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ABSTRACT Human activity recognition is one of the most difficult tasks in computer vision. Due to the lack
of time information, detecting human activities from still photos is more difficult than sensor-based or video-
based techniques. Recently, various deep learning based solutions are being proposed one after another, and
their performance is constantly improving. In this paper, we proposed a convolutional neural architecture
by ensembling transfer learning based multi-channel attention networks. Here, four CNN branches were
used to make feature fusion based ensembling and in each branch, an attention module was used to extract
the contextual information from the feature map produced by existing pre-trained models. Finally, the
extracted feature maps from four branches were concatenated and fed to fully connected network to produce
the final recognition output. We considered 3 different datasets, Stanford 40 actions, BU-101 and Willow
human actions datasets to evaluate our system. Experimental analysis showed that the proposed ensembled
convolutional architecture outperformed previous works by a noteworthy margin.

INDEX TERMS Human activity recognition, multi-channel attention module, ensembling, InceptionV3,

Xception, InceptionResnetV2, EfficientNetB7.

I. INTRODUCTION
In Human Activity Recognition (HAR), an action refers to an
entity which can be observed by utilizing either human eye or
a sensing device [1]. For example, walking is an action and
it necessitates continual observation of a person in the field
of view. Human activities can be classified into four broad
groups based on the body components that are being used for
action i.e., gesture, action, interaction and group activity [2].
Gestures involves face, hands or other body part movement
for attaining nonverbal communication. Action refers to
movements of human i.e., running, walking, jumping,
crawling etc. Interaction denotes the actions between a human
and an object or another human. Group activity refers to the
cases where multiple persons conduct gestures, actions and
interactions with diverse objects.

HAR has been an active area of research in computer
vision and pattern recognition in recent years and has become
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a hot scientific topic in the computer vision community.
It is involved in the development of many important
applications such as human computer interaction (HCI) [3],
[4], education [5], medical [6], entertainment [7], virtual
reality [7], video surveillance and home monitoring [8], [9],
security [10], video retrieval [11], abnormality identifica-
tion [12] and so on. Therefore, the wide range of the activity
recognition methods is directly linked to the application
domain to which they are implemented [9].

HAR can be roughly categorized into two types based on
the type of input data: sensor-based HAR and vision-based
HAR [13], [14]. Furthermore, video-based HAR and
image-based HAR are two different forms of vision-based
HAR. Sensor-based HAR looks at raw data from biosensors
and remote monitoring [15], [16], whereas vision-based
HAR looks at pictures or videos captured by optical
components [17], [18]. Since they are worn by people
to automatically detect and track several actions such as
sitting, walking, jumping, and relaxing, wearable devices
are exemplary instances of sensor-based HAR [19], [20].

47051


https://orcid.org/0000-0002-0007-4435
https://orcid.org/0000-0003-2966-7055
https://orcid.org/0000-0002-7476-2468
https://orcid.org/0000-0003-4674-0365
https://orcid.org/0000-0002-5954-1675

IEEE Access

K. Hirooka et al.: Ensembled Transfer Learning Based Multichannel Attention Networks for HAR

A sensor, however, will not operate if a person is either
outside of its range [21] or doing unexplained activities [22].
CCTV systems, on the other hand, have long been used
in vision-based HAR systems [17]. The identification of
gestures and actions based on video analysis has been
extensively researched [23], [24]. Furthermore, this issue is
particularly beneficial to video surveillance [25], [26] and
interactive media [27], [28]. Because vision-based data is less
expensive and easier to acquire than sensor-based data, the
great amount of research has concentrated on vision-based
HAR in recent years. That’s why, for this work, human
activity recognition from still images has been considered
which can be used for surveillance, robotic applications,
human-computer interaction applications, annotating images
using verbs, searching an image database using verbs,
searching images online based on action queries, frame
tagging, and so on in the domain of education, learning, and
industry.

Video-based HARs, in particular, have been widely
examined over the past decade, with excellent outcomes
in every case [29]. This is because each video in the
video-based technique is made up of numerous frames, each
of which contains information on the subject’s movement
while also keeping track of time. Due to the absence of
sufficient spatiotemporal information, image-based HARs
are particularly complicated and difficult tasks compared to
video-based HARs and sensor-based HARs. To put it another
way, it is important to comprehend and distinguish human
activities from a single visual in image-based HARs. Because
the datasets and the number of pictures per label in each
dataset are not large enough, many researchers haven’t looked
into this specific behavioral perception domain.

Machine learning methods have been used to tackle
the HAR issue for decades, including random forest [30],
Bayesian networks [31], Markov models [32], [33], and
support vector machine [34], [35]. Traditional machine learn-
ing techniques have performed well in heavily controlled
conditions with minimal input data. They do, however, need
many pre-processing stages and rigorous hand-engineering,
which is incredibly difficult and time-consuming [36].
Furthermore, the usage of shallow features results in poor
performance utilizing unsupervised learning [36], [37]. In the
realm of image recognition, however, emphasis has been
concentrated on the construction of convolutional neural
networks (CNN) and the creation of recipes [38]-[40] since
AlexNet’s debut in 2012. Convolutional neural networks,
such as VGG [41] and Inception [42], have made it feasible
to extract strong features from raw photos, resulting in great
results and still improving recognition accuracy in large
datasets. Despite CNN’s significant performance, the absence
of large volumes of labeled data in action recognition creates
overfitting issues in deep CNN training [43].

After rigorous study of previous works, we discovered that
the performance of human activity recognition can be boosted
significantly by designing a new deep learning architecture.
In this article, we used feature fusion-based ensembling
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technique to concatenate features that were produced from
four CNN branches. Firstly, transfer learning [44] has been
adopted using four pre-trained deep convolutional neural
networks with ImageNet weights to overcome the problem
of limited samples per class [45]. Therefore, the initial
ImageNet weights were retrained for the considered datasets
for each of the four pre-trained models. Secondly, by incor-
porating an attention mechanism, the extracted feature map
was transformed into a more discriminative feature map.
Thirdly, for each of the 4 models, after using a channel
attention module, we added fully connected layers having
dense layers with the “SoftMax’’ activation function. Here,
SoftMax activation is producing a probabilistic confidence
feature map that can be thought of as the feature map. Finally,
we have combined the feature maps extracted from multiple
channels (four channels) to perform feature fusion-based
ensembled learning. Experimental analysis revealed that
ensembling the final extracted feature map of four paths
can boost the performance significantly. Details about the
proposed methodology can be discovered in the “Proposed
Architecture” subsection.

Il. RELATED WORKS

As previously noted, a great number of experiments for
both sensor-based and video-based HAR have been presented
in the past. Because of the complexity of image-based
HAR, little study has been done in this area. The bag-of-
words (BoW) framework [46] is the standard technique to
action recognition in still photos, and it is the most popular
framework. A standard bag-of-words architecture collects
characteristics from the whole image and encodes them as
histogram representations. However, if the image comprises
backgrounds or objects that are unrelated to the action
categorization, noise-prone features will always be present,
lowering classification accuracy. Previously, [47] used a bag-
of-words and a support vector machine classifier to classify
human activities. [48] suggested a single picture action
recognition system based on semantic component actions.
They proposed that, unlike previous part-based approaches,
a mid-level semantic part action exists, and that human action
is a mix of semantic part actions and context clues. They
separated the body into seven sections (head, torso, two arms,
two hands, and lower body) and utilized partial actions to
predict the full body’s action.

[49] presented an unsupervised learning of a finite
multivariate generalized Gaussian mixture model to rec-
ognize human actions. They focused on the estimate of
the mixture model’s parameters for a complete covariance
matrix, which is a crucial cue in finite mixture models.
They created a new learning technique that combines a
fixed-point covariance matrix estimator with an expectation-
maximization approach. [50] suggested that the appearance
of inconsequential items and backdrops can readily be
misinterpreted. They solved the problem by employing a
bounding box for the target individual to extract only
human features, although this method is inefficient since the
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FIGURE 1. Proposed ensembled architecture consisting of pre-trained CNNs, attention module, fully connected layers and ensembling of feature

maps.

bounding box may not be accessible. Individual mask loss
was also implemented to automatically route feature map
activation to the target human doing the action, eliminating
misleading context activation. The fundamental challenge
or difficulty with still image-based HAR, according to
experiments done by [51], is the lack of temporal information.
They presented a unique visual representation that captures
the subject’s look and predicts the actors’ future movement
patterns to solve this challenge. To add novel spatial-temporal
CNNs, they adopted a transfer learning-based technique.
After the introduction of the multibranch attention net-
works, the performance of the human activity recognition was
boosted by a big margin [52]. However, the channel attention
module utilized there was not matured enough to beat the
previously attained highest performance of [48]. A more
recent work suggested some critical updates in the channel
attention module that resulted in about 1.97% performance
boost for the Stanford 40 actions dataset [53]. The critical
changes were the usage of two consecutive dense layers with
ReLU and sigmoid functions respectively. However, there
were two major concerns in this attention module. Firstly,
due to using two consecutive dense layers, the module may
face overfitting problem as well as the vanishing gradient
problem [54]. Secondly, sigmoid activations are easier to
saturate. There is a comparatively narrow interval of inputs

VOLUME 10, 2022

where the sigmoid’s derivative is sufficiently nonzero [55].
In other words, once a sigmoid hits either the left or right
plateau, a backward pass through it is practically pointless
because the derivative is very close to 0.

In our work, we introduced a batch normalization layer
between two dense layers of the attention module to
prevent the overfitting and vanishing gradient problem [56].
Furthermore, instead of using sigmoid activation, we used
the ReLU activation function as in practice, networks
with ReLU perform better than sigmoid networks in terms
of convergence [38]. Sparsity and a reduced likelihood
of vanishing gradient are two other major advantages of
ReLUs [55]. Moreover, we introduced four pre-trained
models, fully connected layers with softmax activation and
ensembling of the feature maps along with the channel
attention module. All these elements of our proposed
architecture has been described in details in the ‘“Proposed
Architecture” subsection.

Ill. MATERIALS AND METHODS

A. DATASET DESCRIPTION

In this research, three datasets have been considered: the
Stanford 40 actions dataset, the BU-101 dataset and the
Willow dataset. In this subsection, all of these datasets have
been discussed in detail.
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1) STANFORD 40 ACTIONS DATASETS

The Stanford 40 Action dataset [57] contains images of
humans performing 40 actions. There are 9532 images in
total, with 180-300 images per action class. Since the Stan-
ford 40 Actions dataset is divided into the train set and the test
set and provided by the author in this configuration, the
experiment was conducted without changing the mentioned
configuration.

2) BU-101 DATASET

The BU-101 action dataset [58] contains approximately
23.8K action images. BU-101 contains at least 100 images
for each action. The actions in this dataset are divided
into five categories: human-object interaction (HOI), body-
motion only (BMO), playing musical instruments (PMI),
human-human interaction (HHI), and sports (SPT). Since this
dataset is not divided into train and test sets, it was randomly
divided into train and test sets by keeping 80% data in the
train set and the rest of the 20% data in the test set. In total,
there are 20 human-object recognition, 16 body-motion only,
10 playing musical instruments, 5 human-human interaction,
and 50 sports classes in the overall BU-101 dataset.

3) WILLOW DATASET

The Willow action dataset [59] contains 911 images split into
seven action categories: interacting with computer (Cat. 1),
photographing (Cat. 2), playing music (Cat. 3), riding bike
(Cat. 4), riding horse (Cat. 5), running (Cat. 6) and walking
(Cat. 7). This dataset is labeled person by person, and that
information has recorded in the annotations that accompany
the dataset. Also, the division into the train set, validation set
and test set is assigned for each cropped image. Therefore,
we trimmed each image one by one based on the attached
annotation, and then split it based on the split information
provided by the author. The experiment was conducted
without changing the configuration.

B. PROPOSED ARCHITECTURE

In this article, an ensembled multi-channel convolutional
neural architecture has been proposed to recognize the
human activities. While designing the architecture, first, four
pre-trained convolutional neural networks were introduced.
Input images were fed into each of these pre-trained
convolutional neural architectures for discovering important
features.

Secondly, after applying each of the pre-trained architec-
tures, a channel attention module was utilized that has been
previously proposed by squeeze and excitation networks [60].
The attention module can adaptively set weights to the
channels of pre-trained feature maps to choose more strong
features for using them in the classification section. The
channel attention module catches the image’s global context
due to its vast effective field of view, and therefore, class-
specific information can be discovered.
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After applying the channel attention module to the output
feature maps of the four pre-trained models, four new feature
maps were generated. Thirdly, these four new feature maps
were then passed to four fully connected layers to obtain the
final feature maps. Finally, feature fusion was practiced by
concatenating the final feature maps produced by the fully
connected layers. After ensembling the features, another fully
connected layer was added.

Experimental analysis showed that the proposed architec-
ture had boosted the performance by a significant margin.
Figure 1 illustrates the basic model structure. More details on
how each module of the proposed convolutional neural archi-
tecture is designed have been discussed in later subsections.

1) PRE-TRAINED CNN

Transfer learning, often known as pre-training, is a machine
learning approach for efficiently finding an effective hypoth-
esis by transferring information learned in another activity.
It is a technique where pre-trained models with previously
trained weights i.e., ImageNet weights are utilized to retrain
the models on another dataset [61]. By employing these
strategies, it is feasible to shorten the time necessary for
learning without using a huge quantity of data. Therefore,
it is ideal for the applications of image-based human activity
recognition with small datasets with a few images per class.

Four transfer-learned convolutional neural architectures
were utilized in the pre-training section. These were Incep-
tionV3 [62], Xception [63], InceptionResnetV2 [64] and
EfficientNetB7 [65]. These four pre-trained models have
their unique behavioral characteristic of extracting valuable
discriminating features. The TensorFlow library has been
utilized to implement these models while keeping the input
shape at 512 x 512 x 3. As mentioned earlier, the fully
connected layers were intentionally removed by keeping the
‘include top’ feature as ‘False’. These layers were swapped
with the channel attention module and fully connected layers
module that are described in the next subsections.

It should be noted that the pre-trained models were
retrained on the considered datasets for this research
separately and the learned weights were saved. These
saved weights were then loaded while training the whole
architecture while feature fusion-based ensembled learning
and the weights were set to non-trainable (frozen). This
process was adapted due to heavy memory requirements
as training four pre-trained models at the same time needs
tremendous weight update. Furthermore, by keeping the
trained weights non-trainable, our architecture allowed the
four pre-trained models to preserve their internal behavioral
characteristics of extracting valuable features. Therefore,
none of the pre-trained models were getting affected by one
another while feature fusion based ensembling.

2) ATTENTION MODULE

As mentioned earlier, the pre-trained CNN models are
capable of pulling strong properties that vary from one
sample to another sample through several filters. However,
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FIGURE 2. The channel attention module utilized in this research.

it has also been demonstrated that adding an attention
module after pre-training results in the selection of more
prominent features in a classification problem [52]. The
channel attention module takes the extracted feature map,
runs it through global average pooling, and outputs each
channel’s feature amount. Then, for each channel, two
convolution layers are coupled, and ReLU activation function
is utilized to produce a value of 0 or positive.

A more powerful feature map can be constructed by
multiplying the result of the activation function by the
pre-trained feature map. In other words, the channel attention
module outputs positive value for significant features or
channels and O for unnoticeable features or channels.
To put it another way, when it is increased by stronger
characteristics, remarkable features persist while unimportant
features becomes zero. Two additional advantages of ReLU
activation are sparsity and a reduced likelihood of vanishing
gradient.

The attention module utilized in this research started
with global average pooling of input feature maps from
N channels. After that, a dense layer of size N/8 was
added, followed by a batch normalization layer. The batch
normalization layer was utilized here to solve the internal
covariate shift problem. Batch normalization also prevented
the gradient vanishing problem as it prevents the gradients
from becoming too small. ReLU activation was utilized here.
Next, another dense layer of size N was added with the
ReLU activation again. The computational complexity of
ReLUs is substantially lower than that of sigmoid. When
dealing with large networks with many neurons, this benefit
is enormous, and it can significantly shorten both training
and evaluation times. Furthermore, the ReLLU-trained model
converges quickly. Figure 2 illustrates the proposed channel
attention module that was employed in this experiment.

3) FULLY CONNECTED LAYERS

After applying the channel attention modules on the outputs
of the pre-trained models, global average pooling was used
and by doing so, the channel attention module’s powerful
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feature maps were turned to feature vectors. Dropout layers
were put before dense layers in the fully connected section
to prevent overfitting. The dropout rate was maintained
at 40%. The dense layers’ activation function was set to
softmax. Here, softmax activation is producing a probabilistic
confidence map that can be thought as the feature map. The
number of features generated by this probabilistic confidence
map is equal to the number of classes of the corresponding
dataset.

4) FEATURE FUSION BASED ENSEMBLING

Instead of using output-based ensembling, feature fusion-
based ensembling [66], [67] was utilized here. In output-
based ensembling, the outputs of each layer were ensembled.
Some popular ways of applying outcome-based ensembling
are the voting method, softmax averaging, adding a dense
layer with the outputs, etc. However, in feature fusion-based
ensembling, feature maps are ensembled. In our case, the
four final feature maps produced by the fully connected
layers module were ensembled or concatenated, followed by
a dropout of 40% and a dense layer with a softmax activation
function.

It should be kept in mind that softmax values had been
used as feature maps here, and therefore, these softmax
values were getting concatenated. The reason behind using
the softmax activation function rather than ReLU here is
that softmax produces probability scores. Therefore, if one
feature is prominent in a softmax output, other features are
bound to be non-prominent, which allowed the proposed
CNN model to converge with high confidence and boosted
the performance.

As mentioned earlier, first, the pre-trained models were
retrained separately and while training the whole architecture,
the retrained weights were loaded and the parameters of the
pre-trained models were set to non-trainable. That means,
the training process had two stages. Firstly, the retraining of
pre-trained models were utilized to extract valuable features
using their unique architectural characteristics. Next, the
weights of attention module and fully connected layers were
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TABLE 1. Performance of different pre-trained CNNs and proposed
ensembled model on stanford 40 actions dataset.

Methods Accuracy(%)
InceptionV3 89.90
InceptionResNetV2 90.55
Xception 89.52
EfficientNetB7 92.44
Proposed ensembled model 93.76

TABLE 2. Performance comparison of Stanford 40 actions dataset with
previous works.

Methods Accuracy(%)
Yan et al. [52] 90.70
Zhao et al. [48] 91.20
Sina et al. [53] 93.17
Proposed ensembled model 93.76

trained by keeping the parameters of the pre-trained model
frozen. This way of training not only reduces training time
and memory consumption, but also it preserves the unique
architectural characteristics of each pre-trained models to
figure out the best set of features among all the extracted
features of the pre-trained models.

C. PERFORMANCE METRICS

Every machine learning pipeline has performance metrics.
Classification performance can be measured in a variety
of ways. For performance measurements in this study,
we employed accuracy, precision, mean average precision,
and confusion matrix. The number of accurately anticipated
data points out of all the data points is known as accuracy.
The number of true positives (TP) and true negatives (TN)
divided by the number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) is how
it’s defined more formally. In simpler terms, accuracy can be
expressed using formula (1).

| TP + TN 0
ccuracy =
YT TPIIN Y FP+FN

Precision, on the other hand, is a metric that measures the
number of correct positive predictions. The ratio of accurately
predicted positive instances divided by the total number of
positive examples predicted is used to compute it. Therefore,
precision can be computed using formula (2).

. TP
Precision = —— 2)
TP + FP
The mean average precision (mAP), often known as
AP, is a widely used metric for assessing the performance
of models performing document/information retrieval and

object detection tasks. It can be calculated using formula (3).
Z[?: | AveP(q)

AP = — 3
m 0 3

where Q is the total number of queries in the set and AveP(q)
denotes the average precision (AP) for a single query, q.
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Finally, a confusion matrix provides a summary of
prediction outcomes of categorization problem. The number
of correct and wrong predictions is calculated and broken
down by class using count values in a confusion matrix.

IV. EXPERIMENTATION AND RESULT ANALYSIS

A. EXPERIMENTAL SETUP

The experimental environment was UbuntuOS, and the
framework used was TensorFlow 2.5.0. Data augmentation
was performed by using the ImageDataGenerator provided
by the Tensorflow framework to make up for the lack of
images in the dataset. Specifically, normalization, image
rotation with a range of 0 to 30 degrees, random vertical
shift with a range of 0% to 20%, random horizontal shift
with a range of 0% to 20%, and horizontal inversion were
utilized for augmentation. To train the proposed model,
the learning rate was set to 0.0001 and SGD [77] was
utilized with a momentum coefficient of 0.9. For the Stanford
40 actions dataset and BU-101 dataset, the batch size for
the train and validation sets for InceptionV3, Xception,
InceptionResNetV2 was kept at 8. On the other hand, the
batch size for the train and validation sets for EfficientNetB7
was kept at 4 for the mentioned dataset due to lack of GPU
memory. However, for the Willow dataset, batch size was kept
at 4 for train and validation sets for all the considered CNN
models. These values of batch size were selected using the
grid search mechanism by keeping the limited GPU power in
mind.

B. RESULTS FOR STANFORD 40 ACTIONS DATASET

Table 1 illustrates two sorts of results separated by double
lines. First, the performance of individual pre-trained CNNs
has been reported. It should be kept in mind that while
applying the pre-trained CNN, no attention module, fully
connected layers, or ensembling were involved. After that,
the result of the proposed ensembling has been reported
which involves attention module, fully connected layers,
and previously trained frozen pre-trained CNNs. It can be
noticed that EfficientNetB7 achieved the best accuracy of
92.44% among the four pre-trained CNN. However, the
proposed ensembled model achieved 93.76% accuracy which
is approximately 1.32% better than EfficientNetB7.

Table 2 illustrates a comparison of accuracy between the
proposed ensembled model and previous methods. It can
be noticed that pre-trained CNNs alone couldn’t outperform
the previous best result of 93.17%. However, the proposed
ensembled model was able to outperform the best result by
0.59% due to the integration of the previously described
attention module, fully connected layers, and ensembling.
Figure 3 illustrates the confusion matrix for the Stanford
40 dataset. It can be observed that for each of the 40 actions,
the proposed ensembled model is working equally fine.

C. RESULTS FOR BU-101 DATASET

Table 3 illustrates results for both the pre-trained CNNs and
the proposed ensembled method. While applying the pre-
trained CNN, no attention module, full connected layers,
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TABLE 3. Performance of different pre-trained CNNs and proposed ensembled model on BU-101 dataset.

Precision for each category (%)

Methods HOI (%) BMO(%) PMI(%) HHI%) SPT(%)
TnceptionV3 95.02 9222 9492 92.94 96.24
InceptionResNetV2 94.22 92.97 95.50 92.21 95.53
Xception 96.15 91.86 97.41 91.65 96.04
EfficientNetB7 96.33 92.71 96.84 94.59 95.53
Proposed Ensembled Model 97.98 94.02 97.43 93.74 97.79

*Here, HOL, BMO, PMI, HHI and SPT refer to human-object interaction, body-motion only,
playing musical instruments, human-human interaction and sports respectively.

TABLE 4. Performance comparison of BU-101 dataset with previous works.

11 P P [y
Methods Precision for each category(%)

HOI (%) BMO(%) PMI(%) HHI(%) SPT(%)
Safaei, M et al. (2019) [51] 61.1 84.4 58.7 71.3 74.8
Safaei, M et al. (2020) [68] 59.6 93.8 68.9 67.0 74.7
Proposed Ensembled Model 97.98 94.02 97.43 93.74 97.79

*Here, HOL, BMO, PMI, HHI and SPT refer to human-object interaction, body-motion only,
playing musical instruments, human-human interaction and sports respectively.

TABLE 5. Performance of different pre-trained CNNs and proposed ensembled model on willow dataset.

Precision for each label(%)

Methods Ca.1 Cat2 Ca3 Ca.d Cat5 Cat6 Ca.7 MAP)
InceptionV3 71.11 85.92 93.64 92.75 68.92 60.61 69.47 77.49
InceptionResNetV2 9043 8333 93.16 90.07 72.86 69.01 68.81 79.67
Xception 79.55 9231 9815 9466 57.14 6437 70.75 79.56
EfficientNetB7 7179  88.89 9792 5094 82.61 8889 57.89 76.99
Proposed Ensembled Model ~ 87.18  89.04 9244  90.85 7647 73.08 73.45 83.21

*Here, mAP refers to mean average precision.
TABLE 6. Performance comparison of willow dataset with previous works.
Precision for each label (%)

Methods Cal Ca.2 Cat3 Catd Cat5 Ca6 Ca.7 AP
Delaitre et al. [47] 58.2 354 73.2 82.8 69.6 44.5 54.2 59.6
Delaitre et al. [69] 56.6 375 72.0 90.4 75.0 59.7 57.6 64.1
Sharma et al. [70] 59.7 42.6 74.6 87.8 64.2 56.1 56.5 65.9
Sharma et al. [71] 64.5 40.9 75.0 91.0 87.6 55.0 59.2 67.6
Khan et al. [72] 61.9 48.2 76.5 90.3 84.3 64.7 64.6 70.1
Khan et al. [73] 66.8 48.0 71.5 93.8 87.9 67.2 63.3 72.1
Alexe et al. [74] 67.5 47.5 72.5 90.6 86.0 59.1 61.7 69.3
Uijlings et al. [75] 67.8 48.1 71.5 92.0 85.8 61.3 63.5 70.9
Zhao et al. [76] 67.9 49.1 86.5 93.0 86.2 65.7 72.6 74.4
Proposed Ensembled Model ~ 87.18  89.04 9244 90.85 7647 73.08 7345 83.21

*Here, mAP refers to mean average precision.

or ensembling were involved. On the other hand, while
applying the proposed ensembled model the values of the
trainable parameters of the pre-trained CNNs were kept
frozen so that characteristics of each pre-trained CNN can
be preserved. Unlike Stanford 40 actions dataset, precision
has been calculated for the BU-101 dataset instead of
accuracy for the proper comparison with the previous work.
It can be observed that among the pre-trained models,
EfficientNetB7 has outperformed others in the human-object
interaction (HOI) and human-human interaction (HHI) cat-
egory whereas InceptionResNetV2, Xception, and Inception
V3 outperformed others in body-motion only (BMO), playing
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musical instruments (PMI) and sports (SPT) categories
respectively. However, it can be noticed that the proposed
ensembled model has outperformed all the pre-trained
models in all categories except HHI with a very little
difference margin.

Table 4 illustrates the performance comparison of the
BU-101 dataset with the previous works in terms of precision.
It can be seen that the proposed ensembled method has out-
performed the previous works by a significant margin. To be
precise, the proposed ensembled model achieved 36.88%,
0.22%, 28.53%, 22.44%, and 22.99% better precision than
previous works in HOI, BMO, PMI, HHI, and SPT categories
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FIGURE 3. Confusion matrix for the Stanford 40 actions dataset.

respectively. There were a total of 101 classes in the BU-101
dataset, therefore, the size of the confusion matrix will be
101 x 101 which is quite large and difficult to understand.
Hence, we haven’t illustrated the confusion matrix here.

D. RESULTS FOR WILLOW DATASET

Table 5 illustrates the performance of different pre-trained
CNNs along with the performance of the proposed ensembled
model in terms of precision. As the previous works calculated
the mean average precision, we also calculated the mean
average precision for proper comparison. Willow dataset
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is a very complex dataset as there are 7 categories with
a total of only 911 images. Among these 7 categories,
some categories are hard to discriminate due to lack of
dissimilarity among extracted features. In Table 5, it can
be noticed that each of the pre-trained CNNs is struggling
in recognizing some categories. InceptionV3 is struggling
for category 5, 6 and 7, InceptionResNetV2 in category
6 and 7, Xception in category 5 and 6, and EfficientNetB7
in category 4 and 7. However, while applying the proposed
ensembled model, it was discovered that for each of the
categories, the proposed architecture was achieving decent
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FIGURE 4. Confusion matrix for the Willow dataset.

performance. After calculating the mean average precision,
it was observed that the proposed ensembled model achieved
the highest mean average precision (mAP). Therefore, the
proposed ensembled model is more capable of discriminat-
ing between extracted features than the single pre-trained
models.

Table 6 illustrates the performance comparison of the
Willow dataset with previous works in terms of mean average
precision. It can be noticed that the proposed ensembled
model has outperformed all the previous works in terms of
mean average precision (mAP). If class-wise precision is
considered, the proposed ensembled model has outperformed
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previous works in categories 1, 2, 3, 6, and 7. For the
other 2 classes, the proposed approach achieved decent
precision. However, it should be noted that for categories 1,
2, and 6 the previous highest precision values were very
low i.e., 67.9, 49.1, and 67.2 respectively. In Table 6, it can
be noticed that the performance has improved by a huge
margin for these categories when the proposed approach
was practiced. In simpler words, the proposed ensemble
CNN is not affected by overfitting like the previous works
and therefore, is capable of finding better discriminating
features. For a more clear understanding, we have provided
the confusion matrix in Figure 4.
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V. DISCUSSION

After comparing the performance of our approach with the
performances of previous works, as illustrated in Table 2,
Table 4 and Table 6, it can be noticed that the proposed
method performed favorably against all previous works. The
boost in performance was obtained for four major reasons.
Firstly, due to using the pre-training technique, the models
needed little training time and examples to figure out the
significant patterns. Secondly, using an effective attention
mechanism ensures that the prominent features will survive
and the less important features will be discarded. Thirdly, the
fully connected layers involving softmax activation ensures
that the most prominent features get highest values than
others. Finally, because of the proposed ensembled feature
fusion technique, the performance was boosted even further.

VI. CONCLUSION

Previously, many researchers have conducted experiments on
sensor-based HARs and video-based HARs. However, the
domain of experimenting on HARs involving still images
has not been explored enough due to the lack of time-series
data for still images. Another major problem of human
activity recognition from still images is the lack of images
per class and the complexities of human actions. In this
article, we addressed this problem domain and proposed
ensembled transfer learning-based multi-channel attention
networks for human activity recognition in still images.
Firstly, four pre-trained models were utilized to address the
"lack of images per class’ problem. Next, an attention module
was added followed by fully connected layers for each of the
four pre-trained models. Finally, we applied feature fusion by
ensembling or concatenating the final feature maps. While
designing the attention module, we reduced the chance of
occurring vanishing gradient problem, the covariate problem
and sparsity which were previously undiscovered. Moreover,
the well-thought integration of fully connected layers and
ensembling outperformed all previous works by a noteworthy
margin. In the future, there is scope for figuring out a way to
obtain the skeletal joint points of human actions from still
images to achieve a higher recognition rate.

In the domains of education, learning, and industry, human
activity recognition from still images can be utilized for
image annotation, action behavior-based image retrieval,
human-computer interaction, and frame reduction in videos.
Moreover, human activity recognition can be used in active
and assisted living (AAL) systems for smart homes, surveil-
lance and monitoring systems, and healthcare monitoring
applications. We introduced a methodology in this paper that
is capable of recognizing human activities from still images
more accurately than previous significant works. We hope
that with the increasing usage of this technology, our work
will have a significant impact on education, learning, and
industry.
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