (t)+ B (P0 (t)+1P0 (t)). (33)

Using x0 (t + 1) = Ax0 (t) + BP0 (t) from (24a) and
inserting (29) into (33), x1 (t + 1) is given as

x1 (t + 1) = x0 (t + 1)

+ εB
[
η1JTWPe0 (t + n) eT0 (t) e0 (t)

+ η2JTWIeI,0 (t + n) eTI,0 (t) eI,0 (t)
]

(34)

In a similar manner, the n step future state x1 (t + n) is
written as

x1 (t + n) = Ax1 (t + n− 1)+ BP1 (t + n− 1)

= An−1
[
x0 (t + 1)
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+ εB
(
η1JTWPe0 (t + n)

+ η2JTWIeI,0 (t + n)
)]

= x0 (t + n)+ εAn-1B
[
η1JTWPe0 (t + n)

+ η2JTWIeI,0 (t + n)
]
, (35)

and the output actuator length is written as

la,1 (t + n) = Cx1 (t + n)

= Cx0 (t + n)+ εCAn-1B

×

[
η1JTWPe0 (t + n)+ η2JTWIeI,0 (t + n)

]
= la,0 (t + n)+ εCAn-1B

×

[
η1JTWPe0 (t + n)+ η2JTWIeI,0 (t + n)

]
.

(36)

With use of J = CAn-1B from (26), (36) can be rewritten as

la,1 (t + n) = la,0 (t + n)

+ ε
[
η1HTWPe0 (t + n)

+ η2HTWIeI,0 (t + n)
]

(37)

where H is the Hessian matrix defined as H =JTJ. It is very
challenging to find the total error reduced by the PI- controller
because the controller error is the function of output lengths.
Thus, the gain parameters are considered individually to
check the convergence condition of the controller. At first,
the output actuator length due to proportional gain can be
considered as

la,1 (t + n) = la,0 (t + n)+ εη1HTWPe0 (t + n). (38)

The proportional controller error can be calculated after the
first iteration as

e1 (t + n) = ld (t + n)− la,1 (t + n). (39)

The proportional controller error in (36) can be rewritten
by inserting (38) as

e1 (t + n) = ld (t + n)− la,0 (t + n)− εη1HTWPe0 (t + n)

= e0 (t + n)− εη1HTWPe0 (t + n)

= e1 (t + n)=
[
I−εη1HTWP

]
e0 (t+n). (40)

Equation (40) indicates that the output length error after the
first iteration will decrease if the condition

∥∥I−ηεHTWP
∥∥<1

is satisfied. Identically, a second iteration can be executed to
reduce the output error even further. The error after the second
iteration can be found as

e2 (t + n) =
[
I− εη1HTWP

]
e1 (t + n)

=

[
I− εη1HTWP

]2
e0 (t + n). (41)

On continuation, the proportional gain error after an infi-
nite number of iterations turns out to be

e∞ (t + n) =
[
I− εη1HTWP

]∞
e0 (t + n). (42)

From (42), the necessary and sufficient condition for the
convergence of proportional gain values is given by∥∥∥I−η1εHTWP

∥∥∥ < 1. (43)

Similarly, the necessary and sufficient condition for the
convergence of integral gain values is given by∥∥∥I−η2εHTWI

∥∥∥ < 1. (44)

Together, (43) and (44) ensure the convergence of the
proposed control scheme.

V. EXPERIMENTAL TEST-BENCH AND PARAMETER
IDENTIFICATION
The experimental setup, depicted in Fig. 10(a), consists of
Robotino-XT and external OptiTrack motion sensor cameras.
The live motion of the PBHA is captured by the OptiTrack
system, which employs Prime 13 cameras, retro-reflective
markers (See Fig. 10(b)), and Motive 2.0 software. The
infrared light emitted by the cameras is reflected by the retro-
reflectivemarkers and recognized by the camera’s sensor. The
captured reflections are utilized to ascertain the 2D marker
positions, which are utilized by Motive 2.0 software to esti-
mate the corresponding 3D positions through reconstruction.

Motive 2.0 employs the direct linear transformation (DLT)
method for 3D reconstruction. DLT is widely used in lit-
erature to find the 3D object space coordinates from the
2D camera plane. The reconstruction procedures are imple-
mented based on two phases: i.e. a calibration phase and a
reconstruction phase. For example, the mapping from a 3D
object reference frame (x, y, z) to a 2D image reference frame
(u, v) is given by [51]

u =
a0 + a1x + a2y+ a3z
1+ a4x + a5y+ a6z

,

v =
a7 + a8x + a9y+ a10z
1+ a4x + a5y+ a6z

, (45)

where a0, · · · , a10 are the physical parameters of the cam-
era settings, which are fitted through least square regression
during the calibration phase. Additional parameters appear if
optical and de-centering distortion terms are considered [52].
Note that the DLT parameters are to be estimated through the
calibration process. For calibration, a set of control points
with known coordinates are employed. First of all, a cali-
bration square (See. Fig. 11) with three markers were used
to set the axes. Then calibration wand with markers at fixed
distances, as shown in Fig. 11, is used. The calibrationwand is
randomly waved and spun, a process called wanding, within
the control volume for calibration of the OptiTrack vision
system through Motive 2.0, as shown in Fig. 10(c). The
placement of the cameras as implemented here is the same
as those used in [19]. Here, a total of four Prime 13 cameras
and nine fixed markers (control points) were used together
for reconstruction. The Prime 13 cameras are high-speed
cameras with 1280 × 1024 spatial resolution, 240 fps frame
rate, and 4.8 µm × 4.8 µm pixel size.
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FIGURE 10. (a) Experimental test bench consisting of Robotino-XT with Prime 13 cameras, (b) The retro-reflective markers attached on
the PBHA to form triangular shape rigid bodies, (c) OptiTrack calibrated workspace in Motive 2.0 interface with calibrated data summary,
(d) Instantaneous position of the PBHA traced by OptiTrack system in Motive 2.0 interface.

FIGURE 11. CS-400 calibration square (left) and CW-500 calibration
wand (right) from OptiTrack.

The Motive 2.0 software automatically extracts the 2D
positions and executes 3D reconstruction. A single point
(x, y, z) in 3D object reference plane is mapped to mapped
to
(
u(1), v(1)

)
,
(
u(2), v(2)

)
,
(
u(3), v(3)

)
and

(
u(4), v(4)

)
points

in the 2D image reference frame by four cameras. For the
i-th camera, the DLT parameters are denoted a(i)0 to a(i)10.
Then, using (45), the transformation from 2D frame to 3D
frame for each marker seen by four cameras is written
as [52]

ℵ


x

y

z

 =



a(1)0 − u
(1)

a(1)7 − v
(1)

...

a(4)0 − u
(4)

a(4)7 − v
(4)


(46)

where

ℵ =



u(1)a(1)4 − a
(1)
1 u(1)a(1)5 − a

(1)
2 u(1)a(1)6 − a

(1)
3

v(1)a(1)4 − a
(1)
8 v(1)a(1)5 − a

(1)
9 v(1)a(1)6 − a

(1)
10

...
...

...

u(4)a(4)4 − a
(4)
1 u(4)a(4)5 − a

(4)
2 u(4)a(4)6 − a

(4)
3

v(4)a(4)4 − a
(4)
8 v(4)a(4)5 − a

(4)
9 v(4)a(4)6 − a

(4)
10


.

Note that if a marker is not seen by a camera, then the cor-
responding two rows of ℵ are removed. At any point of time,
each marker must be visible to at least three cameras. The
above equations are solved with least square minimization,
and the mean reconstruction error was found to be 0.137 mm
from the calibration.

In this experiment, a total of nine markers were used: three
markers on the base of the first segment, three at the base of
the second segment, and three at the PBHA tip. Threemarkers
were grouped together for every segment to define a rigid
body (plane of a triangle), as shown in Fig. 10(b). Thus, a total
of three rigid bodies (rigid body-01 at the base of the first
segment, rigid body-02 at the base of the second segment, and
rigid body-03 at the head of the second segment) as shown
in Fig. 10(d) were used to track the motion of the PBHA
backbone.

For the workspace of the tip of the PBHA (without
the motion of base of the Robotino-XT), the input data is
designed as per full factorial design with six factors and
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four levels, which results in a total of 46 sets of inputs.
The input factors indicate the pneumatic pressure in the six
bellow tubes. The levels are chosen to be 0, 0.6, 1.2, and
1.8 bars, respectively. Based on each input data (six pressure
values), the lengths for six actuator tubes were measured
by the potentiometers, and the tip position and orientation
were captured by the OptiTrack at a steady state. Here, the
resulting workspace of the manipulator, as shown in Fig. 12,
is determined by the OptiTrack vision system. The workspace
is akin to the cloth volume in an open umbrella with a thicker
canopy cloth and three prominent ribs.

FIGURE 12. Workspace of the trunk of Robotino-XT.

The OptiTrack system reconstructed the coordinate points
of each marker of a rigid body to calculate the position and
orientation of the particular rigid body centroid. Note that
each rigid body centroid lies on the backbone (a line con-
necting the centroid of the sections) of the trunk of the PBHA.
The pose of the manipulator at any instant was determined by
the OptiTrack system as x(c) =

(
x(1) + x(2) + x(3)

)
/3, y(c) =(

y(1) + y(2) + y(3)
)
/3 and z(c) =

(
z(1) + z(2) + z(2)

)
/3, where

superscripts (1) to (3) indicate the points on the rigid body
arranged in an anti-clockwise sense as seen along the positive
z-axis, and superscript (c) indicates the centroid or backbone.
The orientation of the rigid body or the direction cosines of
the unit normal to the plane of the rigid body is determined
from vector algebra. Define vectors V12 =

(
x(2) − x(1)

)
î +(

y(2) − y(1)
)
ĵ +

(
z(2) − z(1)

)
k̂ and V13 =

(
x(3) − x(1)

)
î +(

y(3) − y(1)
)
ĵ +

(
z(3) − z(1)

)
k̂ , and the corresponding unit

vectors V̂12 = V12/ |V12| and V̂13 = V13/ |V13|. Then
V̂12 × V̂13= cos θx î+ cos θy ĵ+ cos θzk̂ .

The inputs to the PBHA of the Robotino-XT are provided
at intervals of at least two seconds. The pressure controller for
the pneumatic proportional solenoid valves has low actuation
gains to avoid overshoot and hence the response time to
reach the steady-state is slow. The response is similar to
that of a first-order system. The pressure controller includes
cross-coupled gains to account for cross-coupling between
the tubes. Though this reduces the speed of the actuator, it is

indeed important because overshoot cannot be allowed in a
safe human-robot interaction. The tip of the workspace is
reached when all tubes have two bar pressure. The workspace
is asymmetric due to the inclination of the PBHA (See Fig. 1)
of Robotino-XT and the residual bending due to self-weight.

A. NEURAL NETWORK TUNING
For the IK of the PBHA, a suitable NN architecture has
been chosen by trial and error, and it has been found that,
with two hidden layers, the empirical risk function converges.
The only restriction imposed on any NN model is that the
output must be bounded (i.e., output ∈ L∞). The activation
functions for both the hidden layers are chosen to be sigmoid
functions, whereas the linear activation function is chosen
for the output layer. The number of hidden neurons (N2) for
both the hidden layers is kept the same and varies from 2 to
32 in steps 2. The training performance (MSE) of the NN
by using the SL algorithm is compared with that by using
themultilayer perceptron algorithm. Themaximum time limit
for any sub-network in the case of the SL algorithm is set to
130 seconds.

In literature, the ideal learning rate and the momentum
coefficient are proposed in the range of (0, 1), and their
optimum values should be selected through the trial and error
method [53]. Thus, based on a grid search, the best learning
rate and momentum coefficient for the networks are found to
be 0.01 and 0.5, respectively. The best performance (training
and validation) with training duration for all three networks
are given in Table 1. The results show that the best training
performance for NN1 is obtained by considering 2log2 (N2)

number of nodes in the hidden layer as suggested in [54],

TABLE 1. Performance of three layer NN trained by SL algorithm and
multilayer perceptron.
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and the best training performance for NN2, NN3 is obtained
by considering

(
2 log2 (N2)− 4

)
number of nodes in the

hidden layer. Moreover, a comparison is also made with the
multilayer perceptron method. It is evident from the results
that the inverse solutions with SL algorithm-based NNmodel
gives better result and is computationally more efficient for
more extensive network sizes.

The computed pneumatic pressures from the NN model
are used as input to the manipulator to check the accuracy
of the system behaviour. The resulting actuator lengths at the
steady-state position of the tip are computed, and the actual
values are measured. The positional error at the manipulator
tip is found to be nearly 7 mm in some instances, espe-
cially at the workspace boundary. This is an outcome of the
non-linear hysteresis effect in the polyamide material used
for the manipulator construction. Therefore, an open-loop IK
controller would be erroneous, and a closed-loop controller
is developed to eliminate the error. Moreover, the closed-loop
controller is used here for the manipulator tip path tracking.

B. CONTROLLER PARAMETER TUNING
The gains of the feedback-feed forward PI controller (See
Fig. 9) are adjusted carefully by selecting appropriate η,WP,
and WI. On the basis of trial and error, the learning rate η
is chosen as 0.01. It is noted that the first three diagonal
elements of WP and WI correspond to the first segment of
the manipulator, and the last three diagonal elements of WP
andWI correspond to the second segment of the manipulator.
Moreover, the controller continually changes the pressure
set points when the command to move from one position
to another is given. Therefore, the maximum response time
of the controller to compensate for the errors was kept at
three seconds during tuning of the controller gains so that the
maximum percentage steady-state error for the step response
is bounded within ±2% after three seconds. Note that the
settling time of the base system (with open-loop control) was
two seconds, and it was found that at least one second extra
time is needed for error compensation.

VI. RESULTS AND DISCUSSION
In this section, the effectiveness of the developed kinematic
control model for a class of BCM is verified on the PBHA
of the Robotino-XT. For the purpose of validation, three
different paths are considered. The first is a circular path, the
second is a path like a double circle attached side by side with
different radii, and the third is a simple 1:2 Lissajous curve,
a part of which lies outside the workspace of PBHA with a
stationary Robotino base.

A. CASE-1: CIRCULAR PATH
A circular end-effector path from the workspace of the PBHA
is chosen to validate the developed control model. The chosen
circle is of 115 mm radius, which is located at 165 mm
from the base-plane along the z-axis of the PBHA. Discrete
positions at 10 degrees intervals on the perimeter of the circle
are chosen so that there are 37 positions through which the tip

FIGURE 13. (a) Comparison of desired circular path and trajectory with
open-loop control, (b) Comparison of desired circular path and trajectory
with closed-loop control, and (c) Normalized error for radius.

moves to complete a full circle. The time interval to traverse
between two positions is denoted by 1T and the command
update frequency is ω = 1/1T . The comparison between
the tip position with open-loop control and the desired path
is shown in Fig. 13(a). The same comparison along with a
zoomed view of data points 20, 21, and 22 for the closed-
loop control with three different values of update frequencies,
is shown in Fig. 13(b).

The normalized error is defined as en = (rd − ra) /rd
where rd is the desired and ra is the actual radius (dis-
tance from the center of the circle). This error is plotted in
Fig. 13(c). The range of the normalized error en for 0.50 Hz
frequency for closed-loop lies between −0.08 to 0.07, and
the average en is found to be −0.0041. Similarly, en for
0.33 Hz frequency in closed-loop lies between ±0.035, and
the average en is found to be −0.0027. Moreover, by further
reducing the frequency to. 0.20 Hz, en is found to be between
±0.032, and the average en is found to be 0.0022. It is
observed that the actual path with a lower command update
frequency is closer to the desired path when compared with
the higher frequency. The result for higher update frequency,
e.g., 1 Hz, is at times worse than the open-loop control. This is
because the closed-loop controller is not given enough time to

47044 VOLUME 10, 2022



M. K. Mishra et al.: Joint-Space Kinematic Control of BCM in Real-Time by Using Hybrid Approach

compensate for the positional errors. Moreover, by reducing
the update frequency from 0.50 Hz to 0.33 Hz (approximately
34%), the normalized error reduced by 53%, whereas by
reducing the update frequency from 0.33 Hz to 0.20 Hz
(approximately 40%), the normalized error reduced by only
8%. Since the normalized error does not reduce much by
reducing the update frequency, the lowest update frequency is
chosen to be 0.33 Hz. Moreover, for a circle of 37 data points,
74 seconds of travel time can be saved by using 0.33 Hz
frequency instead of 0.20 Hz.

The results for the circular trajectory obtained by using the
present method for the same circular arc with 0.33 Hz update
frequency are compared with the existing models in Table 2.

The tip position of the PBHA for both the open-loop and
the closed-loop control is plotted with respect to the angular
position in Fig 14. For the circular path, the x-coordinate of
the tip follows a cosine curve and the y-coordinate of the
tip follows a sine curve. A large error is clearly visible in
Fig. 14 for some duration of the open-loop control. This error
is due to the hysteresis effect, which occurs arbitrarily on
repeated experiments, and the in-built open-loop controller
cannot compensate for this error. However, the error is less
for the three considered closed-loop update frequencies as
compared to the open-loop control, and repeated experiments
show similar results. Note that 0.2 Hz update frequency
does not provide sufficient improvement over 0.33 Hz update
frequency, and hence, results for below 0.33 Hz update fre-
quency will not be discussed further.

TABLE 2. Recent contributions in continuum robot kinematics model.

FIGURE 14. Tip position comparison of the PBHA for open-loop control
and closed-loop control.

The PI-controller in this work is used to improve the
dynamic performance, i.e., for faster rise time and smaller
steady-state error. Instead of supplying the tip position infor-
mation, the discrete PI-controller used in the closed-loop
system is supplied with the difference/error in actuator length
(difference of the desired length and actual length) of all the
bellow tubes. Here, for each spatial coordinate of the robot
tip, all desired actuator lengths of the PBHA are derived from
the SL algorithm-NN model and manipulator sensors. The
controller uses a Jacobian matrix to determine the change
in the supplied pressures. The KP and KI gain values of
the controller are adjusted at the start of each update step
using (22) and (23), and those are kept constant within an
update step, i.e., motion from one point to the other. The
controller is provided with a sampling time of 0.05s, whereas
the update time (reciprocal of update frequency) for trajectory
points is much higher (2 seconds and 3 seconds, for 0.5 Hz
and 0.33 Hz update frequencies, respectively). Thus, to com-
plete the circular trajectory with 0.5 Hz and 0.33 Hz update
frequencies takes 72 s and 108 s, respectively.

The transition from one point to the next two points on
the tip trajectory is sown in Fig. 15, where the response of
the system (actuator lengths) within the control period (from
control point 20 to 21 and from control point 21 to 22) for
update frequency of 0.33 Hz and 0.50 Hz are plotted together.
Note that the sampling frequency is 0.05s. For each actua-
tion command, there are 60 discrete control loop executions
for 0.33 Hz update frequency and 40 discrete control loop
executions for 0.50 Hz update frequency. Since the control
step times are different (2 s and 3 s), time normalization is

FIGURE 15. Actuator length variation of PBHA at τ = 0,1,2, the PBHA tip
is at data point 20, 21, and 22 respectively.
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performed to plot the results in Fig. 15. The normalized time
τ = t/tmax where t is the actual time counted from point
20 (See Fig. 13(b)) and tmax is the step time. All six length
variations of the PBHA from point 20 to point 22 (control
points are selected from the circular trajectory in Fig. 13(b))
are plotted against normalized time, where τ = 0, 1 and 2 at
points 20, 21, and 22, respectively. Figure 13(c) shows that
the residual errors are smaller in the case of 0.33 Hz update
frequency as compared to a 0.50 Hz update frequency (note
that the errors appear exaggerated due to the used scale).
However, notice that in Fig. 15, the lengths are not converging
to their desired values for most of the cases with 0.50 Hz
update frequency. This error with a higher update frequency
is because of the change in the input command to the PBHA
before its actuator lengths can converge or settle to the desired
lengths for the previous input command. Therefore, too fast
actuation leads to more positional errors.

The residual error in actuator lengths depends on the nature
and direction of the bending of the trunk. In different sit-
uations, some of the length parameters turn out to be well
controlled, whereas the rest can have slightly more residual
error. The transient overshoots are small, i.e., the tip position
does not go too much outside the intended trajectory. This
is an important control goal because otherwise, there can be
serious implications during safety-critical applications like
robotic surgery. To complete a task in less time, rather than
using higher update rate, multiple robots sharing the task is
preferred.

Apparently, the actuator lengths can converge closer to the
desired set points if more time is given or the higher inte-
gral gain. However, more time reduces the update frequency
and will make the robot motion slower. On the other hand,
the proportional and integral gains are found from real-time
controller tuning within each update step, and a better tuning
is obtained when the learning rate parameter η is made even
smaller. However, with such a change, the convergence of
the controller tuning algorithm takes more time, and hence it
is unsuitable for real-time application. This may be avoided
with parallelization of the code, which is not attempted here.
In the present work, due to limitations of the computational
hardware and multi-threaded serial computing, the authors
have stuck with a reasonably small (but not too small) learn-
ing rate and update frequency to maintain acceptable real-
time performancewhile allowing for theminor residual errors
in the actuator lengths. Further note that the controller is
provided with no additional differential gain values because
of the existing high damping resulting from the material
properties of the PBHA (refer to the nearly over-damped
nature of the responses in Fig. 15).

B. CASE-2: DOUBLE CIRCULAR PATH
This scenario considers a double circle-like path of the tip
of the BCM, as shown in Fig. 16(a), where the tip trajectory
moves in a clockwise direction for the bigger circle and in
an anti-clockwise direction for the smaller circle. Here, the
double circle consists of two circles joined together side by

FIGURE 16. (a) Desired eight like path of tip of PBHA, (b) Path planning
of Robotino-XT base for the desired path of double circle.

side, where the diameter of the first circle is 46 mm and
that of the second circle is 25.5 mm. The coordinates of the
first circle are chosen from the workspace of the PBHA, and
the coordinates of the smaller circle are chosen outside the
workspace of the PHBA. So, to track the desired path of the
first circle, only actuation of the bellow tubes is required.
However, to track the desired path of the second circle, simul-
taneous actuation of the bellow tubes and movement of the
base is required.

The tip of the trunk is initially positioned at the intersec-
tion of the circles. It first completes the larger circle with
clockwise rotation and then starts the smaller circle from the
intersection point and completes it with anti-clockwise rota-
tion. The starting point for the path is indicated in Fig. 16(a).
The base motion of the Robotino-XT, as shown in Fig. 16(b),
is planned such that the desired target point on the smaller
circular path comes within the workspace of the trunk with
minimum base movement. Here x’, y’ are the assigned coor-
dinate system for the mobile base of Robotino-XT.

Figure 17(a) shows the path followed by the BCM tip
for open-loop control with an update frequency of 0.33 Hz.
It is quite natural that the nonlinearity and hysteresis of the

FIGURE 17. (a) Comparison of the desired path with the actual path
(open-loop control), (b) Comparison of the desired path with the
controlled path (closed-loop control), and (c) Closed-loop en, for the
double circular path.
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trunk affect the trajectory tracking accuracy. The closed-loop
control is performed for two different update frequencies
(0.33Hz and 0.5Hz), as shown in Fig. 17(b). The normalized
error for the radius during closed-loop control is shown in
Fig. 17(c) (the error plot for the open-loop control is omitted
due to obvious presence of large error). It is observed that
the normalized radius error in the case of the higher update
frequency for the first circle ranges from −0.09 to 0.07,
whereas the same for the second circle varies between±0.16.
Similarly, in the case of lower update frequency for the first
circle, en lies between−0.06 to 0.04, whereas the same for the
second circle varies between ±0.07. From several repeated
experiments, it was found that a 33% decrease in update
frequency (from 0.5 Hz to 0.33 Hz) reduced the average error
by almost 70%. Further reduction in update frequency, say to
0.2 Hz, did not result in a significant reduction in the error.

C. CASE-3: LISSAJOUS PATTERN PATH
The parametric equations for the Lissajous curve, also termed
as the Bowditch curve, are written as

x = A1 + A2 sin at

y = B1 + B2 sin (bt + δ) (47)

where (A1, B1) is the geometric center of the curve,
(A2 and B2) are the x and y amplitudes, respectively, a and
b are frequency constants, and δ is the phase shift in the y
axis. Equation (47) describes a harmonicmotion where

(
a
/
b
)

plays an important role in defining the shape of the curve. For
the present case, the simplest form of the Lissajous curve is
taken into consideration, where A1 = 0 mm, B1 = 100 mm,
A2 = 100 mm, B2 = −200 mm, a = 2 rad/s, b = 1 rad/s and
δ = π/2 rad. Inserting the parameters into (47) and varying
t from 0 to 2π , the obtained Lissajous curve is shown in
Fig. 18(a).

As per the path planning, the tip of the BCM starts its path
from the starting point (−100, 0) as indicated in Fig. 18(a),
and rotates in the directions indicated therein. Including the
start point and end points, a total 193 number of target points
are considered on the discretized curve. However, many of
the coordinates of the assumed Lissajous pattern do not lie
within the workspace of the PHBA with a stationary base.
So, the movement of the base is planned for the tip to reach
the desired positions with the help of simultaneous actuation
of the base and the bellows.

For planning the base movement, two imaginary circles
of radius A2, as shown in Fig. 18(a), are chosen. These
circles lie within the workspace when the base frame origin
is positioned at the center of the circle. Since both circles
and the Lissajous curve have the same x axis amplitude of
A2, the robot base needs to be moved only to change the y
position of the base frame to compensate for the gap between
the circle and the Lissajous pattern. Note that the robot base
can translate in the x ′ − y′ frame and the y′−axis is parallel
to y−axis.

FIGURE 18. (a) The desired path for Lissajous pattern with a/b=2 and
reference circle, (b) Zoomed view of Lissajous pattern and circle.

A zoomed section view of Fig. 18(a) is now shown in
Fig. 18(b) so as to plan the necessary base movements. Here t
is varied from 0 to π

/
4 for the Lissajous pattern and 0 to π

/
4

for the first circle. The plots for both the Lissajous pattern and
circle start from (−100, 0) and end at maximum x-coordinate,
i.e. amplitude A. The maximum amplitude of the Lissajous
pattern from Fig 18(b) is found by deriving a unified equation
from (47) and applying the defined parameters as follows

x = 100 sin
{
2 cos−1

(
100− y
−200

)}
. (48)

Differentiating (48) with respect to y, the maximum ampli-
tude A2 is found to be at t = π

/
4 and y = −41.42 whereas

the first circle reaches its maximum amplitude A at
t = π

/
2 and y = 0. The amplitude A is divided into n equal

intervals, and horizontal lines are drawn, as shown in Fig
18(b), to design the base movement for the compensation of
the gap between the two figures. Each horizontal line drawn
has an intersection with both the Lissajous pattern and the
circle. The intersections of those horizontal lines with the
Lissajous pattern are denoted by points L0,L1,L2, ···, Ln, and
those with the circle are denoted by pointsC0,C1,C2, ···,Cn.
For each intersection of the line with the Lissajous pattern
and the circle, the corresponding parametric variable t is
determined, and the corresponding y-coordinates yLi and yCi
(i = 0, 1, 2, · · ·, n) values are also determined. The distance
between the each yLi and yCi pair is calculated and is denoted
by di. Note that d0 = L0 − C0 = 0. Each subsequent
step for the base motion will be compensated by di+1 − di.
Simultaneously, the bellow tubes of the trunk are actuated
such that the tip of the trunk can reach Ci. In this way, the
combined effect of both bellow actuation and base motion
leads the trunk tip to reach the desired point Li. Likewise,
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FIGURE 19. (a) Robotino-XT base movement direction from the origin,
(b) Robotino-XT base movement.

the base motion compensation for the remaining points is
planned as shown in Fig. 19.

The desired Lissajous path for the BCM is tracked with
two different update frequencies (0.5Hz, 0.33Hz) for the feed-
back control. For each actuation process with a low update
frequency (0.33Hz), the three seconds gap is provided. The
tip of the manipulator reaches a steady state in these three
seconds, and at this stage, the length data of all the bellows
are acquired. The acquired data are further processed through
a PI-controlled closed-loop to reach the desired path. The
actual path traced by the tip of the BCM is plotted against
the desired path for the Lissajous pattern in Fig. 20(a). Even
with the requisite base motions, a good match is obtained

FIGURE 20. (a) Comparison of the desired path like a Lissajous pattern
and actual path for both update frequencies, (b) absolute en of actual
path for Lissajous pattern.

between the actual path and the desired path. The absolute
normalized error |en| between the actual and desired paths
for the Lissajous figure, as shown in Fig. 20(b), is defined as

|en| =

∣∣∣∣∣∣
√(

xd − xa
A

)2

−

(
yd − ya
B

)2
∣∣∣∣∣∣ (49)

where, (xd , yd ) is the desired coordinate for the tip and
(xa, ya) is the actual coordinate of the tip. The z-direction
positional error is not considered in Eq. (49) because it is
too small (practically absent). For high update frequency,
Fig. 20(b) shows that |en| < 0.1 for the entire path and
the mean is about 0.055. For low update frequency, |en| <
0.05 with a mean of 0.025. The results show that the error is
more when the base acceleration is more (See Fig. 19(b) for
base displacement profile). This is because the base motions
apply inertia forces on the trunk, which is an un-modeled
dynamics so far as this article is concerned.

VII. CONCLUSION
In comparison to existing literature, a more accurate method
to navigate the tip of a BCM in real-time is proposed.
Instead of using complex nonlinear equations, the IK model
is solved by combining model-free and a simple model-
based technique. The SL algorithm-based NN is used to solve
the inverse problem of the BCMs. The effectiveness of the
proposed algorithm’s accuracy, time duration, and stability
compared to traditional multilayer perceptron is discussed
in detail. Since the material hysteresis has a predominant
effect on the BCM and its response cannot be cyclically
repeated, a new real-time closed-loop control scheme by
using a Jacobian-based PI-controller in cascaded form is
proposed. The convergence criteria, along with the pneumatic
pressure saturation of the designed controller, are also pro-
vided. The proposed model is validated with an elephant
trunk-like BCM called Robotino-XT. Three different paths
(a circle, a double circle, and a Lissajous pattern) are taken
into consideration to show the accuracy of the model. The
closed-loop control model gives a much better result than the
open-loop controller. A comparison study is also provided
for different update frequencies, and it is observed that the
accuracy is much better for a lower update frequency. More-
over, with the proposed model and lower update frequency,
for all the cases taken into account, the maximum normalized
error that occurs is within ±1.5% of the manipulator length,
which is reasonable for a flexible manipulator under inertial
load. When some part of the path falls outside the workspace
of the manipulator (e.g., the double circle and Lissajous
patterns), the path of the mobile base is planned accordingly.
The control of the mobile base is performed by a low-level
controller inbuilt with the Robotino-XT.

The present model is based on kinematic considerations.
Therefore, it is observed that with smaller update time inter-
vals (i.e., larger update frequency) between two target points
in the trajectory, the positional accuracy reduces. Two rea-
sons for this inaccuracy are that the low-level controller has
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a significant response time (due to pneumatic actuation),
and the inertia forces are not considered in the model. It is
expected that an inverse dynamics model would represent the
effects of the response time of the pneumatic actuation and
the inertia forces. So far, no such attempt has been made for
the kind of soft robot considered in this study, and it can be
a promising area for future research, especially to improve
positional accuracy with high-speed trajectory tracking.

The current study only focuses on the path control with-
out any imposed optimality condition, such as least energy
consumption. The primary aim of this research is to high-
light the use of the hybrid modeling approach and the cas-
caded control where one controller specifies the set-point
for another. A more complex controller may perform better
in terms of positional accuracy, provided that the associated
computations can be performed in real-time without delay-
ing the robot’s response. Therefore, in the future, optimality
conditions may be used for path planning while keeping real-
time performance in view. As further future work, tip force
control with respect to the loading conditions and interaction
between two or more manipulators will be addressed.
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