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ABSTRACT Malware has plagued the internet and computing systems for decades. The war against
malware has always been an arms race. Researchers and industry have constantly improved detection
and prevention methodologies against increasingly more evasive malware. Keeping up with the constantly
changing adversary tactics for evading defensive efforts and maintaining an efficient malware supply chain
is imperative to stay ahead in the competition. In this paper, we present a large-scale and comprehensive
analysis of the current state of malware distribution. For the analysis, we accumulated a dataset that
contains 99,312 malware binary samples from 38,659 malware distribution sites over 287 days. Using
our dataset, we perform a comprehensive analysis of the collected malware binaries and URLs to provide
up-to-date statistics and insights into the adversary strategies.We analyze both malware distribution sites and
malware binaries collected from them. Regarding binary analysis, we perform a multifaceted analysis on the
characteristics on the collected binaries, including malware family label classification and file similarity-
based clustering. With distribution site analysis, we analyze the IP addresses, domains, AS registration
distribution and URL lexical distribution of malware distribution sites. We further discuss the statistical
relationship between malware families and their distribution domains. Most importantly, we discuss the
current trends in malware distribution today and reveal adversary strategies through our extensive amount
of analysis results. Then, we suggest future directions for fight against malware distribution.

INDEX TERMS Malware distribution network, cyber security, malware classification, malware features.

I. INTRODUCTION
For decades, the war against malware has been an arms
race. Malware distribution today is highly industrialized, and
adversaries actively employ various evasion techniques at
a large scale to avoid malware detection schemes. Due
to their evasive behavior and rapid evolution, understand-
ing malware and its distribution network have always
been the topic of interest for researchers. Several works
have conducted focused studies to understand a specific
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issue or phenomenon in malware distribution. For instance,
Caballero et al. [1] studied the malware distribution in the
Pay-Per-Install (PPI) ecosystem. Thomas et al. [2] focused
on the Potentially Unwanted Program (PUP) distributed by
PPI services. Furthermore, Kotzias et al. [3] and Ife et al. [4]
conducted a large-scale analysis on identifying the distribu-
tion patterns of PUPs with the metadata collection provided
by AV vendors. Kwon et al. [5] presented a large-scale anal-
ysis on Windows executables droppers, which is conducted
with the metadata collection provided by an AV vendor.
Ugarte-Pedrero et al. [6] provided a dedicated analysis on
a large number of malware samples (i.e., 172K samples),
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focusing on Windows executables collected within 24 hours
to analyze the effectiveness of AV vendor filtering schemes
onmalware samples. Lastly, Alrawi et al. [7] studied 166,772
IoT malware samples to identify the difference in the evasion
techniques of IoT malware from the traditional malware.

Some works have also studied the malware measurement
to understand the distribution of malware or distribution sites
on a large scale. Hu et al. [8] performed a large-scale malware
clustering based on static features with 132,234 malware
binaries. Tanaka et al. [9] conducted a long-term analysis on
malware distribution sites, with their 43,304 URLs collected
in 19 months.

Besides, there also have been approaches on enhanc-
ing the efficiency and accuracy of automated mal-
ware detection, using clustering [8], [10]–[12] and deep
learning [13]–[18]. Recent works have applied the latest
clustering and deep learning techniques for malware detec-
tion. Notably, Chakraborty et al. [12] proposed a combined
approach of clustering and supervised classifiers that deals
with classifying unknown malware samples into families.
Ferrag et al. [19] applied federated deep learning to han-
dle diversifying features of malware in IoT infrastructure.
Some studies have also worked on developing an appropriate
dataset for the fair measurement of machine learning-based
malware detection [20]–[23].

Our work provides a comprehensive measurement of the
current state of the malware distribution and reveals the latest
adversary strategies in the process. Our work is comprehen-
sive in the following two aspects: First, we do not limit our tar-
get to a specific class of malware or a particular phenomenon.
Rather, we consider all malware types that users frequently
encounter through using public data sources. This differs our
work from previous works that have only considered the mal-
ware binaries of certain behavior [7], [24], or a specific subset
of malware binaries [1]–[3], [5]. Our work, on the other hand,
captures a more comprehensive view on the state of malware
distribution and adversary strategies. Second, we analyze
both malware distribution sites and the binaries collected
from the URLs. There are also existing works [3], [4] that
have also conducted analysis on both malware binaries and
URLs, but we point out that their dataset is rather dated, which
is collected no later than 2016. By analyzing both binaries and
their distribution sites, we take a closer look into the current
adversary strategies from malware binary generation to their
distribution.

In this work, we collect live malware binaries and their
distribution URLs from public data sources in real-time with
the crawler we implement. Then, we identify the malware
family distribution and the similarities among malware fam-
ilies. For some peculiar cases, we provide in-depth case
studies focusing on their evasion techniques through man-
ual analysis. We then propose a clustering approach based
on file similarity to provide better heuristics on classifying
malware families variants and also to provide more accurate
classification than vendor-given labels. We also try to iden-
tify the mutation strategy of current malware by comparing

binary differences of the files in the same cluster. With the
URL collection, we statistically analyze the distribution of
IP, domain, AS registration, and geographical location to
identify the distribution trend of malware. Finally, we provide
discussions with implications from our findings and suggest
future directions for the research community and industry in
cyber security.

The remainder of this paper is organized as follows: § II
explains the related works and provides a dedicated com-
parison that distinguishes our work from the existing works.
We explain our data collection methodology in § III, and
provide an in-depth analysis on malware binaries in § IV.
In §V, we discuss the result of file similarity based clustering.
Then, we present the analysis on the statistics of malware
distribution site URLs in § VI. § VII provides discussions
and future directions for the research community, based on
the results from our analysis. Lastly, concluding remarks are
drawn in § VIII.

In all, we summarize our contributions as the following:

• We design a malicious binary and URL collection sys-
tem that collects live malware binaries from newly
reported malware distribution URLs. Using the system,
we build a dataset over 287 days that contains 99,312
malware binary samples from 38,659 malware distribu-
tion site URLs (§ III).

• We provide an in-depth analysis of malware binaries in
the dataset to illustrate the current trends in the malware
distribution industry and the detection evasion strategies
of attackers (§ IV).

• We discuss the trends in distribution sites through the
statistics from our dataset (§ VI). More specifically,
we perform a clustering method on the collected mal-
ware binaries to classify malware based on their binary
similarity to complement the current malware classi-
fication convention that is different from vendor to
vendor (§ V).

II. RELATED WORK
Table 1 shows the comparison of our work to the existing
works. Our work conducts a study on the distributed malware
binaries and malware distribution networks to capture the
latest trends and adversary strategies in malware distribution.

Some existing works focused on understanding specific
phenomenons. For instance, existing works have sought
to understand Potentially Unwanted Programs (PUPs) in
depth [2], [3]. Some works focused on the behavior and
characteristics of malware binaries themselves [7], [24], and a
few works are even more focused, only consideringWindows
executables [5], [6], or distribution URLs [9]. On the other
hand, some other works focused on identifying the feature
of malware binary or their distribution sites. [8] worked on
clustering malware based on its static feature, and [9] pro-
vided a long-term analysis on malware distribution URLs.
Otherwise, our work covers all types of malware and both
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TABLE 1. Comparison of literature on malware analysis. Our work provides a comprehensive analysis overview on the state of malware distribution today
through both malware binary and distribution site analysis.

their distribution URLs to figure out the comprehensive trend
of malware distribution.

Malware distribution and defensive efforts are constantly
engaging in an endless arms race, and adversary strategies
change. For this reason, an up-to-date analysis on malware
is of value to researchers and industry alike. To the best of
our knowledge, [7] is the most recent work on large-scale
malware analysis. However, this work limits its target to
Linux-based IoT malware. The work of Ife et al. [4] also
covers comprehensive data, including malware binaries and
URLs, but we point out that the dataset used in this work
is rather dated (2016). We also differ our work from other
works [3]–[5] that leveraged the AV vendor dataset which
only consists of metadata, not the real binaries.We emphasize
that our work shows the current state of malware distribution
and attempts to maintain representativeness by crawling real-
time data.

A. PUP DISTRIBUTION ECONOMY
Several works focused on the analysis of PUPs [1]–[3]. PUPs
are a subset of malware and also distributed in a large-
scale. However, PUPs differ from malware in that they are
often not outright malicious, but still exhibit a certain degree
of intrusive behavior (e.g., browser toolbars and adwares).
Notably, Caballero et al. [1] reverse-engineered the software
bundle and implemented the ‘‘milker’’, or data collection,
tool, which periodically downloads the target program that
pay-per-install installers try to download. They found out that
some families repack their target program more than twice
a day. Thomas et al. [2] also developed a tool that collects
PUPs and the internal operations of their distributors. They

examined deceptive behaviors of the PUP distributors that
attempt to evade user protections. These works are similar
to our work in that both collected multiple samples that
were updated on the server-side. However, our work is more
general because we consider all types of malware, not only
the PUP.

B. LARGE-SCALE MALWARE MEASUREMENTS
Recently, researchers studied a large malware corpus from
various data sources, such as online sandbox analysis sys-
tems and commercial sandbox systems from Anti-Virus (AV)
vendors. Ugarte-Pedrero et al. [6] dissected the whole dataset
from a single AV vendor collected for 24 hours. They studied
how much effort it takes to process malware we face daily.
They filtered out most of the samples using VirusTotal and
sandbox analysis and showed that only large companies could
process the emerging malware samples, as abundant compu-
tation power and human resources are needed. This work is
someway similar to our work. However, most of their data
consist of polymorphic malware families, so their results can
be biased towards those families. Kwon et al. [5] constructed
a downloader graph based on IPS and AV telemetry data
and showed that there are differences between benign and
malicious malware distribution patterns. However, they used
Symantec antivirus and IPS telemetry as the ground dataset.
We point out that the data from a vendor can also be biased
toward polymorphic families, and HTTPS-based distribution
is missing since IPS data only considered PE files sent over
HTTP. Notably, Ife et al. [4] analyzed 129 million download
events consisting of 21million unique binaries and 12million
URLs that had occurred in over one year. However, the dataset
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from Symantec is too old (2015 - 2016) and has only meta
information, not real files that could be checked by VirusTo-
tal. This research did not satisfy our demand to analyze the
binary file in the real world. Lastly, Ugarte-Pedrero et al. [6]
collected the samples from a large security company over a
period of 24 hours. Their objective was to understand how
‘‘fresh’’ these files were by usingVirusTotal, and 90% of their
collected samples were also present in the VirusTotal. The
paper focused on classifying every single Windows binary
collected in a single day.

There are also previous works on collecting malware
samples and URLs. Singhal and Levine [24] counter-plot
the drive-by-download malware by visiting malicious URLs.
They designed an own crawler that collects malware bina-
ries linked to the URLs uploaded in public malware feeds,
which is similar to our work. However, they worked with a
small size of data, which was 1,414 unique malware binaries.
Tanaka et al. [9] investigated the malware download sites
focusing on the time-series variation of malware. The authors
only focus on the change of malware hashes and disregard the
difference of malware binary itself.

Hu et al. [8] performed a large-scale (over 130,000 sam-
ples) malware clustering. Their system, called MutantX-S,
achieves high-speed binary sample clustering through the use
of machine learning-based hashing techniques. In terms of
accuracy, their evaluation showed their system could predict
the correct label of a new unknownmalware sample with 80%
accuracy.

In addition, there has been a work on large-scale analysis
of the emerging IoT malware ecosystem. Alrawi et al. [7]
presented measurement of over 166K Linux-based IoT mal-
ware samples and tried to figure out the differences of IoT
malware from the traditional malware. Their result shows
that the evasion techniques of existing malware such as poly-
morphism and anti-analysis are already incorporated in IoT
malware, and the behavior of IoT malware is still similar
to the traditional malware. However, they point out that the
flooding number of new IoT devices might embed the unre-
alized potential of IoT malware development.

C. DATA ANALYTICS FOR SECURITY
We expect machine learning can be adapted to advance
automated malware analysis’s efficiency and accuracy.
A number of deep learning-based cyber-attack detection
mechanisms have already been proposed [13]–[18]. Notably,
many public cyber intrusion datasets have been accumulated
for research purposes [20], [25]–[28]. Against such datasets,
deep learning-based approaches have shown great perfor-
mance with low false positive [29]–[32]. Recently, defense
mechanisms that adopt federated deep learning have been
proposed in academia to handle diversifying threats and
large attack surfaces of IoT infrastructure [33]–[35]. How-
ever, the comprehensive analysis on federated learning-based
intrusion detection of Ferrag et al. [19] has shown that they
can even outperform the centralized deep learning-based
approaches.

III. DATA COLLECTION METHOD
In this section, we explain our data collection methodology.
We explain our choice of data sources, our crawler’s design,
and a summary of the collected data. We collected 38,659
malware distribution sites (i.e., malware URLs) and 99,312
malware samples in 287 days of the data collection period,
from 09-19-2019 to 07-01-2020.We accumulated a represen-
tative dataset for malware distributed today. Thus, we chose
our data source as public malware feeds where malicious
or suspicious URLs encountered by users are reported. Our
binaries are collected from suchURLswhile they are in active
distribution. This way, our dataset contains the URLs and
binaries from the malware distribution campaigns that were
active during our collection period. In other words, all data in
our dataset are the URLs and binaries that users come across
on the internet. We built a crawler that is dedicated to our data
collectionmethod; it collects the distribution sites and gathers
linked malware binaries in real-time.

A. DATA COLLECTION SOURCE SELECTION
We chose multiple public sources, such as URLHaus [36]
and VxVault [37], as our data source for malware distri-
bution URLs and also collected the linked malware bina-
ries. These websites provide up-to-date malware binary and
distribution site URLs, which are reported by users. Also,
they perform crosschecks against malware analysis plat-
forms such as VirusTotal [38], and this allows us to trust
the URLs confirmed to be malicious. In addition to down-
loading malware in the malware distribution URLs in the
sources mentioned above, we collect malware binaries from
HybridAnalysis [39] and Joe Sandbox [40]. These services
are more geared towards malware binary analysis. We also
collect malware binaries from commercial dynamic mal-
ware analysis engines such as Anyrun [41]. Note that these
sources are also run by user reports, which aligns with the
rationale behind collecting distribution URLs from public
sources.We consider all the data reported by users suspicious,
so we also include the binaries and URLs that are decided as
‘‘potentiallymalicious’’ or ‘‘unknown’’ in our data collection.
We found that malware is included in this data, andwe discuss
this in § V.

B. DATA COLLECTION SYSTEM OVERVIEW
Figure 1 illustrates the overview of the data collection system
that we implemented. The system crawls the data sources
explained above periodically to collect two types of data:
malware distribution URLs and malware binaries uniquely
identifiable through the MD5 hashes. For all reported mal-
ware distribution URLs, we also collect the malware binaries
being distributed from the URL. That is, we are collecting
malware binaries from the URLs in addition to the malware
binaries report sources (e.g., Anyrun, Joe Sandbox). The
binaries collected from the URLs may or may not overlap the
binaries from the malware binary sources. This means that
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FIGURE 1. Data Collection Overview. À Crawler collects reported URLs from public malware feeds and malware binary analysis services. Á
To collect the malware binary linked to the collected URLs, crawler accesses the malware URLs in real-time, with Tor avoid blacklisting by
the adversaries. Â Crawler queries the MD5 hashes of collected malware binaries to VirusTotal to retrieve AV vendor reports the given
binary. Ã Timestamped distribution site URL, binary hash, binary file, VirusTotal results are saved in the database.

our system is consolidating the data from multiple sources to
capture the actively distributed malware binaries at the time.

We optimized the crawling period for each website
based on our heuristics on the website’s update frequency
(10 min ∼ 1 hour). Keeping up with the newly reported
links is crucial since the distribution URLs have finite
and rather unpredictable uptime. This is because the URL
may be taken down by the authorities and also subject
to frequent malware binary replacement for evasion of
signature-based blacklisting (e.g., https://malware.
site/mw-v1 → https://malware.site/mw-v2).
Hence, periodic collection is necessary in order to obtain the
malware being distributed from the URL at that exact time.

C. DATA COLLECTION STRATEGIES
Our system connects through Tor [42] when collecting
the malware binaries from the reported distribution URLs.
We observe that the malware distribution sites blacklist fre-
quent visitors that are suspected to sabotage malware data
collection systems such as our crawler. Another strategy we
developed during the early testing phase of our collection
system was to check for directory listings of the malware
distribution sites.We discovered that the malware distributors
often prepare malware binaries on the distribution site web
server before they start distributing them. These binaries were
sometimes previously unknown, suggesting that they might
be malware binaries on pre-distribution. As a result, this
aggressive crawling strategy enabled us to compile 220%
more samples from the existing data.

D. CHALLENGES IN COLLECTING LIVE MALWARE DATASET
We faced formidable challenges in collecting a live dataset
that consists of distribution site URLs and the distributed
binaries.

First, the malware distributions tend to be very dynamic.
We observed that the malware distributors deliberately

change distribution site URLs as well as the distributed bina-
ries (e.g., xxx.com/aa/bb.exe → xxx.com/ccc/
dddd.exe). Once the distributors realize that AV vendors
have blacklisted the distribution site, they quickly abandon
the URL and switch to a new one. A single distribution site
may suddenly swap the distributed malware binary as the
distributors discover that the binary has been blacklisted. This
forced our data collection system to be real-time to keep up
with the constantly changing distribution sites.

Second, during our data collection period, we found
that the distributors ban the IP addresses of clients that
visit repeatedly (e.g., our data collection system). Hence,
we resorted to using Tor to avoid being blacklisted. Due to
the added network delay from Tor, we had to invest more
resources into our data collection system to keep up with the
malicious URL reports piling up. As such, our data collection
system was required to be real-time to keep up with the
constantly changing distribution sites.

Third, during our data collection period, we experienced
that the distributors ban the IP addresses of clients that
visit repeatedly (e.g., our data collection system). Hence,
we resorted to using Tor to avoid being blacklisted. Due to
the added network delay from Tor, we had to invest more
resources into our data collection system to keep up with the
malicious URL reports piling up. Overall, maintaining the
above efforts for 287 days without a single downtime had
been a formidable challenge.

E. VALUE OF OUR DATASET
Our dataset provides several advantages in performing a
comprehensive measurement on the current state of mal-
ware distribution. Our dataset includes both malware binaries
linked with their distribution sites. This linkage between the
distribution site and the malware binaries makes our dataset
valuable since it allows us to study the adversary strategy
in preparing binaries and managing the distribution sites.

49570 VOLUME 10, 2022

https://malware.site/mw-v1
https://malware.site/mw-v1
https://malware.site/mw-v2
xxx.com/aa/bb.exe
xxx.com/ccc/dddd.exe
xxx.com/ccc/dddd.exe


S. Huh et al.: Comprehensive Analysis of Today’s Malware and Its Distribution Network

TABLE 2. Most frequently observed file formats in malware payload.

Therefore, we differentiate our dataset from those that only
contain malware binaries. Also, as we collect malware dis-
tribution sites and distributed binaries from user report-based
public sources, our data collection represents the real-world
malware that users encounter on the Internet. This also dif-
ferentiates our dataset from AV-vendor-provided ones, which
might be biased. Lastly, trends in malware binaries and dis-
tribution sites change rapidly, and thus, a dataset loses its
value over time. The fact that the most recent comprehensive
dataset (e.g., binaries + URLs) was collected in 2016 [4]
motivated this work.

IV. MALWARE BINARY ANALYSIS
In this section, we provide an in-depth analysis of the col-
lected malware binary samples to identify the behaviors and
characteristics of malware distributed today. We perform a
multifaceted analysis on the characteristics such as file type,
family, and obfuscation mechanism to illustrate the current
state of malware distribution. Also, we introduce our method
for quantifying the similarities among different malware
binaries. One observation wemake through the process is that
malware family classification reported by the AV companies
shows large variances. That is, the classification often does
not reflect the actual similarities of the binaries, but is rather
determined by the vendor-specific classification methods.
We report our analysis on our malware binary samples and
discuss the implications of our analysis.

We use VirusTotal [38] reports for the identification and
classification of the collected file samples. VirusTotal pro-
vides malware detection test results that consolidate the
reports from more than 70 AV vendors. The report contains
the decisions of vendors whether a given binary sample is
malicious or benign, while the binary hash valuemay not have
a record in the vendor’s database (i.e., unknown). Addition-
ally, VirusTotal offers malware classification and malware
family analysis.

We classify the collected binary samples in our dataset into
{malicious, potentially malicious, benign, and unknown}.
The results from the multiple AV vendors are often not
in consensus. Therefore, we must establish a classification
method for our binary samples. We use a threshold of 30%
for classifying a sample as malicious. That is, a sample is
classified as malicious if more than 30% of the reports from
multiple AV vendors collected from VirusTotal claim that the
sample is malicious (rmal > 30%). We classify the samples
that has lower than 30% but at least one AV vendor report that
claims it malicious as potentially malicious (0< rmal < 30%).
Benign samples have no AV vendor report that claims that it
is malicious ((rmal = 0%), and unknown samples are the ones
with no report (@ rmal). Establishing a ground truth for the

FIGURE 2. Cumulative Distribution of VirusTotal Detection Rates.

FIGURE 3. Top 15 Frequent AVClass Family.

binary samples is a daunting challenge for all analytic works
that collect malware samples from the wild. For this reason,
we use multi-vendor reports from VirusTotal as a source of
ground truth and use a conservative threshold (30%) as in
previous works [5], [43].

The distribution of binary sample classification is pre-
sented in Figure 2. 53,520 samples among the 99,312 had
at least 10 AV vendor reports while 45,792 samples had no
reports hence classified as unknown. Among the 53,520 sam-
ples, 37,317 file samples (69.7%) are classified as malicious,
4,235 samples (7.9%) as potentially malicious, and 11,968
samples (22.4%) as benign. As a result, we base our malware
binary analysis on the 37,317 samples that are highly likely
to be malicious.

A. MALWARE FAMILY DISTRIBUTION
We measure the distribution of malware family of the
binary samples in our dataset. With this particular analysis,
we exclude the unknown and potentially malicious samples.
That is, we only consider the samples that are highly likely
to be malicious (rmal > 30%) in order to derive a reliable
and representative statistics on the malware families actively
distributed today.

1) MALWARE FAMILY IDENTIFICATION FOR BINARY
SAMPLES
We draw the malware family distribution from the 37,317
binary samples classified as malicious to determine the
most commonly distributed malware today. We utilize the
AVCLASS tool [44] for grouping the collected malware bina-
ries into malware families, as previous research on malware
clustering did [45]–[48]. Existing AV vendors also provide
family names or classes on the malware. However, we found
that vendors usually give different names to amalware binary.
We surmise that this is due to the different naming conven-
tions and internal malware analysis processes. AVCLASS
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FIGURE 4. The heatmap of similarity measure between malware families.

is an open-source automatic malware labeling tool that nor-
malizes multiple malware tags from multiple public mal-
ware analysis services for a malware sample. Therefore,
we concluded that using AVCLASS allows us to better group
malware samples with similar behavior and characteristics
together instead of using the family classification from a
single AV vendor.

Malware binary classification labels from AV vendors are
often in disagreement, calling for a standardized and more
descriptive conventions for malware family classification.

Figure 3 shows the top 15 family distributions of malware
samples according to the aforementioned AVCLASS mal-
ware family aggregation. As a result, we found 6,267 families
from our malware samples, suggesting a diverse malware
family. Additionally, we discovered 1,070 singleton families
(2.8% of total malware samples) that contain only a single
malware sample. Notably, the top 4 families, Mirai, Emotet,
Trickbot, and Gafgyt families make up more than 43% of all
malware samples. The dominance of large malware families
and the small proportion of singleton families indicate that
most of the malware is not developed from scratch but is
likely to be produced by mutilating existing malware.

Mirai, Emotet, Trickbot, and Gafgyt were the most com-
monly distributed malware today.

2) SIMILARITIES AMONG MALWARE FAMILIES
We measure the similarities among the malware families
and create a two-dimension matrix with labels and samples,
as shown in Figure 4. We normalize the detection result from
VirusTotal using AVCLASS2. When given a hash value as
an input, AVCLASS2 produces the name and number of
each class that is flagged by AV engines. Using AVCLASS2,
we again query the hashes we once labeled with AVCLASS,
which only produces one representative label for each hash.
We query the hashes for each label and accumulate the num-
ber produced by AVCLASS2 for each other labels. Then,
each label will generate a vector, representing the number
of other labels that can be produced by various AV engines.
We treat this as a probability vector for each label and try
to evaluate the distance among those vectors to compute
similarity among the labels. Since the result sample vectors

to sample the comparison result are too small to show the
similarity, we employ the square root of cosine similarity
between vectors of two families.

In Figure 4, we observe the high similarity between some
families. For example, the Emotet family shows an excep-
tionally high similarity with autoruns (0.6), and also shows
some similarities with sagent, genkryptik, and high malware
families. The Mirai family shows similarity to Gafgyt fam-
ily. We found that the current labeling system provides no
insight into the characteristics of the malware families, not
to mention the conflicting labels reported by the AV vendors.
We expect that i) cooperation among the AV vendors to stan-
dardize the malware family labels and ii) labeling convention
that reflects the malware binary similarities can significantly
lower the efforts in the identification and analysis of malware.
In order to provide better malware classification heuristics,
we perform clustering on our dataset and analyze the results
in § V.

Code similarities across different malware families have
been observed, implying the current naming conventions do
not reflect actual similarities.

B. UNDERSTANDING MALWARE CHARACTERISTICS
We further examine the characteristics of the binary samples.
Specifically, we investigate their (i) file type (i.e., file exten-
sion), (ii) size, (iii) hash value, and (iv) packing method. Sim-
ilar to the family distribution analysis, we base our analysis on
the malicious (rmal > 30%) samples to describe the charac-
teristics of malware. In addition, we include other samples in
the malware file hash and size analysis. By also analyzing the
characteristics of {potentially malicious, benign, unknown}
samples, we draw a comparison among the samples with
varying levels of rmal . Such comparison allows us to highlight
the prominent features of the malicious samples and capture
the deliberate evasion techniques and distribution strategy of
malware distributors today.

1) MALWARE FILE EXTENSION ANALYSIS
Table 3 shows the top 5 true file types of the collected mali-
cious (rmal > 30%) samples and their advertised file types.
The first row (x-dosexec,x-executable,msword . . . )
shows the true file type of the distributed samples, and below
are the filenames as shown in the URL or HTTP header. There
are two places where the file format served in the URL is
advertised: the first is the filename specified in the URL itself,
and the second is in the content-disposition header in HTTP
Protocol. Besides the samples shown in the table, approxi-
mately 18% of the URLs did not specify their filenames, and
10% did not specify the filename even in the header. For this
reason, we incorporated libmagic python library in our collec-
tion system to automatically identify the true format. In terms
of the true file type of samples, the most frequently appeared
file type was Windows executables (x-dosexec) which
accounted for 52%. Linux executables (x-executable)
followed with 17.25%. Notably, Microsoft Word document
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TABLE 3. Top 5 file types and their advertised file types of malicious binary samples (rmal > 30%). Malware are often in disguise as other file type than
its true type.

FIGURE 5. Cumulative distribution of file size.

placed in third with 8.37%. We found that the file extensions
in the collected URLs often do not match the true file format.

The purpose of hiding file types in distributing malware
samples is usually to bypass rudimentary intrusion detection
systems. A correct extension is not required for the correct
execution since the droppers can arbitrarily rename the down-
loaded payload.

Automated filtering based on the advertised file extensions
can be easily bypassed.

2) MALWARE DISTRIBUTION FOR IOT DEVICES
We identified that at least 11.6% of the malicious
(rmal > 30%) samples labeled as Linux malware (i.e.,
x-executable) are compiled for non-x86 architectures
in our dataset, as you can see in Table 2. A common prac-
tice we observed was that the attackers cross-compiled the
same malware source code to multiple architectures, such as
MIPS and ARM. Additionally, we observed that the attackers
serve the same malware compiled for various architectures
at a single distribution site in our dataset. We suspect that
Linux-based IoT systems are becoming the target of interest
for attackers. Notably, the Mirai malware had the most non-
x86 architecture executables, which are known to target IoT
devices [49].

IoT-targeting malware is still in active distribution as
reported by previous works [50], [51].

3) MALWARE FILE HASH ANALYSIS
We found that many collectedmalware samples with different
hash values, in fact, contain identical code contents. In the
file hash analysis, we analyzed the samples with all ranges
of rmal . Notably, we find approximately 47% of malicious
binary samples were duplicates with arbitrary data embedded
at the end of the binary (i.e., binary overlay) inserted to yield a
unique hash value. This suggests that themalware distributors
are making conscious efforts to evade simple hash-based
detection, which is a common detection technique found in
the wild [52]. Unknown samples also have shown a high

TABLE 4. Number of binary samples with overlays and number of newly
identified duplicates through strict hashing method.

duplicate percentage. Since we establish ground truth with
VirusTotal’s multi-vendor reports, we restrain from making
a presumptuous conclusion in the context of this analysis.
However, we revisit the unknown samples in § V and show
that many unknown samples have high file content similarity
to malicious samples in our clustering.

In order to better identify unique samples, we devised a
hashing technique that we call strict hashing; we exclude
the executable file headers and auxiliary sections. By only
including the sections that are vital to executing the pro-
gram (e.g., code and data sections), we were able to nullify
adversary strategy to yield a unique hash value for each
malware binary. We automate the process through a python
script incorporated into our data collection system to trim the
binaries before hashing.

Using strict hashing, we evaluated the uniqueness of the
collected 99,312 binary samples. Table 4 shows the duplicate
samples discovered through strict hashing. We found that the
20,582 samples had the aforementioned overlays. We also
observed that themalicious file has a definite tendency toward
duplication (i.e., just appending dummy data after the exe-
cutable files) compared to the benign files, as 47% of the
malware with overlay data was duplicated, and 1.77% of
benign files did. One interesting result is that unknown files
showed more tendency toward duplication with malicious
files, suggesting that unknown files may contain sufficient
amount of malware in the wild.

We further evaluated the collected binary samples to mea-
sure the prevalence of such practice in malware distribution.
This suggests that mitigating detection with simple modifi-
cations is popular in the wild. In addition, these patterns are
more common in malicious and potentially malicious files
compared to benign files, meaning that our hashing scheme
can detect the trivial files with low false positives. Moreover,
we try to detect a known malware set based on strict hashes,
whose hash is not known to VirusTotal. To this end, we check
if strict hash of unknown samples are included in the known
malware set and not included in benign malware set. As a
result, there were 1,755 out of 6,771 (26%) unknown samples
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had overlay data with malicious samples. Our analysis sug-
gests that ourway of hashing binary samples can eliminate the
amount of hashing or binary analysis for a significant portion
of unknown binaries.

Padding malware binaries with overlays to yield a unique
hash values, is a prevalent practice in malware distribution
today.

4) MALWARE FILE PACKER ANALYSIS
Malware is often packed to evade signature-based detection
and raise the bar of the malware analysis. We measure the
use of packing in the collected malicious (rmal > 30%) binary
samples in our dataset.

Table 5 shows the distribution of the identified packing
methods. We use F-PROT and PEiD packing detection pro-
vided by the VirusTotal attributes to detect and classify the
packing methods. The top 5 prevalent malware packers were
UPX, BobSoft, INNO, ASPACK, and NSIS, and frequent
packers are the same for PE and ELF. Overall, about 27%
of PE malware samples and 6.7% of ELF samples were
detected with those packer detectors. Contrary to our expec-
tation, well-knownCOTS (Commercial Off-The-Shelf) pack-
ing tools were not mainly used.

To further investigate the 73% of the samples that are
supposedly not packed, we perform manual analysis on ran-
domly selected 30 samples with distinct strict hash values.
Unfortunately, checking whether each file is packed requires
extremely high cost of manual reverse engineering, which
forces us to resort to random sampling. The sample size is
set according to the Central Limit Theorem, which proposes
the minimal sample size of 30 for representing the whole
distribution. As the analysis result, we found that none of the
analyzed samples were packed. While we could not confirm
our observation across all the samples, our best effort method
allows us to make a statistical conjecture that a large portion
of the samples are not packed. Also, we could observe the use
of well-known packing tools, for instance, the top 5 observed
in our dataset. This shows that the adversary has chosen to use
simpler methods to generate malware with unique hashes and
generate a large bulk of binaries that are essentially identical
programs containing small differences.We surmise that this is
due to the decreased value of malware implementations since
the many popular malware families are open-source, as in the
case of Mirai [49].

Contrary to previous beliefs, the practice of packing mal-
ware binaries has diminished. This is possibly because
many popular malware families are open-source nowadays,
and their code structure and behavior are well-known.

5) BINARY FILE SIZE ANALYSIS
In the Figure 5, we show a cumulative graph of file size with
respect to the samples of all rmal ranges (rmal > 30%, rmal <

5%, rmal = 0%), and the file size of top 4 malware families.
We can find clear differences among the ranges. First, file
sizes of malicious (rmal > 30%) samples are concentrated

TABLE 5. Packer usage statistics for malicious samples.

around 100KB, and 50% of malicious samples’ file sizes
were within 70KB ∼ 600KB. Benign samples are uniformly
distributed compared to other file types in terms of file size.
And file sizes of the sampleswith (rmal < 5%)were relatively
large compared to the other two classes. Interestingly, the
file size of the top 4 families was even more concentrated
than other classes, more than 50% of samples sized within
50KB ∼ 200KB and 90% of samples within 30KB∼ 500KB.
This result reveals that there are clear preferences in malware
file sizes, which is mainly a few hundreds of kilobytes, and
we believe that this is the strategic choice of recent attackers
that optimizes the distribution of malware samples.

C. IN-DEPTH CASE STUDIES
1) EVASIVE .NET DOWNLOADER
Analyzing malware samples, we found a peculiar sample that
was not detected by most AV vendors. This file is a simple
downloader implemented in Windows PowerShell and had
been actively distributed through jplymell.com. Interestingly,
only one AV vendor(Symantec) detected the downloader.
The file named ps.ps1 downloads the next-stage payload,
applepeg.jpg, from the same site and executes it. As an
obfuscation method, the file randomly changes the script
itself by inserting meaningless spaces and tabs and also
encoding itself with base64.

The use of PowerShell with the particular obfuscation
seemed to be one of the most efficient way to bypass AV
systems.

2) MULTI-STAGED MALWARE USING CUSTOM PACKER
Emotet, the second-largest common malware on the internet,
is delivered in amulti-stagemanner and uses a custom packer.
In this case study, we analyze a sample of the Emotet mal-
ware 1 active at the last day of our collection, starting from
their initial compromise method, aMicrosoftWord document
embedding the malicious macro script.

First, opening the Word document shows a decoy image
file, which tricks users into enabling the macro. When
the user enables the macro, an obfuscated script assembles
base64 encoded PowerShell scripts and spawns new pro-
cesses. This obfuscation is hard to de-obfuscate or emulate
since they split the script and store the chunks into various
ways. For example, some script chunks are stored in the script
itself, sometimes stored in an encoded form, or stored in
GUI metadata, i.e., in the description attributes of a hidden

1SHA256: 367beb7944831570410dcff59d7e8b2d5cf1074dd1ca52dee2
9f0dfc9785bfdd
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text-box object. These various obfuscation techniques bypass
the static analysis system, which emulates the script itself
since the payload is stored out of the script and stored inWord
document metadata.

After the macro spawns a new PowerShell process, the
PowerShell script tries to download the next stage malware
from four different C&C URLs, which is hard-coded as the
PowerShell script. They check the size of the downloaded
sample, so dynamic analysis sandbox with emulated network
environment will fail to reveal the script’s malicious behav-
ior as they only check the validity of the network-delivered
file. Interestingly, the malware distribution URL within the
PowerShell script is different from where its origin macro
document is distributed. This means that they have at least
five different malware distribution sites to distribute an actual
malware sample.

Next, the downloaded sample is custom-packed as a Win-
dows PE file with various anti-analysis tricks. For exam-
ple, they try to trick emulation-based detection by adding
opaque predicates and heavy loops, as well as traditional VM
detection techniques. Some of them use an anti-analysis trick
called process-hollowing [53], which injects an unpacked
code into other benign processes. As malicious behaviors
spread through other benign processes that are not meant to
be tracked, it makes hard to track the exact behavior of the
malware. Furthermore, malware nowadays extensively uses
cryptographic methods to secure its C&C channels, such as
HTTPS and public-key cryptography that validates received
information. Existing analysis technique based on network
traffic emulation is hard to trick malware since it is hard to
forge a message when the private key of the C&C infrastruc-
ture is unavailable.

Through our in-depth analysis of custom-packed malware
samples, we identify the obstacles of diagnosing multi-staged
malware, (i) various languages (i.e., word macro script, Pow-
erShell script, binary codes), (ii) multiple malware distribu-
tion URLs in a single campaign, (iii) custom packers that
evade automatic analysis, and (iv) robust communication
channels using cryptography. These suggest that an inte-
grated, robust analysis system must be researched in order
to analyze and prevent recent multi-staged malware.

Another interesting feature of this malware is that the
malware developer has actively employed diverse tech-
niques to evade malware detection techniques. For exam-
ple, jplymell.com/extin/neutros.hhk was alive from 14 Jan-
uary 2020 to 06 April 2020, distributing 21 unique malware
samples. Interestingly, they updated and rebuilt their binary
almost every day before 11 February 2020, and they did not
update the binary sample2 afterward. It seems that the attack-
ers behind this campaign continuously updates their binaries
and eventually settled to a successful one. This highlights the
need for watching URL as well as binary to actively defend

2SHA256: 2270746c7bfdd89384f62c7734af07e04627a74dae292de98
7c7af9bdd8094fb

TABLE 6. Malware sample coping with distributing infrastructure
takedown.

against such attacks, before they get improved enough to
bypass automatic detection methods.

Also, manual analysis using VirusTotal passive DNS and
Graph API reveals that an attacker behind this URL fre-
quently changes the DNS record of the domain. The domain
was registered in September 2019 and assigned to 23 distinct
IP addresses. Some IP addresses were resolved to benign
websites that likely use hosting services, or they might
hijack other servers and change the domain to a hacked
server. In addition, other malware samples distributed from
jplymell.com are also connected to linkadrum.nl and pent-
housefb.org, so there is a high probability that the attacker
also controls those servers. This domain had distributed mal-
ware for more than a year, which means that AV vendors had
enough time to defend against those malware samples, but the
attacker had effectively evaded antivirus detection.

In addition, we checked the URLHaus reports to con-
firm the changing trend in the malware family, which is
shown in Table 6. The domain jplymell.com used Imminen-
tRAT until November 2019, and it moved to QuasarRat.
After the takedown of the ImminentRAT infrastructure by
Europol, it quickly found an alternative and continued the
campaign [54].

Through this in-depth analysis, we identified multiple
characteristics of the advanced attack campaign, (i) Assign-
ing multiple IP addresses with a domain, (ii) Using multi-
ple domains in a campaign, (iii) Updating its binary files
frequently while the distribution URL remains unchanged,
(iv) Swapping malware family from time to time. However,
all of these attacks can be grouped by their primary asset,
malware distribution URL, suggesting the need for consider-
ing malware downloading URL as well as malware sample
itself.

V. CLUSTERING FOR BETTER MALWARE CLASSIFICATION
HEURISTICS
Malware binary clustering provides clear advantages in the
fight against malware distributors. As we discussed in § IV,
being prolific is one of the main strategies of malware dis-
tributors. Clustering malware binaries allows researchers and
industry to obtain a comprehensive view on the currently
distributed malware. Also, up-to-date malware clusters allow
prioritizing of limited man-hours into new variants of mal-
ware that require attention. Previous works [8], [55] also
pointed out that malware clustering can cover this issue.
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We perform clustering on our malware binary dataset to
create classification heuristics that are based on the file sim-
ilarities. Our clustering seeks to illustrate the possible rela-
tions among the samples in our dataset at a different angle,
aside from the AV vendor labels, since the malware labels
from AV vendors report conflicting classification and allow
many binary samples to go undetected. Towards this goal,
our clustering includes all samples in our dataset (potentially
malicious, benign, and unknown samples).

The clustering yielded 868 clusters with more than five
samples, involving a total of 44,104 samples. The largest
cluster had 1911 samples. In the rest of this section,
we explain our clusteringmethod and discuss the result and its
implications.

A. CLUSTERING BASED ON FILE SIMILARITIES
Recently, AV vendors have suffered from flooding malware
samples into their analysis pipeline, making it hard to ana-
lyze all the collected data even with the automated dynamic
analysis. Thus, they adopt various techniques such as static
analysis or machine learning based detection or clustering to
reduce the size of the corpus. Clustering enables us to track
the variants and provides a simple yet effective method for
identifying unknown malware samples. Based on clustering
results for unknown files, we can also designate and manage
the ‘‘malware candidate’’ group that needs to be monitored
among them.

1) CLUSTERING METHOD
We evaluate the clustering approach’s effectiveness using
our malware samples. We use TLSH [56], which produces
a distance score when given two binaries using locality-
sensitive hashing schemes, as in a few previous works [56],
[57]. The distance score has a range of 0 ∼ 300, where
0 indicates identical files, and the higher score indicates
larger differences. We also adapted agglomerative hierarchi-
cal clustering, which first assigns each sample to a singleton
cluster, then recursively merges two adjacent clusters. More
specifically, we used a single-linkage metric; two closely
located clusters when the distance between the two is less
than the given threshold. We applied a threshold of 80 based
on the empirical results from previous work [57].

2) CLUSTERING RESULT
We found 868 clusters with more than five samples and
identified the biggest clusters with their component families.
Table 7 shows our clustering result. The top 10 clusters were
mainly Emotet, Mirai, and Trickbot samples. There were
44,104 samples in those 868 clusters, and we could skip more
than 40% of the samples and focus on other samples that
are not similar to known malware and thus require careful
analysis. This suggests that the clustering approach works on
the recent malware sets, providing a method to prioritize the
analysis pipelines. Also, we can find that sufficient amount of
unknown samples are included in each cluster. In total, 23%
of unknown samples are clustered.

Unknown samples that are clustered with malware are
suspected to be malware that is undetected or in pre-
distribution stage.

We randomly selected five samples from potentially mali-
cious samples in each cluster and manually analyzed them as
noted in the remark in Table 7. Due to the high manual effort
required for reverse engineering of each sample, we could not
verify all samples. However, all five samples were found to
be a variant of the dominant AV-vendor-confirmed malicious
families in the cluster. While we can not assume that all
potentially malicious samples in the dominantly malicious
clusters are malicious, we argue that our clustering allows
the researchers and task force in the field to narrow down
on the samples that are unknown, but worth manual reverse
engineering efforts. While there were clusters with uncer-
tainty, such as the 6th cluster having 13.5% of Fareit and
4% of Garamue, which requires further investigations, the
clustering approach worked well for all benign, potentially
malicious, and malicious clusters.

Also, we figure out which families are well clustered using
our approaches. For example, Trickbot was dominant in clus-
ter #4, accounting for 99% of known samples. This means
that Trickbot family is cluster-friendly (i.e., well clustered
using similarity hash). Cluster-friendly families can be said
to be families with many overlays and an active generation
of variants. Therefore, if an unknown file is incorporated into
a cluster mainly composed of files of a clustering-friendly
family, we can guess with high confidence that it is malware
that belongs to the family. To find out all cluster-friendly
families from our dataset, we searched for families that were
accounted for more than 80% of known samples in any
cluster. As a result, 42 families were identified to be cluster-
friendly, and Table 8 shows the full list of them. Given that
20,486 samples are classified into these 42 families, which
is 38.2% of reported samples and 54.9% out of malicious
samples, we confirmed that clustering works on recent and
large numbers of distinct families.

3) UNDERSTANDING MUTATION STRATEGY
The clustering result shows us that an abundant number of
variants exist in the wild, which are similar in terms of their
bytes level characteristics, and these are easily detectable
using similarity hash. Therefore, the next research question is
how the similar samples inside a cluster are actuallymodified.
In order to answer this question, binary differences between
the samples found in each cluster are needed. Thus, we iter-
atively applied the longest common sub-string algorithm to
the pairs of samples. Also, we calculated the entropy of files’
bytes contents to find the relationship between the density of
information and the frequency of modification among the file
contents. If frequently modified parts have a small density of
information, then it can be inferred that the attackers reuse
existing malware, only changing useless parts. We only select
binary difference results with more than 50% matches and
mark which parts in the malware are frequently shared and
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TABLE 7. Top 10 largest clusters and their component families.

modified between two malware samples. We then randomly
selected 50 pairs in each cluster in total and found that the
average overlapping part was 83.2%. This means that similar
malware, regardless of its family, shares more than 80% of
its contents, modifying a relatively small part of the sample.
Figure 6 shows the most frequent part that the malware author
modifies when generating variants. This clearly shows that
the attackers mainly modify two parts. First is a small part
at the front part, where header contents are located. The
other part is the end part, where resources or overlay data
are located. Also, the entropy of the file content, which is
denoted by the red line in Figure 6, suggests that the part with
higher entropy, i.e., having more information than the other
part, remains unchanged, and lower entropy parts are more
likely to be modified when generating malware variants.

Malware authors generate variants by simply modifying the
front and end parts of the files.

4) TRIVIAL CHANGES ARE THE NORM IN MALWARE
DISTRIBUTION
We found a malware distribution domain3 that distributed
2,756 unique malware samples and AVCLASS result sug-
gests that these samples were Trickbot family. By calculating
binary differences on these samples, we figured out that
most of the files are trivial variants: generated by appending
dummy bytes at the end of the original file. In more detail,
there were actually two strains of malware, the first one
was around 300KB, and the other one was around 450KB.
We found that all samples, each for 1,744 and 1,012, were
actually generated by applying trivial modification to the two
original samples. Appended dummy data were 0 to 1,114
bytes and 0 to 601 bytes at the end of the file, and the entropy
of added part was 3.1 on average. These samples were 4th,
8th ranked clusters from the previous subsection and found
that clustering performed well to these trivial changes in the
malware variant generation.

Trivial variants are frequently found in the wild: malware
authors simply put dummy data with lower entropy at the
end of the malware, to generate an unseen malware sample
in terms of the same hash.

3http://www.mitsui-jyuku.co.jp

TABLE 8. Clustering-friendly families: at least one cluster contains more
than 80% of the family in above.

FIGURE 6. binary diff result and entropy of similar malware samples.

5) TOWARDS MALWARE DETECTION WITH CLUSTERING
We point out that AV vendors and file analysis services
cannot sufficiently reflect the behavior of the binary into
the classification of malware, as they sort a file into known
& unknown only with their policy hashes. Furthermore, the
naming scheme of the malware varies around AV vendors,
as VirusTotal reports show. We argue that the varying naming
scheme around AV vendors and hash-based malware detec-
tion make it hard to track fast-mutating malware variants and
detect files that are in the pre-distribution stage. We suggest
that similarity-based malware clustering should be applied
around AV vendors to solve these problems. To do so, sharing
malware samples through vendors and the public would be
needed to enable comparing the similarity of malware around
the ecosystem getting compared.

Clustering can provide an unified standard on classifying
malware, and also help to detect malware files in pre-
distribution.

B. DISCUSSION
Our clustering seeks to provide an alternative to the tradi-
tional malware labeling practice.

1) CLUSTERS AS MALWARE CLASSIFICATION LABEL
We point out that the criteria for classifying malware should
focus on reflecting their behavior patterns and binary similar-
ities. The current labeling scheme differs upon AV vendors
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FIGURE 7. The number of reported URLs in our crawling (per week).

with truly high variance, and we argue that this makes it
difficult to keep track of malware mutation, which eventually
leads to the reduction of the attacker’s burden. Therefore,
we assert that binary-similarity based cluster should be the
standard for malware classification labeling.

2) BENIGN SAMPLES INCLUDED IN CLUSTERS
We found that malware samples that were previously clas-
sified as benign by the AV vendor reports were likely to be
undetected malicious files. Even though the absolute number
of benign samples in each cluster is a bit small, our static
analysis of those files revealed that they were usually mal-
ware that had not been detected. Table 7 shows the type of
malware that was included in the benign set. This implies our
clustering approach can capture the malware that current AV
vendors cannot detect.

3) TOWARDS ONLINE MALWARE CLUSTER
We plan to maintain our data collection system and clustering
system such that the clusters are constantly updated. In such
systems, users can query their own file to check if it is benign,
or figure out the malware clusters near the file if it’s not.
Therefore, the users can get sufficient information on the
files that are yet reported, also provide data to our clustering
system.

VI. DISTRIBUTION NETWORK AND SITE ANALYSIS
We conduct a quantitative analysis to understand the current
state of malware distribution. To this end, we dissect the
statistics of the collected distribution site URLs in our dataset.
Our analysis includes unique IP addresses, domain, and AS
registration distributions, as well as URL lexical distributions
of malware distribution sites. Through the analysis, we intend
to present an overview of network infrastructures that the
malware distributors exploit.

A. MALWARE DISTRIBUTION TREND
1) INCREASE IN DISTRIBUTION SITES
We observe a growth in the reported number of URLs during
our data collection period (2019.06 ∼ 2020.06). Figure 7
shows the growing number of reported URLs followed by
their reports. The number peaked in May 2020, with more
than 20,000 malware URLs, which is about four times more
than that of June 2019.

2) DISTRIBUTION UPTIME
Furthermore, we found that the uptimes of URLs differ signif-
icantly between the malicious and benign samples. The aver-
age uptime of all reported URLs was 43 days. URLs that were
confirmed to be malicious (i.e., rmal > 30%) had an average
uptime of 15.45 days. The number is contrary to the average
uptime of unknown (i.e., @ rmal), which was measured to be
45.45 days. This clearly shows that malware distributors are
forced to update their URLs to evade the real-time malicious
URL blocking often deployed in end-point AV products.

Average uptime of malware distribution sites was
15.45 days.

B. DISTRIBUTION OVER NETWORKS
Additionally, we analyze the network aspects of the collected
malware distribution site dataset. Since multiple distribution
site URLs resolve to the same IP address, we first eliminate
duplicates such that our dataset contains a unique IP address
set. After the duplicate elimination process, the IP address set
contains 13,798 unique IP addresses.

1) IP NETWORK DISTRIBUTION
Figure 8 presents the distribution ofmalware distribution sites
over the IP address. Compared to the previous measurement
work on specific families of malware [49], distribution sites
in our dataset show a uniform distribution over the IP address
space.

Our dataset of malware distribution sites in those ranges
mentioned before is slightly more dense than other IP ranges,
but they only cover 43.3% of the sites. This result suggests
that malware distribution sites are evenly distributed, imply-
ing that URL blocking strategy based on specific IP ranges or
ISPs would be infeasible.

When the malware distribution of the overall network is
divided into B-class ranges, many B-class ranges include a
small number ofmalware distributions sites (< 1%), as shown
in Table 9. This augments our observation that malware dis-
tribution sites are uniformly distributed without a noticeable
concentration on a specific range.

Malware distribution sites are uniformly distributed across
multiple IP ranges, rendering defensive strategies that focus
on specific IP ranges infeasible.

2) ASN DISTRIBUTION
We analyze the malware distribution in terms of Autonomous
System Number (ASN), the control unit of the network
(Table 10). Even from the ASN perspective, as we expected,
ASN in China is at the top of the rank for entire malware dis-
tribution. Among the Top-10 ASN of Malware distribution,
AS4837, AS4134, and AS1325 are ranked at 1st, 2nd, and 5th
respectively, with 22.5% of the entire malware distribution.
The 1st in the rank, AS4837, was the most used with 45.8%
of Gafgyt malware and was also used in 6.8% of Mirai. The
2nd, AS4134, was also used primarily as 12.8% of Gafgyt,
and also AS132525 was used. As such, the vulnerability of
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TABLE 9. Top-10 of B-class include malware distribution sites.

FIGURE 8. Distribution of distribution sites over IP address.

ASN in China is seen to still exist as in previous studies. And
in the case of Gafgyt, it seems to be actively utilizing such
vulnerability. AlthoughMirai includes someASN in China of
the Top-10 ASN, its proportion was little. Moreover, Emotet
and Trickbot tend to exploit the United States and Canada or
various countries, diverging from the ASN of China.

One-third of all malware is distributed by the top-10 ASN
of the distribution site.

C. DISTRIBUTION OVER DOMAIN NAMES
The features extracted from domain names of the site of mal-
ware distribution can embed more valuable information than
those from just simple IP addresses. The domains of our data
set may not be directly generated by the malware distribution
attacker or compromised sites. However, these domain names
are involved in the malware distribution environment, and we
expect this would help us to understand the characteristics of
malware distribution behavior more clearly.

1) TLD LEVEL DISTRIBUTION
The first feature we can find from the domain is the TLD-level
distribution of domain names. Table 11 shows the top-10
generic top-level domains (gTLDs) of top-4 malware, Mirai,
Emotet, Trickbot, and Gafgyt. Except for Gafgyt malware,
’.com’ accounts for more than 40% of all Top-3 Malware.
The proportion of ’.adsl’ ranks the 2nd, accounting for
about 11.2%. Notably, the distribution sites with .adsl
take 60.6% of all Gafgyt malware family distribution. This
possibly implies that the Gafgyt distribution campaign was
permed by a single group that simply reused their hosting
services of choice. In addition, .eu domain in the Mirai’s
distribution is ranked 3rd with 5.8% interconnection of the

Malware distribution centered around Estonia and Croatia.
Also, .in domain, which is the national domain of India,
possesses 3.4% of Gafgyt’s TLD distribution. Our observa-
tion confirms a previous report on the outbreak of Emotet
malware in India in 2019 [58]. We also observe 56 malware
URLs from 26 domains with government (.go, .gov) TLD
that distribute malware. These sites are from China, India,
Indonesia, Kazakhstan, Pakistan, the Philippines, Thailand,
andVietnam, andwe suspect that those sites are compromised
and used to distribute Windows malware.

Most malicious URLs had common TLDs (e.g., .com), but
the use of the certain TLDs (e.g., .go, .gov) was only
observed in certain regions.

2) URLs IN ALEXA
Also, we compare the Effective Second-Level
Domains(e2LDs) against Alexa top sites. e2LDs allow us
to understand the domain ownership than Fully Qualified
Domain Names (FQDNs). As a result, there are 5,780 e2LDs
in our dataset, and 13 domains are in the top 1000 sites,
and 427 sites are in the top 1 million sites. Table 12 shows
13 sites from Alexa top 1000, and it includes qq.com,
googleusercontent.com, discordapp.com. This
means that malware distributors also abuse file-sharing fea-
tures in common internet services (e.g., QQ, and Discord)
as distribution sites. Hence, our observation calls for the
integration of malware binary pre-screening features into
such services.

Malware distributors also abuse file sharing features in
common services as distribution sites. Binary screening can
be deployed to such services for mitigation measures.

3) MALWARE FAMILIES AND DOMAIN RELATIONS
We also observe consciously diversified malware distribu-
tion in a single domain. We calculated the variance of rmal
within the family under the domain. subsection VI-D shows
the number of files, the standard deviation of rmal , and the
malware families found in each domain sorted by the standard
deviation of rmal . The result shows that the highest rmal
variances are 0.197, and the most frequently discovered fam-
ilies are the gamarue, wacatac, lokibot, and agensla families.
This result shows that malware distribution domains, each
presumably used by a single distributor, distribute multiple
types of malware families.
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TABLE 10. Top-10 of ASN of malware distribution sites.

TABLE 11. Top-10 of TLD of malware distribution sites.

TABLE 12. e2LDs found in Alexa top 1000 sites.

Malware distributing domains often distribute multiple
types of malware families, and there is no distinct distri-
bution site to malware family relations.

D. DISTRIBUTION OVER GEOGRAPHIC LOCATION
1) GEOGRAPHICAL LOCATIONS OF DISTRIBUTION SITES
The top-7 country result of the distribution site in our dataset
shows similar results as a previous work [4], except that
the rankings have slightly changed. Table 14 shows detailed
statistics from our dataset. Notably, the Gafgyt malware fam-
ily is overwhelmingly prevalent in China. On the other hand,
the United States have a large portion in the total number of
the top-3 malware (Mirai, Emotet, Trickbot) malware fam-
ily distribution. Compared to the concentration of ASN, the
results differ slightly.

E. DISTRIBUTION SITE ANALYSIS DISCUSSION
Our analysis provides a foundation for further studies on
understanding the malware distributor strategy in choosing
and using the acquired distribution sites.We observed that the
distribution sites show a uniform distribution in IP addresses

and domains. We argue that the distributors make such a
conscious diversification effort, given the AV vendors’ con-
tinuous reactive defensive measures. Also, the diversified
malware family outflux from a single domain is certainly
not cost-efficient. Purchasing malware generation toolkits for
different families and mutating them with the strategies we
found in § IV, and replacing binaries with a short time period
(15.45 days) are daunting tasks.We conclude that distribution
sites cannot be a reliable indicator for the maliciousness of
served files or distributed malware family type. This is why
we did not include distribution sites in our clustering, shown
in § V.We believe that hosting sites must be involved with the
defensive effort in malware distribution prevention. That is,
file screening policies based on the real-time and up-to-date
malware databases in hosting services would significantly
raise the cost of distributing malware.

VII. INSIGHTS AND IMPLICATIONS
In this section, we discuss the implications from our findings
and suggest future directions for the research community and
industry involved in malware defense.

A. OPEN-SOURCE AND CROSS-PLATFORM MALWARE
In our analysis, we observed a large corpus (11.6%) of mal-
ware that are built for non-x86 architectures (e.g., ARM
and MIPS), as shown in Table 3. These malware samples
are predominantly Mirai variants. We surmise that the mal-
ware distributors are conveniently cross-compiling the now
open-source Mirai to multiple platforms. Our findings con-
firm the substantial malware threat in IoT devices reported
in previous works [49]–[51]. We expect IoT malware dis-
tribution to continue to grow, and the current trend – the
multi-target compilation of the samemalware – will continue.
This phenomenon calls for the development of cross-platform
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TABLE 13. Top 15 netloc with various malware ‘‘SINGLETON-n’’ means n singleton family were found on the site.

TABLE 14. Top-10 of Country of malware distribution sites.

malware similarity evaluation techniques such as the work
by Xu et al. [59], [60]. Such techniques will render the iden-
tification of new IoT malware variants significantly more
efficient by allowing identification of their traditional com-
puting device (e.g., desktops) counterparts that are likely to
be already in the malware databases.

B. CALL FOR STANDARDIZED MALWARE FAMILY
CLASSIFICATION CONVENTION
We found frequent malware binary label discrepancies across
multiple AV vendors. This poses difficulties in establishing
the ground-truth in collecting and analyzing malware bina-
ries. It leaves researchers no option but to rely on the tools
that aggregate different family naming convention of AV
vendors, such as AVCLASS. This problem has been raised
by various previous works [61]–[63] on malware analysis,
but still remains unchanged. Moreover, we found that cur-
rent malware naming scheme does not reflect the similarities
among the families. We found that two malware families with
distinct names had over 60% file similarities (Figure 4). Also,
our clustering based on TLSH (§ V) shows actual similarities
in binary contents generated clusters containing binaries with
different family classification but with high file similarities.

This shows that the current malware family labeling system
does not reflect differences in the binary properly, making
it hard to track variants of fast-changing malware families.
We expect that prescribing a standard for classifying malware
families would reduce the cost of analysis for AV vendors.

There have been some efforts on enacting a standard
malware naming convention, such as CARO [64] and
MAEC [65], but they are yet to be widely adopted. Alter-
natively, researchers attempted to cluster malware with their
content or behaviors [8], [45], [55] or employ supervised
machine learning [66]–[68]. Towards a standardized malware
family classification convention, we expect that an objective
comparison of the existing classification methods will signif-
icantly aid the researchers in the field. Also, the AV vendors
should cooperate in reporting consistent and standardized
labels for malware.

C. COUNTERING ADVERSARY’s EVASIVE STRATEGY
As we report in this work, malware generation and distri-
bution is a mature industry. Fighting malware has proved
to be a daunting challenge through decades of the arms
race. Hence, practical defense measures must raise the cost
of malware distribution and damage the profit. Our binary
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analysis indicates that themalware distributors can regenerate
malware binaries with unique hash values at a rapid rate.
As we discussed, malware binaries are deployed with over-
lays that add just enough differences to yield a unique hash
value. This indicates that the adversaries are well aware of,
and can economically evade, the traditional hash blacklisting
approach.

On the other hand, the number of malware distribution
URLs is relatively limited (13,798 unique IP addresses). Also,
the average number of uptime data for confirmed-malicious
(rmal > 30%) distribution sites was 15.45 days (from the
time it was first identified as malicious). This is contrary
to the average uptime of unknown (i.e., @ rmal), which was
measured to be 45.45 days. The adversary makes conscious
efforts to diversify the distribution sites, as we report in this
work. Nevertheless, our findings indicate that URL blacklist-
ing would generally apply significantly more pressure on the
adversary than binary hash blacklisting.

As such, we expect that research efforts that propose more
efficient proactive distribution site detection [69]–[71] will be
valuable to the researchers and practitioners in the field.

VIII. CONCLUSION AND FUTURE WORK
In this study, we presented a large-scale and comprehensive
analysis of the current status of malware distribution.We built
a malware data collection system for the analysis and col-
lected 99,312 malware binary samples and 38,659 malware
distribution sites over 287 days. We dissected the statistics of
the collected malware and their distribution sites to identify
the current trend of malware distribution.

Throughmultifaceted analysis on our malware binary sam-
ples as well as peculiar outliers, we identified the general
trends in the current malware binaries and the current eva-
sion strategies employed by the adversary. Motivated by the
current malware family classification convention that is often
not in consensus among different reports, we presented our
malware binary clustering based on the actual differences in
the binaries and its result. We spotted the trivial modifications
through the clustering approach while generating malware
variants. We also explored the possibility of detecting mal-
ware in the pre-distribution stage through clustering by man-
ual analysis on unknown samples in the cluster. Regarding
the distribution sites of the malware binaries, we revealed that
adversaries are consciously trying to diversify the distributed
malware in a single site.

Based on our analysis, we provided insights and impli-
cations from our findings and proposed possible counter-
measures on malware distributors’ evasive strategies. Among
the suggested directions that may contribute to the ongoing
efforts against malware in this work, we plan to further
advance the malware family classification method and con-
vention based on the proposed clustering method. In more
detail, we plan to explore the feasibility of a standardized
similarity score convention for potentially malicious binaries
based on actual file similarity that can supplement the limita-
tions of the current malware classification.

In all, we provided a comprehensive overview of the cur-
rent state of malware and its distribution, and a summary of
insights for researchers and taskforce in the field.
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